Skip to main content
. Author manuscript; available in PMC: 2017 Aug 18.
Published in final edited form as: J Am Stat Assoc. 2016 Aug 18;111(514):621–633. doi: 10.1080/01621459.2015.1021005

Algorithm 2.

Algorithm of Structured Matrix Completion with unknown r
  1. Input: A11 ∈ ℝm1×m2, A12m1×(p2-m2),A21(p1-m1)×m2. Thresholding level: TR, (or TC).
  2. Calculate the SVD A•1 = U(1)Σ(1)V(1)⊤, A1• = U(2)Σ(2)V(2)⊤.
  3. Calculate Z11 ∈ ℝm1×m2, Z12 ∈ ℝm1×(p2m2), Z21 ∈ ℝ(p1m1m2 Z11=U(2)A11V(1),Z12=U(2)A12,Z21=A21V(1).
  4. for s = min(m1, m2): −1: 1 do (Use iteration to find )
  5. Calculate DR,s ∈ ℝ(p1m1)×s (or DC,s ∈ ℝs×(p2m2)) by solving linear equation system, DR,s=Z21,[:,1:s]Z11,[1:s,1:s]-1(orDC,s=Z11,[1:s,1:s]-1Z12,[1:s,:])
  6. if Z11,[1:s,1:s] is not singular and ||DR,s|| ≤ TR (or ||DC,s|| ≤ TC) then
  7. = s; break from the loop;
  8. end if
  9. end for
  10. if ( is not valued) then = 0.
  11. end if
  12. Finally we calculate the estimate as
    A^22=Z21,[:,1:r^]Z11,[1:r^,1:r^]-1Z12,[1:r^,:]