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Abstract In biology field, the ontology application relates to a large amount of genetic

information and chemical information of molecular structure, which makes knowledge of ontology

concepts convey much information. Therefore, in mathematical notation, the dimension of vector

which corresponds to the ontology concept is often very large, and thus improves the higher

requirements of ontology algorithm. Under this background, we consider the designing of ontology

sparse vector algorithm and application in biology. In this paper, using knowledge of marginal like-

lihood and marginal distribution, the optimized strategy of marginal based ontology sparse vector

learning algorithm is presented. Finally, the new algorithm is applied to gene ontology and plant

ontology to verify its efficiency.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The term ‘‘Ontology” refers to a knowledge representation and

conceptual shared model. It is widely used in gene computing,
knowledge management and information retrieval, which also
witnesses its effectiveness in the various applications. Besides,

the concept semantic model was welcomed and borrowed by
scholars in social science, medical science, biology science,
pharmacology science and geography science (for instance,

see Gregor et al. (2016), Kaminski et al. (2016), Forsati and
Shamsfard (2016), Pesaranghader et al. (2016), Huntley et al.
(2016), Brown et al. (2016), Palmer et al. (2016), Terblanche

and Wongthongtham (2016), Farid et al. (2016) and Carmen
Suarez-Figuero et al. (2016)).

Traditionally, we take ontology model as a graph
G ¼ ðV;EÞ, where each vertex v in the ontology graph G rep-

resents a concept and each edge e ¼ vivj of it represents a rela-

tionship between concepts vi and vj. A few years ago, ontology

similarity-based technologies were quite popular among

researchers due to its wide range of applications. For instance,
GO-WAR algorithm was raised by Agapito et al. (2016) to
explore cross-ontology association rules in which GO terms
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present in its sub-ontologies of GO. What’s more, after mining
publicly available GO annotated datasets which show how
GO-WAR outperforms current state of the art approaches, a

deep performance evaluation of GO-WAR was discovered.
Chicco and Masseroli (2016) put forward a computational
pipeline which can predict novel ontology-based gene func-

tional annotations by means of various semantic and machine
learning methods. Then, in order to categorize the predicted
annotations by their likelihood of being correct, a new seman-

tic prioritization rule was achieved in their papers. The defini-
tion of GO ontological terms, molecular function, biological
process and cellular components were given in detail by
Umadevi et al. (2016), and he also found the relations to that

of the disease genes with p-value < 0.05. Bajenaru et al. (2016)
raised the constituent parts and architecture of the proposed
ontology-based e-learning system and a framework for its

application in reality. However, based on the OWL2 rules
and the reasoning process of the OntoDiabetic system,
Sherimon and Krishnan (2016) shifted his attention to the

modeling and implementation of clinical guidelines. In terms
of fuzzy logic, Bobillo and Straccia (2016) extended it to clas-
sical ontologies. With the help of pre-existing information

about ontologies, such as terminology and ontology structure,
Trokanas and Cecelja (2016) worked out a framework for
evaluation of ontology for reuse to calculate a compatibility
metric of ontology suitability for reuse and hence integration.

To illustrate, the framework was explained in a Chemical and
Process Engineering perspective. With the aim to allow users
to quickly compute, manipulate and explore Gene Ontology

(GO) semantic similarity measures, Mazandu et al. (2016) pro-
posed A-DaGO-Fun. Auffeves and Grangier (2016) raised a
new quantum ontology to make usual quantum mechanics

fully compatible with physical realism. Hence, the physical
properties in the ontology are attributed jointly to the system.
In addition, Hoyle and Brass (2016) defined a statistical

mechanical theory which expresses the process of annotating
an object with terms selected from an ontology.

With the consideration of ontology similarity measure and
ontology mapping, some effective learning tricks turn out to

work well. With the harmonic analysis and diffusion regular-
ization on hypergraph, Gao et al. (2013) proposed a new ontol-
ogy mapping algorithm. Gao and Shi (2013) raised a novel

ontology similarity computation technology considering oper-
ational cost in the real applications. Using ADAL trick, an
ontology sparse vector learning algorithm was worked out

by Gao et al. (2015) to make contributions to the ontology
similarity measuring and ontology mapping. Then, Gao
et al. (2016) proposed an ontology optimization tactics using
distance calculating and learning. Several theoretical analysis

of ontology algorithm mentioned but not defined in detail in
this paper can refer to Gao et al. (2012), Gao and Xu
(2013), and Gao and Zhu (2014).

The marginal based ontology algorithm for ontology simi-
larity computation and ontology mapping are given in the
paper. By means of the sparse vector, the ontology graph is

mapped into a real line and vertices into real numbers. Then,
based on the difference between their corresponding real num-
bers, the similarity between vertices is measured. The rest of

the paper is structured like this: the notations and setting are
presented in Section 2; the ontology sparse vector optimization
algorithm is raised in Section 3, in addition, the technologies to
tackle the details in algorithm are also included here; and, the
experiments on gene science and plant science are taken to
show the efficiency of the algorithm in the last section.

2. Setting

Let V represent an instance space. Concerning each vertex in
ontology graph, a p dimension vector represents the informa-

tion: its name, instance, attribute and structure, and semantic
information of the concept. All the information is related to
the vertex and that is contained in name and attributes compo-

nents of its vector. Let v = {v1, . . . , vp} be a vector that corre-
sponds to a vertex v. To make the representation, clearer and
further, we take a try to confuse the notations. So we consider

using v to denote both the ontology vertex and its correspond-
ing vector. The ontology learning algorithms are set to obtain
an optimal ontology (score) function f: V ! R, and the simi-

larity between two vertices is determined by the difference
between two corresponding real numbers. The core of this
algorithm is dimensionality reduction, i.e., choosing one
dimension vector to express p dimension vector. Specifically,

an ontology function f is a dimensionality reduction function
f: Rp ! R.

In the real application, one sparse ontology function is

expressed by

fbðvÞ ¼
Xp

i¼1

vibi þ d: ð1Þ

Here b ¼ ðb1; . . . ; bpÞ is a sparse vector and d is a noise term.

The sparse vector b is used to decrease the components that

is not necessary to zero. Then, we learn the sparse vector b,
so that we can determine the ontology function f.

The general versions for learning b is learned in the paper.

Let fvi; yigni¼1 be a sample set with n vertex, V 2 Rn�p be the

matrix of n samples such that each sample vertex lies in a p

dimension space, and y ¼ ðy1; . . . ; ynÞ 2 Rn be the vector of
outputs of the these n sample vertex. Hence, the regression
function Eq. (1) can be expressed as the linear model:

y ¼ Vbþ d; ð2Þ
where d is the n dimension vector for noise which are normally

distributed, Npð0; r2IpÞ with variance r2.

An estimate of the sparse vector is obtained from the gen-

eral regression obtains after solving the optimization problem
below:

min
b2Rp

lðbÞ þ kkbk1; ð3Þ

where lðbÞ ¼ 1
2
ky� Vbk22 is the loss term, kbk1 ¼

Pp
i¼1jbij is

the l1-norm balance term that measures the sparseness of vec-
tor b, and k > 0 is the balance parameter which controls the

sparsity level. On the selection of the balance parameter k,
readers can refer to Mancinelli et al. (2013), Mukhopadhyay
and Bhattacharya (2013), Ishibuchi and Nojima (2013), and
Varmuza et al. (2014) for more details about the method of

cross-validation.

3. Ontology algorithm describing

In our paper, we consider the special case of Eq. (3), and it can
be stated as
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min
b2Rp

ðy� VbÞTðy� VbÞ þ k
Xp

j¼1

jbjjc; ð4Þ

where c 2 f0; 1; 2g.
We suppose the normal likelihood yjb; r2 � NðVb; r2IÞ

have independent priors about the ontology coefficients of

the expression pðbjjkÞ / expf�kjbjjcg, k > 0, 0 < c < 1 and a

representative conjugate prior have the error precision

r�2 � Nðc0; d0Þ. It’s clear to those who fully grasp the criterion
Bayesian patterns in which the exponential power class prior
can’t be a conjugate prior with the normal likelihood for c – 2.

Let Nða; 1Þ be a normal probability distribution function

with mean a and variance 1, gðsjÞ / s�
1
2qðsjÞ where qðsjÞ is

denoted as the density of stable distribution of index c
2
. Then,

the above mentioned class of distributions can be formulated
as

pðbjjk; cÞ ¼
Z 1

0

Nð0; s�1
j k�

2
cÞgðsjÞdsj ð5Þ

Let Cð�Þ be the standard Gamma function. In terms of placing

the independent normal priors on the ontology coefficients

pðbjjsj; k; cÞ ¼
ffiffiffiffiffi
sjp
2

q
k
1
ce

�sjk
2
cb2

j
2 and considering gðsjÞ as the hyper-

prior on sj, we infer

k
1
c

2C 1þ 1
c

� � e�kjbj jc ¼
Z 1

0

pðbjjsj; k; cÞgðsjÞdsj: ð6Þ

Our ontology framework will be presented as follows and
then approximate marginal distributions for ontology param-

eters can be obtained, too. The marginal likelihood of the
given ontology data in Eq. (4) or in many other non-trivial pat-
terns can’t be yielded analytically. But the integral can easily

be approximated in which the marginal likelihood conditional

on k and c can be decomposed. Set h ¼ ðb; r2; sÞ. For fixed k
and c, we deduce

log pðyjk; cÞ ¼ Lk;c � KLðqjjpÞ; ð7Þ
where Lk;c ¼

R
H qðhjk; cÞ log pðh;yjk;cÞ

qðhjk;cÞ dh denote the lower bound

on the marginal likelihood and KLðqjjpÞ ¼ R
H qðhjk; cÞ

log pðhjy;k;cÞ
qðhjk;cÞ dh is the Kullback–Leibler divergence between two

distributions. Since KLðqjjpÞ is a strict non-negative function
which equals to zero if and only if pðhjy; k; cÞ ¼ qðhjk; cÞ, the
first term Lk;c in Eq. (7) forms the lower bond of

log pðyjk; cÞ. Assume qðhjk; cÞ be the approximation of the pos-

terior density pðhjy; k; cÞ. We have maxLk;c ¼ minKLðqjjpÞ.
Let hi be the subvector of h and Ei–jð�Þ be the expectation

with respect to distributions qjðhjÞ with i–j. We consider the

factorized expression

qðhjk; cÞ ¼
Y
i

qiðhijk; cÞ: ð8Þ

In terms of maximizing the lower bound with respect to
qiðhijk; cÞ, we infer

qiðhijk; cÞ ¼
eEi–jðlog pðy;hjk;cÞÞR

Hi
eEi–jðlog pðy;hjk;cÞÞdhi

ð9Þ
By virtue of the above mentioned normal mixture expres-
sion of the exponential power distribution and the solution
obtained from Eq. (9), the error variance and the approximate

marginal posterior distributions of ontology coefficients can be
determined. However, since the mixing distribution gðsjÞ is

unknown, the explicit expression for qðsjÞ can’t be calculated.

Fortunately, using the value of qðbjk; cÞ, the expression of
EðsjÞ can be deduced.

Let

b̂ ¼ Eðr�2ÞRbV
Ty;

Rb ¼ ðVTVEðr�2Þ þ TÞ�1
;

T ¼ k
2
cDiagðEðsjÞÞ;

ĉ ¼ n

2
þ c0;

and

d̂ ¼ 1

2
yTy� yTVEðbÞ þ 1

2

Xn

i¼1

viEðbbTÞvTi þ d:

The approximate marginal posterior distributions of the
ontology coefficients and the error precision can be stated as
follows:

qðbjk; cÞ¼d Nðb̂;RbÞ; ð10Þ

qðr�2jk; cÞ¼d Nðĉ; d̂Þ: ð11Þ
According to the fact that we don’t get an available explicit

form for its approximate distribution, these above presented

moments are clear except for EðsjÞ. We infer EðbÞ ¼ b̂,

EðbbTÞ ¼ Rb þ EðbÞEðbTÞ, and Eðr�2Þ ¼ ĉ

d̂
. In view of (9), we

can express the approximate marginal distribution of sj as
qðsijk; cÞ eEðlog pðbj jsj ;k;cÞÞþEðlog gðsjÞÞR1
0

eEðlog pðbj jsj ;k;cÞÞþEðlog gðsjÞÞdsj
ð12Þ

In terms of Eq. (6), qðsijk; cÞ evaluated at b2
j ¼ Eðb2

j Þ is the
normalizing constant for this term. Moreover, we deduce the
following fact by derivation of both sides of Eq. (6) with

respect to b2
j and evaluate it again at b2

j ¼ Eðb2
j Þ,

k1�
1
ccEðb2

j Þ
c
2

2C 1þ 1
c

� � e�kEðb2j Þ
c
2 ¼

Z 1

0

sj
k
1
csjffiffiffiffiffiffi
2p

p e�
1
2
sjk

2
cEðb2j ÞgðsjÞdsj: ð13Þ

Then, by normalization operation, we have

EðsjÞ ¼ k1�
2
ccEðb2

j Þ
c
2�1

: ð14Þ
From what we discussed above, we conclude the following

facts:

Lk;c ¼ Eðlog pðyjb; r2ÞÞ þ Eðlog pðbjs; k; cÞÞ þ Eðlog pðr�2ÞÞ
þ Eðlog gðsÞÞ � Eðlog qðbjk; cÞÞ � Eðlog qðr�2jk; cÞÞ
� Eðlog qðsjk; cÞÞ;
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Eðlog pðyjb; r2ÞÞ ¼ � 1

2

Xn

i¼1

niðlog 2p� Eðlog r�2ÞÞ

� Eðr�2Þðd̂� d0Þ;

Eðlog pðbjs; k; cÞÞ ¼ � p

2
log 2pþ 1

2

Xp

j¼1

Eðlog sjÞ þ c�1 log k

� k
2
c

Xp

j¼1

EðsjÞE b2
j

� �
;

Eðlog pðr�2ÞÞ ¼ c0 log d0 þ ðc0 � 1ÞEðlogr�2Þ � d0Eðr�2Þ
� logCðc0Þ;

Eðlog gðsÞÞ ¼
Xp

j¼1

Eðlog gðsjÞÞ;

Eðlog qðbjk; cÞÞ ¼ � p

2
ðlog 2pþ 1Þ � 1

2
log jRbj;

Eðlog qðr�2jk; cÞÞ ¼ ĉ log d̂þ ðĉ� 1ÞEðlogr�2Þ � d̂Eðr�2Þ
� logCðĉÞ;

Eðlog qðsjk; cÞÞ ¼
Xp

j¼1

Eðlog pðbjjsj; k; cÞÞ

þ p log 2þ
Xp

j¼1

Eðlog gðsjÞÞ

� pc�1 log kþ p logC 1þ 1

c

� �

þ k
Xp

j¼1

E b2
j

� �c
2

:

Figure 1 ‘‘Go
Based on simplifications, we have

Lk;c ¼ � n

2
logð2pÞ þ p

2
þ 1

2
log jRbj þ c0 log d0

� ĉ log d̂� logCðc0Þ þ logCðĉÞ þ pc�1 log k

� p log 2� p logC 1þ 1

c

� �
� k

Xp

j¼1

E b2
j

� �c
2

: ð15Þ

Finally, the iterative produce for ontology coefficients can

be stated as

Ekþ1ðbÞ ¼ arg min
b

ðy� VbÞTðy� VbÞ

þ kcEkðr�2Þ�1
Xp

j¼1

b2
j Ek b2

j

� �c
2�1

; ð16Þ

where Ekð�Þ denotes the expectation determined at the k-th
iteration.

4. Simulation studies

In this section, two simulation experiments related to ontology

similarity measure are presented. In order to be close to the set-
ting of ontology algorithm, we choose a vector with p dimension
to express each vertex’s information. All the information of

name, instance, attribute and structure of vertex is contained
in the vector. Here the instance of vertex means the set of its
reachable vertex in the directed (or, undirected) ontology graph.

In order to make comparisons more accurate, the main

algorithm runs in C++, in view of available LAPACK and
BLAS libraries for linear algebra computations. All experi-
ments are taken on a double-core CPU with memory of 8 GB.

4.1. Experiment on biology data

In the first experiment, we choose ‘‘Go” ontology O1 whose

basic structure can be shown in http://www.geneontology.org
” ontology.

http://www.geneontology.org


Table 1 Experiment data for ontology similarity measure.

P@3 average precision

ratio

P@5 average precision

ratio

P@10 average precision

ratio

P@20 average precision

ratio

Our Algorithm 56.49% 68.27% 81.24% 93.71%

Algorithm in Gao et al.

(2013)

56.46% 67.72% 78.38% 79.39%

Algorithm in Gao and Shi

(2013)

56.44% 65.73% 78.39% 89.72%

Algorithm in Gao et al.

(2016)

49.87% 63.64% 76.02% 85.46%

Figure 2 ‘‘PO” ontology O2.

Table 2 Experiment data for ontology similarity measure.

P@3 average precision

ratio

P@5 average precision

ratio

P@10 average precision

ratio

P@20 average precision

ratio

Our Algorithm 53.60% 66.64% 90.04% 96.73%

Algorithm in Gao et al.

(2013)

36.63% 44.60% 58.45% 70.06%

Algorithm in Gao and Shi

(2013)

36.96% 45.08% 60.17% 73.99%

Algorithm in Gao et al.

(2016)

53.58% 65.17% 88.21% 93.85%
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(Fig. 1 shows the basic structure of O1). P@N (Precision

Ratio, see Craswell and Hawking (2003) for more detail) is tra-
ditionally used to judge the equality of the experiment, and we
also choose it for its efficiency. At first, the experts give the
closest N concepts for every vertex on the ontology graph.

Then using the algorithm, we compute the precision ratio,
so that we can get the first N concepts for every vertex on
ontology graph. Ontology algorithms in Gao et al. (2013,

2016) and Gao and Shi (2013) are also applied into ‘‘Go”
ontology. At last, the precision ratio obtained from the four
methods is gotten and given in Table 1.

From the data in Table 1, we can find that when N = 3, 5,

10 or 20, the precision ratio obtained from our algorithm
is higher than that obtained by algorithms proposed in
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Gao et al. (2013, 2016) and Gao and Shi (2013). Particularly,
such precision ratios are increasing apparently with N increas-
ing. Thus, our algorithm is better than the method presented

by Gao et al. (2013, 2016) and Gao and Shi (2013).

4.2. Experiment on plant data

In this subsection, we use ‘‘PO” ontology O2, whose structure
is presented in http://www.plantontology.org. (Fig. 2 shows
the basic structure of O2), to check the efficiency of our new

algorithm in ontology similarity measuring. Similarly, we use
the P@N again for this experiment. Moreover, the ontology
methods in Gao et al. (2013, 2016) and Gao and Shi (2013)

are applied to the ‘‘PO” ontology. We calculate the data using
the three algorithms, and then we compare the results with that
gotten from the new algorithm. Part of the data can be referred
to Table 2.

From the data in Table 2, we can find that when N= 3, 5,
10 or 20, the precision ratio gotten from our algorithm is
higher than that from algorithms proposed in Gao et al.

(2013, 2016) and Gao and Shi (2013). Particularly, such preci-
sion ratios are increasing apparently with N increasing. Thus,
our algorithm is better and more effective than the method

presented by Gao et al. (2013, 2016) and Gao and Shi (2013).
5. Conclusions

Borrowed the marginal technology for ontology sparse vector
computation in this paper, we proposed a new computation
algorithm on the basis of the marginal distribution and the
analysis of the convergence criterion problem. The simulation

data obtained from the experiments shows the high efficiency
of our newly proposed algorithm in biology and plant science.
Hence, the ontology sparse algorithm sees the promising appli-

cation prospects for biology science.
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