Skip to main content
. 2016 Dec 29;12(12):e1006017. doi: 10.1371/journal.ppat.1006017

Fig 3. Model for piRNA biogenesis in Aedes aegypti.

Fig 3

RNA molecules from varying sources are processed differently by the piRNA machinery in Ae. aegypti. Upon acute infection, Sindbis virus RNA is processed into ping-pong–dependent piRNAs involving PIWI proteins Piwi5 and Ago3. In contrast, dengue virus RNA can also be processed into piRNAs by Piwi6. Transposon-derived piRNAs associate primarily with Piwi5 and Piwi6; however, some transposon RNAs feed into the ping-pong loop and give rise to Ago3-bound secondary piRNAs. Additionally, the production of transposon piRNAs is dependent on Piwi4 in an indirect manner, as transposon-derived piRNAs are not loaded in Piwi4, but knockdown of Piwi4 does reduce their numbers. Viral RNA may directly enter the piRNA machinery; additionally, viral RNA is reverse transcribed to produce a DNA form of the virus (vDNA). The vDNA may either remain episomal or integrate into the host genome. Putative vDNA-derived transcripts may serve as additional precursors for vpiRNA production. Moreover, when genome integration occurs in the germline, the vDNA fragment forms a novel endogenous viral element (EVE) that may lead to the production of EVE-derived piRNAs.