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Abstract

Background

Antiangiogenic treatment of glioblastomas with Bevacizumab lacks predictive markers.

Myoinositol (MI) is an organic osmolyte, with intracellular concentration changes depending

on the extracellular osmolality. Since Bevacizumab markedly reduces tumor edema and

influences the tumor microenvironment, we investigated whether the MI concentration in the

tumor changes during therapy.

Methods

We used 1H-magnetic resonance spectroscopy to measure the MI concentrations in the

tumor and contralateral control tissue of 39 prospectively recruited patients with recurrent

glioblastomas before and 8–12 weeks after starting therapy. 30 patients received Bevacizu-

mab and 9 patients were treated with CCNU/VM26 as control. We performed a survival

analysis to evaluate MI as a predictive biomarker for Bevacizumab therapy.

Results

MI concentrations increased significantly during Bevacizumab therapy in tumor (p < .001)

and control tissue (p = .001), but not during CCNU/VM26 treatment. For the Bevacizumab

cohort, higher MI concentrations in the control tissue at baseline (p = .021) and higher differ-

ences between control and tumor tissue (delta MI, p = .011) were associated with longer sur-

vival. A Kaplan-Meier analysis showed a median OS of 164 days for patients with a deltaMI

< 1,817 mmol/l and 275 days for patients with a deltaMI > 1,817 mmol/l. No differences were

observed for the relative changes or the post treatment concentrations. Additionally calcu-

lated creatine concentrations showed no differences in between subgroups or between pre

and post treatment measurements.
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Conclusion

Our data suggest that recurrent glioblastoma shows a strong metabolic reaction to Bevaci-

zumab. Further, our results support the hypothesis that MI might be a marker for early tumor

cell invasion. Pre-therapeutic MI concentrations are predictive of overall survival in patients

with recurrent glioblastoma treated with Bevacizumab.

Introduction

The use of the monoclonal VEGF blocking antibody Bevacizumab (BVZ) has a strong biologi-

cal rationale in glioblastoma [1,2]. In 2009 BVZ raised attention through unprecedented

response rates in recurrent glioblastoma [3,4]. In first-line therapy, the RTOG 0825 study and

the AVAglio study failed to demonstrate a benefit regarding overall survival [5,6]. Recently,

the results of the BELOREC trial (EORTC 26101) have been presented [7]. Bevacizumab in

combination with lomustine did not result in an overall survival benefit compared to lomus-

tine alone in glioblastoma at first recurrence. Therefore, the use of bevacizumab in first line

therapy or at first recurrence is not justified. On the other hand, there are biomarkers that can

identify patients that particularly benefit from bevacizumab. Unfortunately, none of these bio-

markers is easily applicable and/or validated. A deeper understanding of the mechanisms of

action and new biomarkers are needed to keep antiangiogenic therapy alive.

Up to now most of the research employing magnetic resonance spectroscopy (MRS) has

been focused on the effects of BVZ on the tumors energy and membrane metabolism as poten-

tial markers for direct antitumoral activity [8–10]. A reversion of the increased intracellular

pH, a decrease of the ratio of phosphatidylcholine to glycerophosphocholine or of the ratio of

choline to N-acetyl-aspartate had been shown and interpreted as a positive therapeutic effect.

Another metabolite that can be measured with 1H-MRS and that could be particularly relevant

for antiangiogenic therapy is myoinositol (MI).

MI, which is predominantly produced by astrocytes [11], is a basic sugar and component in

important molecules like inositol phosphates and phosphatidylinositol [12]. Additionally MI

itself plays an important role in the cellular osmoregulation of the brain. Its concentrations

seems to be variable within a wide range [13], allowing the intracellular osmolality to adapt to

changes in the extracellular compartment. It has been shown in both animal and patient stud-

ies that hyponatremia for various reasons is associated with low intracellular MI levels in the

brain [13–15]. The same accounts for patients with a brain edema caused by hepatic encepha-

lopathy, even though the pathomechanism behind these disorders are fundamentally different

[16–18]. In both cases the low MI concentration was reversible upon treatment of the underly-

ing diseases. In low-grade gliomas MI is increased compared to normal appearing brain tissue.

This was explained by the increased cell density of astrocytic origin in these tumors. Increased

MI concentrations have also been assessed as marker for astrocytic gliosis in diseases like glio-

matosis cerebri or multiple sclerosis, usually being accompanied by changes in creatine (Cre)

and other metabolites [19,20]. In the context of glioblastoma MI levels in the tumor are lower

than in normal appearing tissue [21–25]. This might be a consequence of the disruption of the

blood-brain barrier that leads to a disturbance of the osmotic equilibrium. Interestingly, an

increase of MI in normal appearing tissue of the contralateral hemisphere has been described

in patients with untreated glioblastoma, suggesting early tumor cell infiltration without disrup-

tion of the blood-brain-barrier [26].
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BVZ has strong impact on tumor vessels, the blood-brain barrier and thus most likely on

the osmotic environment. We therefore hypothesized that a metabolic reaction including a

change of the MI concentration should be measurable during BVZ therapy. To investigate our

hypothesis we evaluated the spectroscopic data of 30 prospectively evaluated patients with

recurrent glioblastoma before and during therapy with BVZ. Another 9 patients with recurrent

glioblastoma receiving CCNU (Lomustine) and VM26 (Teniposid) chemotherapy served as a

control group. Compared to our previously published MRS study on the effects of BVZ,

reporting data for the same patient cohort [8], we now present newly analyzed and unpub-

lished data on a different metabolite as well as data on a newly recruited control group. Here

we evaluated effects on the osmotic environment, while our previous study focused on phos-

pholipid membrane metabolism and thereby on tumor cell proliferation.

Methods

Study design

This prospective, observational study was approved by the ethics committee of the Faculty of

Medicine at the Johann Wolfgang Goethe-University Frankfurt (Reference number 4/09-SNO

01/09). Patients with a histological diagnosis of glioblastoma and radiologically confirmed

recurrence based on the updated response assessment criteria (RANO) and a clinical recom-

mendation for BVZ or CCNU/VM26 treatment were included. All patients gave their written

informed consent. Patients received either BVZ (BVZ cohort) or CCNU and VM26 (CCNU/
VM26 cohort. Patients of the BVZ cohort had been previously evaluated in a different MRS

study [8] for which MI values had not been calculated. For unbiased results, we completely

reanalyzed the existing data.

All participants underwent an MRS examination before the start of therapy and at regular

MRI follow up. Follow ups were performed after 8 weeks for BVZ patients and 10–12 weeks

for CCNU/VM26 patients.

In addition, we determined serum levels of VEGF-A before BVZ treatment using a com-

mercially available ELISA kit (Quantikine1, R&D Systems, Minneapolis, MN) according to

the manufacturer´s instructions.

MR protocol and data analysis

MRS and MRI examinations were performed on a 3 Tesla whole body scanner (Magnetom

Trio, Siemens Medical AG, Erlangen, Germany) using a double tuned 1H/31P volume head

coil (Rapid Biomedical, Würzburg, Germany). The detailed MRS protocol can be found in the

previously mentioned publication by Hattingen et al. [8]. The procedure and criteria for region

of interest (ROI) and voxel selection which have also been published in said publication are

recapitulated below for basic understanding.

A graphical user interface developed at our institute was used for the image guided selection

of the tumor ROI based on T2-weighted and contrast enhanced T1-weighted images. A senior

neuroradiologist (E.H., more than 10 years of experience) visually selected the voxels of the

tumor area. This area was defined as solid contrast enhancing tumor mass without necrotic

areas. We selected the control tissue from a contralateral region. In case of obvious tumor or

edema in that region another adjacent unaffected area of the contralateral hemisphere was

defined. During the follow-up examination under BVZ the tumor area frequently showed no

or only faint contrast enhancement. The tumor area was then delineated based on signal

changes in T2-weighted images according to following features [27]:

• intermediate signal intensity between grey matter and vasogenic edema,

Myoinositol as Marker for Bevacizumab in Recurrent Glioblastoma

PLOS ONE | DOI:10.1371/journal.pone.0168113 December 29, 2016 3 / 15



• inhomogeneous signal changes,

• blurred gray-matter junction with altered cortical ribbon,

• lack of ‘fingers of edema’.

The data was sampled from all feasible voxels within the tumor ROI and the control ROI.

An additional ROI in between tumor and control tissue was not included due to the expected

difficulty of attributing concentration changes to underlying mechanism with marked edema

being visible in the morphologic images. We utilized the software LCModel (Provencher,

downloadable test version at: http://s-provencher.com)[28] to calculate the MI concentration

with the main resonances at 3.56 and 4.06 ppm, as described in detail by Hattingen et al. [8]. It

should be mentioned that we did not use an absolute cutoff for the relative Cramér-Rao lower

bounds (CRLB) calculated by LCModel, since the significance of the CRLB can be questionable

for metabolites with a relatively low concentration like MI and a rigid cutoff might lead to an

distortion of the sample distribution [29]. Nevertheless we report the CRLB values as orienta-

tion. As a robust quality marker we also analyzed the Cre concentration. We calculated the rel-

ative changes of the MI and Cre concentrations in the tumor and control tissue for every

patient separately before calculating the average values. Fig 1 shows example images of one

patient with the corresponding spectra.

Statistical analysis

We performed statistical analysis with commercially available software (BiAS version 10.14,

epsilon-Verlag; SPSS Statistics 22, IBM). To confirm the normal distribution of our data and

the equality of variances we employed Shapiro–Wilk and F-tests.

We used a t-test to compare values between the BVZ and CCNU/VM26 cohort, between

baseline and post treatment and between tumor and control tissue. Changes during treatment

were calculated for each patient individually and then averaged. We compared the relative

changes during treatment between the tumor and control tissue by Wilcoxon-matched-pairs

test and we applied the Mann–Whitney U test to compare metabolites between independent

groups. Cutoffs were calculated with a freely available, web based software (Cutoff Finder,

http://molpath.charite.de/cutoff) [30].

Survival analysis

Since most patients from the CCNU/VM26 cohort received BVZ at further progression the

survival analysis was only done for the BVZ cohort. We split the group at the median overall

survival time into a short overall survival subgroup (short -OS) and a long overall survival sub-

group (long -OS). We then compared the MI values of these subgroups for tumor, control tis-

sue and the difference between these tissues. Next we performed two Kaplan-Meier analyses,

one for the relation between control tissue values at baseline and overall survival and one for

the relation between baseline difference of tumor and control tissue (delta MI) and overall sur-

vival. In both cases we split the cohort at an optimized cutoff for differences in overall survival

(generalized Wilcoxon test). P values< 0.05 were considered statistically significant for all

analyses.

Results

Patient characteristics

Patient characteristics are shown in Table 1. A total of 39 patients were included. All patients

were pretreated with radiochemotherapy with Temozolomide and adjuvant Temozolomide.

Myoinositol as Marker for Bevacizumab in Recurrent Glioblastoma

PLOS ONE | DOI:10.1371/journal.pone.0168113 December 29, 2016 4 / 15

http://s-provencher.com/
http://molpath.charite.de/cutoff


Before being referred to BVZ therapy, patients usually received at least one cycle of a further

chemotherapy (Lomustin).

30 patients were treated with BVZ at a dose of 10 mg/kg body weight i.v. every other week.

6 of these patients additionally received irinotecan at a dose of 125 mg/m2, one patient received

Topotecan at a dose of 0,4mg/ m2. Concomitant radiotherapy was performed in 5 patients. At

baseline 21 patients were on dexamethasone and 20 patients received dexamethasone during

the time of the follow up.

Fig 1. Model spectra. Graphical user interface on T2-weighted MR image with two small white boxes indicating an example voxel for tumor (left)

and control tissue (right) within the measured area (large white box) (A). Corresponding T1-weighted contrast enhanced MR image (B).

Corresponding spectra for the marked tumor (C) and control tissue voxels (D). The original signal is shown in black, the LCModel fit in red and the

isolated signal for myoinsitol in blue. A * marks the creatine peaks.

doi:10.1371/journal.pone.0168113.g001
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9 patients were treated with a combination of CCNU (90 mg/m2 i.v.) and VM26 (60 mg/m2

i.v.). Four patients were on dexamethasone at baseline and follow up. Five patients later

switched to BVZ treatment. Hence, for the first time, we present data on both therapies in the

same group of patients (BVZ post CCNU -subgroup).

Results at baseline

Average CRLB values for the calculation of the MI concentration were 10.8% for the control

tissue ROI and 22.2% for the tumor ROI. The respective CRLB values for the Cre concentra-

tion were 5.3% and 11.9%.

In both cohorts MI concentrations in the tumor were lower when compared to control tis-

sue (p< .001 for both cohorts). MI concentrations for tumor and control tissue showed no sig-

nificant difference between the BVZ and the CCNU/VM26 cohort at baseline (p = .48 for

tumor, p = .39 for control) (Table 2, Fig 2A and 2B). The Cre concentrations in the tumor

were also lower when compared to control tissue (p< .001 for both cohorts). None of the

other comparisons including post treatment and survival data reached significance regarding

Cre concentrations (Table 2).

Results post treatment

Fully evaluable baseline and follow-up MRS was available in 28 of 30 patients receiving BVZ,

and in all patients in the CCNU/VM26 cohort. In the CCNU/VM26 group, MI levels did not

change post treatment (Table 2, Fig 2A and 2B). In the BVZ group, MI values increased signifi-

cantly post treatment compared to baseline, for both tumor and control tissue (p< .001 for

tumor, p = .002 for control). The relative changes were more pronounced in the tumor

Table 1. Patient characteristics.

Characteristics BVZ Cohort CCNU/VM26 Cohort

n 30 9

Sex

• Female 8 3

• Male 22 6

Age

• Median (range) 52 (31–69) 57 (48–66)

Histology

• Primary GBM 26 8

• Secondary GBM 4 1

Previous therapies

• No. of surgeries, median (range) 1 (0–4) 1 (0–3)

• No. of radiotherapies, median (range) 1 (1–4) 1 (1–2)

• No. of chemotherapies, median (range) 2 (1–6) 2 (1–2)

Recurrences

• Median (range) 3 (1–5) 2 (1–3)

Concomitant therapy

• Irinotecan 6 n/a

• Topotecan 1 n/a

• Radiotherapy 5 n/a

Patient characteristics, pretreatments and concomitant therapies for all patients in the BVZ cohort as well as

the CCNU/VM26 cohort.

doi:10.1371/journal.pone.0168113.t001
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compared to control tissue (tumor 93.8% increase, control 32.0% increase, p = .049). Even

though the absolute difference between tumor and control tissue decreased, tumor values

remained significantly lower (p< .001).

Absolute MI levels for tumor and control tissue of the BVZ cohort were significantly higher

post treatment compared to corresponding values in the CCNU/VM26 cohort (p = .023 for

tumor, p = .038 for control) (Table 2, Fig 2A and 2B).

The five CCNU/VM26 patients who received BVZ at further progression represent an

opportunity to compare effects of both treatments in the same patient. In contrast to the

CCNU/VM26 treatment the MI levels during BVZ therapy did increase markedly in the

tumor (p = .04). A smaller increase of MI in the control tissue was noted as well (Table 2).

Survival analysis

The median survival in the BVZ cohort (n = 30) was 246.5 days. The respective 15 patients

with a longer survival (long–OS) had a median survival of 345 days. The 15 patients with a

shorter overall survival (short -OS) had a median survival of 164 days. The MI levels in the

tumor did not differ significantly between the two subgroups. In contrast, MI levels in the con-

trol tissue at baseline and at follow up were significantly elevated in the long -OS group (p =

.008, p = .039) (Table 2). An optimized cutoff was set at a MI concentration of 4.696 and a

Kaplan-Meier analysis for the values of the control tissue at baseline was performed as shown

in Fig 3. Median survival for the high MI subgroup (n = 18) was 270 days in contrast to 206

Table 2. Results.

baseline post treatment

n tumor control control-

tumor

n tumor control control-

tumor

increase tumor

(%)

increase control

(%)

BVZ 30 MI 2.42

(1.09)

5.00

(1.49)

28 3.66

(2.00)

5.85

(1.51)

93,8 32.0

Cre 4.03(1.67) 7.53

(1.65)

4.15

(1.72)

7.41

(1.39)

13.0 4.0

CCNU/VM26 9 MI 2.43

(1.07)

4.86

(0.65)

9 2.24

(0.76)

4.87

(0.91)

3.7 1.2

Cre 4.19

(1.90)

6.56

(1.25)

4.41

(1.64)

6.59

(1.29)

13.6 2.7

-BVZ post

CCNU

5 MI 2.32

(0.60)

4.76

(0.67)

5 4.17

(1.29)

5.12

(0.76)

88.9 8.8

Cre 5.10

(1.71)

5.94

(1.09)

5.18

(1.07)

6.67

(1.28)

13.0 14.9

Long -OS 15 MI 2.28

(0.66)

5.65

(1.16)

3.37 (1.28) 13 3.63

(2.45)

6.39

(1.44)

2.76 (2.74) 63.6 17.1

Cre 4.33

(1.79)

7.68

(0.95)

3.35 (1.87) 3.91

(2.16)

7.74

(1.44)

3.83 (1.67) -5.5 4.7

Short -OS 15 MI 2.55

(1.41)

4.36

(1.54)

1.81 (2.04) 15 3.69

(1.60)

5.38

(1.45)

1.69 (2.17) 120.1 45.0

Cre 3.74

(1.55)

7.38

(2.17)

3.63 (2.60) 4.36

(1.28)

7.12

(1.33)

2.77 (1.88) 29.0 3.4

Mean values and standard deviations (in brackets) for the MI and Cre concentration (mmol/l) in the tumor, contralateral control tissue (control), control

tissue minus tumor and the relative increase during treatment. Boldface font indicates a significant difference between either the BVZ and CCNU/VM26

cohorts or the long -OS and short -OS. Italic font indicates a significant difference between baseline and post treatment. Note that baseline and post

treatment values for the BVZ cohort are calculated based on a different number of patients (n = 30 vs. n = 28) since fully evaluable follow up data was not

available in 2 patients. Thus the same applies for the Long -OS and Short–OS subgroup (n = 13 vs. n = 15).

doi:10.1371/journal.pone.0168113.t002
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days for the low MI group (n = 12, p = .20). The difference between the tumor and control tis-

sue MI concentration at baseline (delta MI) was significantly higher in the long -OS than in

the short -OS group (p = .009). A Kaplan-Meier analysis with an optimized cutoff of 1.817 for

delta MI is shown in Fig 4. The median survival difference between the subgroup with a higher

delta MI (n = 20, median OS 275 days) and the subgroup with a lower delta MI (n = 10,

median OS 164 days) was 111 days and reached significance (p = .022).

For the relative increase of the MI concentrations in the tumor or the control tissue a rela-

tion to overall survival could not be demonstrated (S1 and S2 Figs).

VEGF serum levels

We were able to measure serum VEGF-A serum levels in 28 out of 30 patients within the BVZ

cohort before the start of BVZ therapy. The VEGF-A levels in the long–OS subgroup did not dif-

ferentiate from the levels in the short–OS subgroup (261 pg/ml for long–OS, 358 pg/ml for

short–OS, p = .227). The same applies for the patients with different delta MI (Table in S1 Table).

Discussion

In this prospective MRS study in patients with recurrent glioblastoma treated with BVZ we

were able to show that the MI concentration in tumor tissue and contralateral control tissue

increases significantly with BVZ therapy. Moreover, higher baseline MI levels in unaffected

control tissue and a higher difference to the concentration in tumor tissue (delta MI) were sig-

nificantly associated with longer overall survival.

MI is an isomer of glucose which is acting as an organic osmolyte in the brain [31]. Its con-

centration in the cells is regulated depending on the environmental osmolality, regardless of a

Fig 2. Box-Whisker-plots. (A) Box-Whisker-plot showing the median (baseline CCNU/VM26 = 2.73, BVZ = 2.47; post treatment CCNU/

VM26 = 2.38, BVZ = 3.61) and quartiles for tumor at baseline and post treatment for BVZ (orange) and CCNU/VM26 (blue). (B) Box-Whisker-plot

showing the median (baseline CCNU/VM26 = 4.83, BVZ = 4.97; post treatment CCNU/VM26 = 4.83, BVZ = 6.08) and quartiles for the control tissue

at baseline and post treatment for BVZ (orange) and CCNU/VM26 (blue). Each * marks a significant increase from baseline to post treatment.

doi:10.1371/journal.pone.0168113.g002
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certain kind of osmotic disorder [13–15,17]. Therefore, the MI concentration may indicate a

metabolic reaction to osmotic changes in the brain. A change of the total MI concentration trig-

gered by changes in membrane or second messenger metabolism seems less likely, due to the

variety of metabolic pathways facilitating MI [12] and has to our knowledge not been described.

The distinct reduction of contrast enhancement and peritumoral edema during BVZ ther-

apy [32] suggests an impact of BVZ on the osmotic environment in glioblastoma. The VEGF

secretion of glioblastoma causes a disruption of the blood-brain barrier followed by a leakage

of electrolytes and small molecules from the vessels which leads to massive, vasogenic edema

[33]. BVZ blocks this VEGF pathway and its strong in vivo impact on tumor vessels has been

described by several MRI studies using different methods [34,35]. Therefore, it seems reason-

able to assume a distinct shift in the osmotic environment during therapy. In this context, our

findings are consistent with studies on central pontine myelinolysis which reported almost

doubled MI concentrations for control subjects or after correction of the underlying hypona-

tremia [13–15]. Thus, the measured increase of the MI concentration of about 94% in the

tumor due to BVZ treatment was rather expected. In contrast, we did not observe changes of

the MI concentrations during cytotoxic CCNU/VM26 therapy. Consequently the post treat-

ment MI values in the tumor tissue were significantly higher in the BVZ cohort compared to

the CCNU/VM26 cohort. The subgroup from the CCNU/VM26 cohort who received BVZ at

further progression, again showed an increase of MI comparable to the BVZ cohort. This inde-

pendently supports our observations from the BVZ cohort. We could furthermore exclude

that systematic differences at baseline between the CCNU/VM26 and the BVZ cohorts caused

Fig 3. Kaplan-Meier-Curves based on control tissue MI. Kaplan-Meier-Curves for patients with a MI concentration in the control tissue at

baseline > 4.696 (OS 270 days, color: red) compared to patients with a MI concentration < 4.696 (median overall survival (OS 206 days, color:

brown).The figure shows an extract with an OS of 1829 days for the remaining patient of the brown cohort and a censored survival of 1424 days for

the remaining patient in the red cohort. MI = Myoinositol; OS = overall survival; delta MI = MI control tissue minus tumor concentrations at baseline.

doi:10.1371/journal.pone.0168113.g003
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different MI reactions upon treatment (Tables 1 and 2). A purely physical explanations for

increasing MI levels, like an increased cell density [26] can be mostly excluded since Cre con-

centrations remained unchanged. The low MI and Cre concentration in the tumor compared

to the control tissue are in accordance with previous MRS studies [21–25,36]. Since other

metabolites like Choline and N-acetylaspartate did also not show significant changes or rela-

tions to overall survival in a previous study [8], we will not further discuss these metabolites in

this publication (further metabolite data for the CCNU/VM26 cohort can be found in S2 Table).

Under BVZ we did not only observe a relative increase of the MI concentration in the

tumor, but also in the normal appearing control tissue of the contralateral hemisphere. MI

increased about 32% in the control tissue under BVZ treatment and post treatment values

were significantly higher in the BVZ cohort than in the CCNU/VM26 cohort. The change of

the MI concentration in the control tissue could suggest an impact of BVZ on healthy tissue or

an increase through astrocytic gliosis. Since no changes in other metabolites were notable [8],

the control tissue remained unaffected on standard T2 sequences and the timespan to the sec-

ond MRSI examination was rather short, we do not consider astrocytic gliosis as a likely expla-

nation. Alternatively a tumor related decrease of MI could already be present at baseline, with

BVZ then exerting an effect comparable to the one in tumor tissue. Compared to our measure-

ments studies on healthy adults reported both higher and lower baseline MI concentrations

[37,38]. This indicates that methodical and technical differences impede the comparison of

absolute values between different studies. To further investigate this hypothesis of a tumor

related effect we performed survival analyses.

Fig 4. Kaplan-Meier-Curves based on delta MI. Kaplan-Meier-Curves for patients with delta MI values > 1.817 (OS 275 days, color: red)

compared to patients with values < 1.817 (OS 164 days, color: brown). The figure shows an extract with an OS of 1829 days for the remaining

patient of the brown cohort and a censored survival of 1424 days for the one remaining patient in the red cohort. MI = Myoinositol; OS = overall

survival; delta MI = MI control tissue minus tumor concentrations at baseline.

doi:10.1371/journal.pone.0168113.g004
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The dichotomization of the BVZ cohort into a group with long -OS and one with short -OS

at the median survival time revealed significantly higher MI concentrations in the control tis-

sue at baseline for long -OS patients. The concentrations of MI in the tumor did not differ sig-

nificantly between these two groups. Consistently, the delta MI was significantly larger in the

long -OS group. With an optimized cutoff, especially the delta MI values were predictive of

overall survival (Fig 4), meaning lower MI concentrations in the control tissue and a smaller

delta MI where associated with shorter OS. Altogether these observations could point to an

affection of the contralateral control tissue at baseline.

We assume that this could either be explained by direct tumor cell infiltration or an indirect

tumor effect on the contralateral hemisphere. These indirect effects might include spreading

edema that is not yet visible in MRI scans, transfer of cytokines like VEGF to the contralateral

hemisphere or just increased intracranial pressure affecting the contralateral hemisphere.

Through our measurements we can fairly exclude the possibility of elevated VEGF serum levels

affecting contralateral healthy brain tissue. The diffusion of cytokines or the spreading of a

mild, invisible edema over such a long distance and through the fornix seems rather unlikely

and has to our knowledge not been described in this context. In contrast, a high grade glioma

invasion to the contralateral hemisphere has already been proven to occur in more than 50%

of untreated tumors by Matsukado et al. in 1961 [39] and since has been further validated [40].

We therefore assume tumor cell invasion and its influence on the osmotic environment to be

the best hypothesis for the deviation and probably decreased MI concentration in the contra-

lateral control tissue at baseline. A similar idea, employing MI as tumor invasion marker, has

been described by Kallenberg et al. in 2009 [37]. Their spectroscopic examination of 22 newly

diagnosed glioblastoma patients and 14 age matched control subjects yielded altered concen-

trations of MI in the contralateral hemisphere of the glioblastoma patients compared to the

control subjects. Following this reasoning, the MI concentration in the control tissue could be

a marker for the extent of tumor infiltration that is more sensitive than morphologic MRI

scans.

We have to mention that the additional medication with dexamethasone might cause at

least a small change in the MI concentration [41,42]. However a MRI study on GBM patients

did not show any effect of dexamethasone on cerebral blood flow, cerebral blood volume,

mean transit time and water mean diffusivity in normal appearing brain tissue and only a

small change of cerebral blood flow and water mean diffusivity in the tumor [41]. In concor-

dance a MRS study on GBM patients was not able to assess different MI levels in the control

tissue depending on dexamethasone treatment [43]. Compared to BVZ, dexamethasone was

significantly less effective in decreasing the blood volume and permeability in the tumor in a

MRI study on a glioblastoma rat model [35]. In summary the effect of dexamethasone, if pres-

ent, might be too small to be detected in our patient cohort.

Limitations

A general limitation certainly is the small number of patients we examined. Especially for the

survival analysis, a larger collective would be needed to explore whether MI can be a clinically

useful predictive marker. Another restriction is that we cannot completely distinguish between

MI and Glycine with the technical methods applied. Since the proportion of Glycine in the sig-

nal is believed to be less than 10% [19] and Glycine levels in opposition to MI levels are known

to be elevated in glioblastoma [21,23,24,44,45] we assume that the Glycine fraction did not

contribute to a relevant extent. Finally, partial volume effects in the tumor measurements can

never be fully excluded due to the strong inhomogeneity with compact tissue next to necrosis

and edema. But our measurements in the control tissue are far less susceptible for this pitfall
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because metabolite concentrations in homogenous tissue are very stable within adjacent voxels

and thus more independent from the ROI.

Conclusion

Comparing BVZ to a cytotoxic treatment we confirmed that glioblastoma shows a strong met-

abolic reaction to BVZ. Furthermore, we identified pre-therapeutic MI levels to be a predictive

marker of OS under BVZ therapy. Our results suggest that MI may be a more sensible marker

for tumor cell invasion than regular MR imaging.
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