Skip to main content
Data in Brief logoLink to Data in Brief
. 2016 Dec 16;10:432–437. doi: 10.1016/j.dib.2016.12.014

Data documenting the potential distribution of Aedes aegypti in the center of Veracruz, Mexico

Israel Estrada-Contreras a, César A Sandoval-Ruiz b, Fredy S Mendoza-Palmero c, Sergio Ibáñez-Bernal a, Miguel Equihua a, Griselda Benítez a,
PMCID: PMC5198849  PMID: 28054003

Abstract

The data presented in this article are related to the research article entitled “Establishment of Aedes aegypti (L.) in mountainous regions in Mexico: Increasing number of population at risk of mosquito-borne disease and future climate conditions” (M. Equihua, S. Ibáñez-Bernal, G. Benítez, I. Estrada-Contreras, C.A. Sandoval-Ruiz, F.S. Mendoza-Palmero, 2016) [1]. This article provides presence records in shapefile format used to generate maps of potential distribution of Aedes aegypti with different climate change scenarios as well as each of the maps obtained in raster format. In addition, tables with values of potential distribution of the vector as well as the average values of probability of presence including data of the mosquito incidence along the altitudinal range.

Keywords: Ecological niche modelling, Vector, MaxLike, Mobility-oriented parity


Specifications Table

Subject area Biology and climate change
More specific subject area Ecological niche modelling
Type of data Maps, tables and figures
How data was acquired A dataset sampling for the state of Veracruz: 100 records of Aedes aegypti from previous surveys, 167 also records provided by the Health Authority for Region V, state of Veracruz and seven records from our sampling data. Potential distribution maps of Aedes aegypti were obtained using the packages “maxlike” ver. 0.1–5, “raster” ver. 2.3–12, “rgdal” ver. 0.9–1, “sp” ver. 1.0–16 and “tcltk2” ver. 1.2–10, in the software R ver. 3.1.2. In addition, a geographic information system was used to analyze the maps obtained.
Data format Shapefile (.shp) and Excel (.xlsx)
Data source location Veracruz, Mexico
Data accessibility Data are available in this article

Value of the data

  • Presence records over a gradient including current boundary conditions is interesting to assess current Aedes aegypti distribution expansion.

  • Potential distribution mosquito coverage is useful in planning future strategies to face the human risks produced byAedes aegypti expansion.

  • The potential distribution ofAedes aegypticould be used to compare the output of other algorithms used in ecological niche modeling.

1. Data

The dataset of this article provides information about occurrence records used to generate the potential distribution maps of Aedes aegypti, we produced a series of maps about this. This maps are presented and discussed in Equihua et al. [1]. The map included (Map 1) is the spatial distribution of the records used to generate Aedes aegypti potential distribution models (shared in shapefile format). The following five maps are the potential distribution obtained under the different scenarios of climate change we explored. Map 2 is the current potential distribution, Map 3 is the RCP 4.5 to 2030 scenario, Map 4 is the RCP 8.5 to 2030 scenario, Map 5 is the RCP 4. 5 to 2080 scenario and Map 6 is the RCP 8.5 to 2080 scenario. They are shared in raster geo-TIF format. Table 1, Table 2, Table 3 show information about the area, probability of occurrence and potential altitudinal presence in different altitudinal ranges where the potential presence of mosquito is projected (they are shared in.xlsx format).

Table 1.

Potential distribution area of Aedes aegypti in central Veracruz, Mexico.

Altitudinal range (m) Area (km2)
Current Near future 4.5 Near future 8.5 Distant future 4.5 Distant future 8.5
0–100 5963.24 2816.5 2900.78 901.28 NA
101–200 2500.02 1547.14 1598.74 389.58 5.16
201–300 1406.96 1186.8 1232.38 382.7 43
301–400 1079.3 1096.5 1099.08 479.02 135.88
401–500 902.14 911.6 911.6 829.04 187.48
501–600 748.2 749.06 749.06 745.62 180.6
601–700 634.68 634.68 634.68 633.82 174.58
701–800 552.12 552.12 552.12 552.12 168.56
801–900 578.78 578.78 578.78 578.78 393.88
901–1000 521.16 521.16 521.16 521.16 449.78
1001–1100 480.74 489.34 489.34 489.34 444.62
1101–1200 467.84 495.36 495.36 495.36 468.7
1201–1300 418.82 454.94 455.8 455.8 430.86
1301–1400 374.96 429.14 435.16 437.74 405.92
1401–1500 261.44 344.86 348.3 360.34 337.98
1501–1600 116.96 257.14 264.02 302.72 281.22
1601–1700 54.18 227.9 235.64 276.06 260.58
1701–1800 8.6 155.66 172.86 229.62 230.48
1801–1900 0.86 84.28 102.34 210.7 245.96
1901–2000 NA 12.9 24.94 157.38 208.98
2001–2100 NA 0.86 1.72 61.92 155.66
2101–2200 NA 0.86 1.72 18.06 112.66
2201–2300 NA NA NA 0.86 56.76
2301–2400 NA NA NA 0.86 25.8
2401–2500 NA NA NA NA 5.16
2501–2600 NA NA NA NA 1.72

Table 2.

Mean probability of occurrence of Aedes aegypti in central Veracruz, Mexico.

Altitudinal range (m) Mean probability of occurrence
Current Near future 4.5 Near future 8.5 Distant future 4.5 Distant future 8.5
0–100 0.94 0.85 0.85 0.81 NA
101–200 0.94 0.79 0.80 0.79 0.29
201–300 0.99 0.71 0.73 0.85 0.44
301–400 0.99 0.86 0.89 0.76 0.58
401–500 1.00 0.97 0.98 0.73 0.69
501–600 0.99 1.00 1.00 0.87 0.67
601–700 1.00 1.00 1.00 0.96 0.73
701–800 1.00 1.00 1.00 0.96 0.82
801–900 0.99 1.00 1.00 0.98 0.71
901–1000 0.99 1.00 1.00 0.99 0.85
1001–1100 0.98 1.00 1.00 1.00 0.87
1101–1200 0.98 1.00 1.00 1.00 0.87
1201–1300 0.98 0.98 0.99 0.99 0.86
1301–1400 0.95 0.94 0.95 0.96 0.90
1401–1500 0.84 0.93 0.95 0.96 0.93
1501–1600 0.86 0.90 0.90 0.89 0.92
1601–1700 0.73 0.87 0.89 0.88 0.94
1701–1800 0.61 0.77 0.79 0.87 0.93
1801–1900 0.31 0.67 0.69 0.85 0.88
1901–2000 NA 0.45 0.46 0.76 0.89
2001–2100 NA 0.71 0.68 0.65 0.78
2101–2200 NA 0.54 0.51 0.58 0.58
2201–2300 NA NA NA 0.50 0.45
2301–2400 NA NA NA 0.46 0.34
2401–2500 NA NA NA NA 0.29
2501–2600 NA NA NA NA 0.28

Table 3.

Mean altitude of potential presence of Aedes aegypti in central Veracruz, Mexico.

Altitudinal range (m) Mean altitude of potential presence (m)
Current Near future 4.5 Near future 8.5 Distant future 4.5 Distant future 8.5
0–100 36.94 46.00 45.34 31.47 NA
101–200 143.53 141.71 142.60 150.82 161.00
201–300 248.39 252.13 251.84 250.04 259.64
301–400 348.76 348.83 348.77 354.33 354.31
401–500 449.68 449.63 449.63 451.98 451.68
501–600 549.55 549.51 549.51 549.56 551.56
601–700 648.64 648.64 648.64 648.69 649.42
701–800 749.71 749.71 749.71 749.71 752.05
801–900 850.45 850.45 850.45 850.45 854.55
901–1000 949.34 949.34 949.34 949.34 951.34
1001–1100 1050.74 1050.82 1050.82 1050.82 1051.13
1101–1200 1152.24 1152.89 1152.89 1152.89 1153.48
1201–1300 1248.68 1249.10 1249.11 1249.11 1248.54
1301–1400 1349.18 1349.42 1349.64 1349.77 1350.19
1401–1500 1445.48 1447.89 1447.86 1448.25 1449.00
1501–1600 1548.25 1550.11 1550.19 1551.14 1550.78
1601–1700 1636.68 1648.68 1648.72 1649.72 1650.83
1701–1800 1726.40 1746.26 1747.41 1749.27 1750.32
1801–1900 1824.00 1839.97 1841.95 1848.89 1848.62
1901–2000 NA 1931.73 1934.97 1947.19 1952.33
2001–2100 NA 2001.00 2030.00 2039.53 2051.32
2101–2200 NA 2182.00 2146.50 2133.19 2146.58
2201–2300 NA NA NA 2212.00 2235.58
2301–2400 NA NA NA 2365.00 2346.27
2401–2500 NA NA NA NA 2429.17
2501–2600 NA NA NA NA 2515.50

2. Experimental design, materials and methods

We developed ecological niche models of Ae. aegypti for the state of Veracruz with a total of 274 verified records. Seven records from our sampling data, 100 records from previous surveys and 167 records provided by the Health Authority for Region V, state of Veracruz. We verified all of them for geographic accuracy with on-screen visual inspection using a Geographic Information System image.

To develop potential distribution models of Ae. aegypti we used bioclimate variables for current conditions [2] and projected to future [3]. The bioclimate variables used were Bio5: maximum temperature of the warmest month, Bio6: minimum temperature of the coldest month, Bio13: precipitation of the wettest month and Bio14: precipitation of the driest month.

The results of correlation analysis for 19 bioclimate variables indicate that the four variables selected highly correlate with 2 principal component that account for almost 92% of the variability in the data. For each projection into future conditions, we used two Representative Concentration Pathways (RCP): RCP 4.5 and RCP 8.5, which refer to the possible range of radiative forcing values in the year 2100 relative to pre-industrial values, expressed in W/m2 [4].

We standardized all bioclimate variables (current and future) with their corresponding current layer, i. e. for the projected value of each variable we subtracted the mean and then divided it by the standard deviation of the current data subset. We used the MaxLike software package [5] to generate potential distribution maps and we used the packages “maxlike” ver. 0.1–5, “raster” ver. 2.3–12, “rgdal” ver. 0.9–1, “sp” ver. 1.0–16 and “tcltk2” ver. 1.2–10, in the software R ver. 3.1.2.

Then, we randomly selected 65% of the records for training and the remaining 35% for cross-validation each of the 1000 times the process was repeated with the current conditions dataset. The resulting models were deemed adequate, according to Estrada-Contreras et al. [6], if they satisfied the following criteria: a) convergence occurred, b) they had no missing data, and c) proportion of errors of omission was less than or equal to 10. The model coefficients were then used to project the species’ future niche. The resulting models were ranked by how well they matched the relative occurrence area (ROA) [7] values. We chose 10 models around the statistical median that had an average probability of presence obtained with validation records closest to 1, since theoretically the average of this value should be 1. Then we produced a consensus map averaging these 10 maps (the same models set for current and future conditions).

The minimum value of probability of presence was considered indicative of the likely presence of Ae. aegypti, and was obtained by extracting values from the potential distribution map to current conditions with the coordinates of all the records used to generate the models (training and validation). To further evaluate the current presence model we used partial ROC [8] by randomly selecting 35% of the records used to generate the models.

Although ecological niche models were generated for surface analysis of the entire state of Veracruz, elevation increase and changes in the probability of occurrence were conducted only in the rectangle that has its diagonal vertices at points 97 °35’55.78’’W and 20 °28’20.67’’N, and 95 °49’31.07’’W and 18 °39’41.6’’N, which covers an area of 28,167.58 km2. To identify whether the analysis area has combinations of environmental variables similar to those of today, the "Mobility-Oriented Parity"(MOP) tool [9] was used.

Conflict of Interest

There is no conflict of interest.

Map. 1.

Map. 1.

Occurrence records of Aedes aegypti.

Acknowledgements

We thank José Luis Antiga Tinoco (Secretario de Salud de Veracruz 2010), Pablo Anaya Rivera (Secretario de Salud de Veracruz 2011–12), Juan Antonio Nemi Dib (Secretario de Salud de Veracruz 2013–14), Irasema Guerrero Lagunes (Directora de los Servicios de Salud de Veracruz-SESVER), Alejandro Escobar Mesa (Director de Enfermedades Transmisibles de la Secretaría de Salud de Veracruz- SESVER), Ruth A. Hernández Xoliot (Jefe de Entomología, del Departamento de Vectores de SESVER), Armando Bustos (Jefe de Departamento de Vectores de SESVER, 2010), Raymundo Hernández (encargado del Departamento de Vectores de SESVER, 2015), Cuauhtémoc Limón, (encargado del programa de Vectores, Jurisdicción Sanitaria V, SESVER, 2010), Enrique Alducin (encargado del programa de Vectores, Jurisdicción Sanitaria V, SESVER, 2011), Israel Villa (encargado del programa de Vectores, Jurisdicción Sanitaria V, SESVER, 2012), and Carlos Roberto García. We are also grateful to Jessica Agastein for conducting the sociological surveillance. The authors are indebted to INE-SEMARNAT, and are particularly grateful for the strong interest in this study, support, and help of Adrián Fernández. We also thank Julia Martínez and Uriel Bando of the Coordinación del Programa de Cambio Climático at the INE. We thank Bianca Delfosse for her invaluable revision of the English version of the manuscript.

Footnotes

Appendix A

Supplementary data associated with this article can be found in the online version at 10.1016/j.dib.2016.12.014.

Appendix A. Supplementary material

Supplementary material

mmc1.zip (55.7KB, zip)

.

References

  • 1.Equihua M., Ibáñez-Bernal S., Benítez G., Estrada-Contreras I., Sandoval-Ruiz C.A., Mendoza-Palmero F.S. Establishment of Aedes aegypti (L.) in mountainous regions in Mexico: increasing number of population at risk of mosquito-borne disease and future climate conditions. Acta Trop. 2017;166:316–327. doi: 10.1016/j.actatropica.2016.11.014. [DOI] [PubMed] [Google Scholar]
  • 2.A. Cuervo-Robayo, Superficies climáticas en alta resolución: periodo base 1961–2000. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad e Instituto de Biología, Universidad Nacional Autónoma de México, MéxicoIn press, 2016.
  • 3.A. Cuervo-Robayo, Escenarios de cambio climáticas del INECC en alta resolución: futuro cercano (2015–2039) y futuro lejano (2075–2099). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad e Instituto de Biología, Universidad Nacional Autónoma de México, MéxicoIn Press, 2016.
  • 4.IPCC . In: Cambio climático 2014: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático [Equipo principal de redacción. Pachauri y R.K., Meyer L.A., editors. IPCC; Ginebra, Suiza: 2014. p. 157.〈http://ipcc.ch/working_groups/working_groups.shtml〉 [Google Scholar]
  • 5.Royle J.A., Chandler R.B., Yackulic C., Nichols J.D. Likelihood analysis of species occurrence probability from presence-only data for modeling species distributions. Methods Ecol. Evol. 2012;3:545–554. [Google Scholar]
  • 6.Estrada-Contreras I., Equihua M., Laborde J., Martínez E., Sánchez-Velásquez L.R. Current and future distribution of the tropical tree Cedrela odorata L. in Mexico under climate change scenarios using MaxLike. PLoS One. 2016;11(10):e0164178. doi: 10.1371/journal.pone.0164178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Lobo J.M., Jiménez-Valverde A., Real R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2007;17:145–151. [Google Scholar]
  • 8.Barve N. Biodiversity Institute; Lawrence, KS: 2008. Tool for Partial-ROC ver. 1.0. [Google Scholar]
  • 9.Owens H.L., Campbell L.P., Dornak L.L., Saupe E.E., Barve N., Soberón J., Ingenloff K., Lira-Noriega A., Hensz Ch.M., Myers C.E., Peterson A.T. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration áreas. Ecol. Model. 2013;263:10–18. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary material

mmc1.zip (55.7KB, zip)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES