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Abstract

Biological functions are typically performed by groups of cells that
express predominantly the same genes, yet display a continuum of
phenotypes. While it is known how one genotype can generate
such non-genetic diversity, it remains unclear how different
phenotypes contribute to the performance of biological function at
the population level. We developed a microfluidic device to simul-
taneously measure the phenotype and chemotactic performance
of tens of thousands of individual, freely swimming Escherichia coli
as they climbed a gradient of attractant. We discovered that
spatial structure spontaneously emerged from initially well-mixed
wild-type populations due to non-genetic diversity. By manipulat-
ing the expression of key chemotaxis proteins, we established a
causal relationship between protein expression, non-genetic diver-
sity, and performance that was theoretically predicted. This
approach generated a complete phenotype-to-performance map,
in which we found a nonlinear regime. We used this map to
demonstrate how changing the shape of a phenotypic distribution
can have as large of an effect on collective performance as chang-
ing the mean phenotype, suggesting that selection could act on
both during the process of adaptation.
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Introduction

Biological functions are not typically carried out by isolated cells,

but rather by populations of clonal or near-clonal cells that display a

continuous distribution of phenotypes. In humans, for example,

near-clonal T cells exhibit differences in migratory behavior (Baaten

et al, 2013), and clonal b cells in the pancreas display different

insulin thresholds (Benninger & Piston, 2014). Clonal cancer cells

display variation in resistance to chemotherapeutics (Fallahi-Sichani

et al, 2013; Flusberg et al, 2013; Kreso et al, 2013). In microbes,

non-genetic diversity is implicated in biofilm formation (Høiby et al,

2011), virulence (Ackermann, 2015), and antibiotic persistence

(Bigger, 1944; Balaban et al, 2004).

While the ways in which one genotype can give rise to a distribu-

tion of phenotypes are relatively well understood (Levin et al, 1998;

Elowitz et al, 2002; Raser & O’Shea, 2004; Colman-Lerner et al,

2005; Jones et al, 2014), the ways in which non-genetic diversity

modulates population performance remain unclear. The difficulty is

that the ability of a clonal population to perform a biological func-

tion emerges as a convolution of the distribution of phenotypes in

the population, P(X) (Fig 1A, left), with the function that relates

individual phenotype to performance, φ(X) (Fig 1A, right), where X

is a random variable describing the phenotype. An important conse-

quence of this convolution is that if φ(X) is nonlinear, the popula-

tion performance can become very sensitive to non-genetic

diversity, since outliers in the distribution of P(X) (Fig 1A, left,

bright pink region) that display nonlinear performance characteris-

tics (Fig 1A, right, bright green region) may have disproportionate

effects on population performance (Golowasch et al, 2002). Thus,

determining the relationship between non-genetic diversity and

population performance requires knowing the full distribution of

P(X) and the functional form of φ(X). Although it is possible to accu-

rately determine P(X) using flow cytometry, microscopy, and

microfluidics, determining φ(X) is difficult because it requires simul-

taneous measurement of both phenotype and performance in the

same individual.

To overcome this difficulty, we developed a microfluidic device

(Fig 2A) that enabled us to determine the swimming phenotype and

chemotactic performance of a large number of individual Escherichia

coli in the presence of a stable gradient of the non-metabolizable

chemoattractant a-methylaspartate (MeAsp; Fig EV1). E. coli

chemotaxis provides an ideal model of non-genetic diversity

because the pathway is well understood, and genetically identical

E. coli cells exposed to a uniform environment display a continuous
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distribution of swimming phenotypes (Fig 1B; Spudich & Koshland,

1976; Park et al, 2010; Dufour et al, 2016).

Clonal cells express the same motility genes and swim by alter-

nating between relatively straight “runs” and direction-changing

“tumbles”. However, the probability that a cell is tumbling (its

“tumble bias”) varies from cell to cell (Park et al, 2010). When cells

detect an increase in the concentration of a chemical attractant via

signaling from transmembrane receptors, they transiently decrease

their tumble bias, which extends runs up the gradient. This results in

biased motion in the desired direction (Sourjik & Wingreen, 2012).

An adaptation mechanism returns cells to their pre-stimulus tumble

bias and increases the range over which cells can sense changes in

attractant concentration by several orders of magnitude (Sourjik &

Wingreen, 2012). The characteristic timescale of this adaptation, or

“adaptation time”, also varies from cell to cell (Spudich & Koshland,

1976; Park et al, 2010). Together, tumble bias and adaptation time,

which are inversely correlated with one another (Alon et al, 1999;

Park et al, 2010; Frankel et al, 2014), account for a substantial

amount of a cell’s swimming behavior (Emonet & Cluzel, 2008;

Vladimirov et al, 2008; Frankel et al, 2014; Dufour et al, 2016).

Here, we use tumble bias as the phenotype in our assays, since

measuring adaptation time typically requires immobilizing cells

(Alon et al, 1999; Min et al, 2012; but see also Masson et al, 2012)

and precludes simultaneously measuring their swimming performance.

Because cells displaying lower tumble bias spend more time

running, their motion is more diffusive and exploratory than cells

that have higher tumble bias (Fig 1C; Berg, 1993; Dufour et al,

2016). Previous modeling work predicted that these different tumble

bias phenotypes would perform differently in the same environment

(Dufour et al, 2014; Frankel et al, 2014) and that mutations altering

regulatory elements in the chemotaxis pathway could have

profound consequences for population gradient-climbing perfor-

mance (Frankel et al, 2014). However, there is currently no experi-

mental evidence to support the idea that the non-genetic diversity

observed in clonal populations of E. coli is enough to influence

population functional performance. Experimental evidence in

A

B C

Figure 1. Population performance is a convolution of non-genetic diversity and the relationship between phenotype and performance.

A The convolution of non-genetic diversity, P(X), with the function relating phenotype to performance, φ(X), determines population performance. A nonlinear region of
φ(X) (bright green) may enhance the performance of rare phenotypes (light magenta), which would affect population performance in non-intuitive ways.

B 2D trajectories of clonal Escherichia coli cells in a uniform environment display differences in tumble bias. Cells were placed on a glass slide and tracked for 1 min.
C Cells from (B) grouped by tumble bias with all starting positions at same point (black dot; ten randomly chosen tracks per circle). Circles indicate the maximum

extent traveled by the phenotype.
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support of this idea would further the larger hypothesis that non-

genetic diversity in cellular populations is an adaptive trait.

We found that spatial structure rapidly emerged along the

gradient with cells at the leading front drifting up the gradient

much faster than those at the back. We traced the origins of this

spatial structure to non-genetic diversity, which causes “un-

mixing” of different tumble bias subpopulations over time. This

separation was not solely due to the random dispersal inherent in

run-and-tumble motility, but rather to the fact that different pheno-

types performed differently—that is, drifted at different rates—in

the same environment. In order to understand how the distribution

of tumble bias phenotypes gave rise to population performance,

we manipulated this distribution by perturbing gene expression,

and this altered population performance. By combining experi-

ments at different protein expression levels, we empirically

constructed φ(X), the map that links tumble bias to chemotactic

performance. Significantly, we found that this relationship is

convex at low values of tumble bias, leading to disproportionate

performance of populations containing low-tumble-bias cells. We

show that this convex relationship results in “Jensen’s inequality”

(Jensen, 1906) for populations containing low-tumble-bias cells:

Population performance is greater than the performance of the

mean population phenotype. Using φ(X), we predicted the perfor-

mance of arbitrary tumble bias distributions and showed how the

shape of P(X) becomes an important determinant of population

performance for nonlinear regimes of φ(X).

A

CB

ED

Figure 2. Non-genetic diversity results in spatial segregation and differential performance of phenotypes during diffusion and drift.

A Schematic diagram of the microfluidic device before (top) and after (bottom) opening the gate (horizontal orange bar). Once the gate was lifted, cells were allowed
to explore the chamber and perform chemotaxis in a stable gradient during which short movies (light blue box) were acquired. See text for details.

B, C Kymographs showing the density of cells at each position and time recorded in the movie in the absence (B) or presence (C) of a 0.1 mM/mm gradient of the non-
metabolizable attractant, a-methylaspartate (MeAsp). Each movie was split into five regions to calculate density across the frame. The resulting data were then
linearly interpolated to produce the kymograph. White space indicates areas that were not observed.

D, E After determining the tumble bias of each trajectory, the population was split into four equally spaced tumble bias bins (insets), and the mean position of each
tumble bias bin was plotted over time (filled circles, experimental measurements; lines, theoretical simulations) in experiments without (D) and with (E) a gradient
of MeAsp.

Data information: Data for (B and D) were combined from two independent experiments, totaling 11,100 cells. Data for (C and E) were combined from four independent
experiments, totaling 33,400 cells. Simulation data were obtained from 16,000 cells. All error bars show � two times the standard error of the mean.
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Results

We used our microfluidic device (Fig 2A) to see how different

phenotypes within an isogenic population of E. coli would distribute

themselves over space and time. To prepare cells for the assay, they

were grown in minimal media, harvested at mid-exponential phase,

washed, and resuspended in a motility buffer that does not allow

growth. They were then loaded into the device at a low density to

minimize cell-to-cell interactions (Materials and Methods). Cells

were initially confined to a small (0.3 mm long by 1 mm wide)

region at one edge of the device (Fig 2A, top) by using a hydraulic

gate (Unger et al, 2000; Materials and Methods). At the beginning of

the experiment, we lifted the gate to conduct a bacterial “race”

through the observation chamber (dimensions: 10 mm long ×

1 mm wide × 10 lm deep). Performance was defined as the

distance traveled past this gate (Fig 2A, bottom). We successively

acquired short (1 min) movies along the length the device for 1 h.

In each movie, we tracked individual cells (Materials and Methods).

Then, we determined the tumble bias of each trajectory using a

probabilistic model that classified every time point along a trajectory

as either a run or a tumble based on information about cell velocity,

acceleration, and angular acceleration (Materials and Methods;

Dufour et al, 2016). We verified that cells in the device exhibited a

distribution of tumble bias similar to that measured using tethered

cells (Park et al, 2010) and remained stable for at least an hour

(Appendix Fig S1). This observation confirmed that single clonal

E. coli cells differ in their swimming phenotype and prompted us to

use our device to determine the consequences of this variability for

population performance.

In the absence of a gradient of MeAsp, cells explored the obser-

vation chamber through passive diffusion (Fig 2B). The farthest

they traveled was ~1 mm past the gate. We compared this to perfor-

mance in a 0.1 mM/mm gradient of MeAsp, which we created using

circulation channels adjacent to the near and far side of the chamber

(Fig 2A; Materials and Methods). In this case, cells traversed the

chamber much farther than in the diffusion experiment (Fig 2C),

demonstrating that the device was able to specifically elicit and

measure chemotaxis with single-cell resolution. Surprisingly, some

cells were visible at the source side of the chamber, over 5,000 cell-

lengths away (~10 mm), in less than 45 min (Figs 2C and EV2).

This demonstrated wide variation in gradient-climbing performance

within a clonal population and suggested the presence of high-

performance subpopulations.

We evaluated the previous theoretical prediction that cells with

different tumble bias should perform differently (Dufour et al,

2014; Frankel et al, 2014) by categorizing trajectories into four

equally spaced ranges of tumble bias (insets of Fig 2D and E for

without and with a MeAsp gradient, respectively). The mean posi-

tions of these subpopulations over time showed that the different

subpopulations traveled across the chamber at different rates

(Fig 2D and E, filled circles; black circles show the total population

mean). In both the absence (Fig 2D) and presence (Fig 2E) of a

MeAsp gradient, lower tumble bias subpopulations traveled at a

faster rate through the chamber than higher tumble bias subpopu-

lations. This was more obvious in the MeAsp gradient, where the

lowest tumble bias subpopulation (Fig 2E, green circles) outper-

formed the population average (Fig 2E, black circles) by ~500 cell-

lengths (~1 mm) after 45 min (see also Fig EV2). These differences

in performance could not be explained by differences in cell speed

alone (Appendix Fig S2).

To verify that differences in phenotype were sufficient to produce

this spatial separation effect, we used our model (Frankel et al,

2014) to produce stochastic simulations of individual cells. In our

model, phenotypic variability in the functional parameters of

chemotaxis (adaptation time, tumble bias, and noise in the adapta-

tion mechanism) could only arise from cell-to-cell differences in the

levels of chemotaxis proteins. Cell-to-cell differences in protein

levels were determined by an experimentally constrained model of

noisy gene expression. Cell-to-cell differences in run speed, which

were modeled as coming from a normal distribution and were

uncorrelated with the other phenotypic parameters, contributed

additional variation (Materials and Methods). We adjusted gene

expression to match the experimentally observed distribution of

tumble bias without a MeAsp gradient (Fig EV3A). These parame-

ters were also used for the experiments with a gradient (Fig EV3B).

Small differences in observed speed necessitated manually matching

the speed distributions separately to the diffusion and drift experi-

ments (Fig EV3, right column). All other parameters were kept the

same. The trajectories output by each simulation were processed as

if they were observed by our microscope’s acquisition procedure

(Materials and Methods). Simulation results largely agreed with

experimental results (Fig 2D and E; compare lines to points),

demonstrating, as previously predicted (Dufour et al, 2014), that, in

a liquid environment, low-tumble-bias cells outperform other

subpopulations. Overall, the quantitative agreement between experi-

ment and simulations validated our model, which was able to

predict not just the average population performance, but also that of

the individual phenotypes. These simulations confirmed that

non-genetic diversity was sufficient to produce the performance

differences that lead to population separation in this environment.

Since the experimental gradient was approximately linear, and

the chemosensory receptors are log-sensing, cells likely perceived

the gradient as becoming shallower as they climbed it (Fig EV1).

Thus, the measured tumble bias of individual cells was predicted to

change somewhat over time, with cells experiencing larger transient

drops in tumble bias at the beginning of the experiment than in the

relatively shallow gradient farther along the chamber. This devia-

tion could have resulted in our underestimation of cells’ steady-

state, or unstimulated, tumble bias, especially at earlier time points.

Since we could not directly measure the unstimulated versus stimu-

lated tumble bias of individual cells in our experimental setup, we

used our model to perform simulations in the experimentally

derived gradient. In these control simulations, all cells were initial-

ized with the same internal state. We found that the difference

between stimulated and unstimulated tumble bias was reduced to a

small, negative value (�0.004) within the first millimeter of the

device (Appendix Fig S3A) and could not account for the observed

differences in performance (Appendix Fig S3B). Therefore, in our

experiments, any difference between the observed and unstimulated

tumble bias was likely negligible after the first millimeter, which

was less than the distance covered by an individual movie.

The superior performance of low-tumble-bias phenotypes in

liquid media prompted us to understand these phenotypes in greater

detail. However, in our experiments, low-tumble-bias phenotypes

were relatively rare in the “wild-type” strain RP437. This was proba-

bly due to its history of laboratory selection on soft-agarose plates,
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since obstacles in soft agarose are known to select against low-

tumble-bias cells (Armstrong et al, 1967; Wolfe & Berg, 1989). We

therefore sought to modify the population distribution using infor-

mation from our model, which predicted that population perfor-

mance could be shaped by manipulating the level of expression of

specific chemotaxis proteins.

The well-known architecture of the two-component chemotaxis

signaling pathway (Fig 3A) suggested that tumble bias could be

altered by modifying the expression of chemotaxis proteins related

to either the activity of the response regulator (CheY and CheZ) or

the adaptation time mechanism (CheR or CheB). We initially chose

to change the expression level of CheR because doing so preserves

the experimentally measured inverse correlation between tumble

bias and adaptation time (Alon et al, 1999; Park et al, 2010). We

did not alter CheB because it is involved in an additional phosphory-

lation feedback loop (Kollmann et al, 2005; Sourjik & Wingreen,

2012) which could have complicated the interpretation of the

results. Changes in expression of CheR are known to affect tumble

bias and chemotactic behavior on average (Alon et al, 1999; Løvdok

et al, 2009; Park et al, 2011), but how these changes affect

non-genetic diversity and how this diversity changes the resulting

population performance are less well understood. While recent

theoretical work has predicted a causal relationship between

individual gene expression, chemotactic phenotype, and population

performance (Frankel et al, 2014), we sought to experimentally test

these predictions.

In order to create a suitable strain to study these relationships,

we took a DcheR derivative of RP437 and integrated a single-copy,

mCherry-tagged version under inducible control of the native chro-

mosomal lac operon (Materials and Methods). Using this mutant,

we created two populations with different average expression levels

of CheR by growing cultures in the presence of low (10 lM) or high

(100 lM) concentrations of isopropyl-b-D-1-thiogalactopyranoside
(IPTG). When cells were induced with a high concentration of IPTG,

CheR expression was higher overall (Fig EV4A, blue line) and the

tumble bias distribution was comparable to that of wild-type cells

(Figs 3B and EV4B). Cells induced with a low concentration of IPTG

had lower expression of CheR overall (Fig EV4A, red line) and

displayed fewer tumbles during their observation (Figs 3C and

EV4B). Importantly, the minimum measurable tumble bias in our

experiments was ~0.002. This means that any cells with a tumble

bias greater than 0 but less than 0.002 were recorded as having an

observed tumble bias of 0. These results demonstrate a connection

between chemotaxis protein expression level and tumble bias on

the population level, which was recently demonstrated at the

single-cell level using a similar artificial expression system (Dufour

et al, 2016). To account for the preponderance of lower tumble

bias individuals in the low-CheR population, we added two more

tumble bias categories to our analysis, 0–0.005 (0 or 1 tumbles/

min) and 0.005–0.05 (2–26 tumbles/min). In the wild-type and

high-CheR mutant populations, there were not an appreciable

number of cells observed in these categories even with the large

number of trajectories measured in each experiment, so these

categories were not used.

Having generated a new distribution of phenotypes (Fig 3C), we

modeled the high- and low-CheR populations by adjusting the cell

run speed and the mean expression level of CheR to match the

experimentally observed distributions (Fig EV3C and D). We left all

other parameters unchanged. Theory predicted that, in a liquid envi-

ronment, the rate at which a cell climbs the gradient should be a

non-monotonic function of tumble bias (Dufour et al, 2014). As

tumble bias decreases, performance should increase, until tumble

bias approaches zero. At this point, performance should decline

abruptly, since cells that never tumble can no longer perform

chemotaxis (Parkinson, 1978). Simulations of the populations gener-

ated from the mutant strain predicted that cells in the lowest tumble

bias category (0–0.005) would climb the gradient much more

rapidly than the other categories (Fig 3D, red dashed line), which

was in agreement with our experimental results (Fig 3D, red trian-

gles). The performance advantage of the lowest tumble bias bin

would likely have been even greater if the chamber were longer,

but, due to the finite length of the device, the increase in mean posi-

tion of the lowest tumble bias cells began to saturate after only

~15 min of observation due to accumulation of cells at the attractant

source (Fig EV2). This gradual slowing is also seen in the simula-

tions, which take into account the dimensions of the device and

observation region (Fig 3D, red dashed line). Because the low-CheR

population was dominated by these very low-tumble-bias cells, the

mean distance traveled by the low-CheR population was also greater

than the mean distance traveled by the high-CheR population

(Fig 3F, compare filled triangles to open circles). Both populations

outperformed an uninduced population (Fig 3F, open squares), as

well as a non-chemotactic (Parkinson, 1978) cheY mutant that only

runs (Fig 3E and F, x’s; see Fig EV2 for corresponding cell density

profiles). Thus, as predicted (Dufour et al, 2014), performance

increased dramatically with decreasing tumble bias, but then

decreased just as dramatically when the tumble bias approached

zero. Overall, simulations predicted the behavior of all phenotypes

(compare lines to points in Figs 2D and E, and 3D). These results

experimentally demonstrated a causal relationship between gene

expression, phenotype, and performance and showed that the model

was able to predict cell behaviors even outside the wild-type range

of protein expression.

As mentioned earlier, adaptation time and tumble bias are inver-

sely correlated in wild-type cells, and changing CheR maintains this

correlation. We therefore wondered how performance would be

affected if tumble bias alone was modified. To manipulate tumble

bias without changing adaptation time, we performed experiments

on an RP437-derived DcheYcheZ strain containing IPTG-inducible

CheY tagged with mRFP and arabinose-inducible CheZ tagged with

EYFP on plasmids (Fig EV5A; Sourjik & Berg, 2002). We adjusted

the CheY-to-CheZ ratio (20 lM IPTG, 0.001% arabinose) to produce

a tumble bias distribution with a low mean (Fig EV5B) and found

that, as with the inducible CheR strain, lower tumble bias resulted

in higher performance (Fig EV5C). The inducible CheY/CheZ strain

had a greater run speed than the inducible CheR strain (34 lm/s

versus 21 lm/s), causing the inducible CheY/CheZ cells to

move through the chamber faster and reach the end of the device

sooner than the inducible CheR cells. The high performance of these

low-tumble-bias cells was consistent with a recent theoretical

prediction: For cells in shallow gradients, changing tumble bias

should have a greater effect on performance than changing

adaptation time for a wide range of tumble bias (see Fig 2A in

Dufour et al, 2014).

Taken together, the experimental data indicated that the relation-

ship between tumble bias and gradient-climbing performance was
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nonlinear and non-monotonic: Performance increased steeply as

tumble bias decreased, making the overall shape convex, and it

decreased as tumble bias approached zero. The nonlinear regions of

this relationship mathematically implied that population performance

may not equal the performance of the average phenotype. This is

formalized by Jensen’s inequality, which states that, for a convex

function φ(X) of a random variable X, E[φ(X)] ≥ φ(E[X]), where

E[X] is the expected value, or mean, of X (Jensen, 1906). (For a

concave function, the inequality is reversed.) In our case, φt(TB) was

the performance (distance traveled) of phenotype (tumble bias) TB

evaluated at time t. The distinction between the performance of the

population and the performance of its mean phenotype is potentially

important because it suggests that, if a nonlinear performance regime

is present, a population with non-genetic diversity may perform

differently than expectations based on its population-averaged

phenotype.

A

CB D

E

F

Figure 3. Expression level of a single chemotaxis protein alters tumble bias distribution and gradient-climbing performance.

A Diagram of the chemotaxis pathway in Escherichia coli. We constructed a mutant strain with IPTG-inducible expression of cheR (black). Chemoattractant (yellow
stars) interacts with receptors (open ovals) to suppress the activity of CheA (A). CheA phosphorylates CheY (Y). Phosphorylated CheY (Y-p) diffuses to the motors
(black rectangles) inducing switching from counterclockwise (CCW) to clockwise (CW) rotation. A switch from CCW to CW disrupts the flagellar bundle, which
causes a tumble. CheR (R) increases and CheB (B) decreases the sensitivity of the receptors via methylation and demethylation, respectively.

B, C Tumble bias distributions of cell populations in the microfluidic device with a gradient after induction with 100 lM (B) or 10 lM (C) IPTG.
D The mean position over time in the chamber for populations induced with 100 lM (open circles) or 10 lM (filled triangles) IPTG. Lines were generated from

simulations of populations with tumble bias and speed distributions matched to the data.
E Cells lacking CheY (black) cannot perform chemotaxis because motors without CheY-p activation are permanently in the counterclockwise (run) state.
F The mean performance of 100 lM IPTG (open circles), 10 lM IPTG (filled triangles), 0 lM IPTG (open squares), and DcheY (x’s). Lines are guides for the eye. Two

experiments were combined for each of the 100, 10, and 0 lM IPTG populations, totaling 12,900, 15,300, and 11,600 cells, respectively. Two experiments (totaling
8,640 cells) were combined for the DcheY data. All simulated data were obtained from 16,000 cells per population. Only points with at least 45 cells were plotted.

Data information: All error bars show � two times the standard error of the mean.
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To investigate this possibility, we created an empirical pheno-

type-to-performance map, φt(TB), over a large range of tumble bias

by combining the data from the experiments performed with the

inducible CheR strain. Consistent with our earlier impression, we

found that φt(TB) was convex at low (but nonzero) tumble bias and

relatively linear at high tumble bias (Fig 4A). Given the existence of

a convex region, Jensen’s inequality predicted that the mean perfor-

mance of the population should be strongly affected by the presence

of low-tumble-bias phenotypes. Specifically, in the low-CheR popu-

lation, we expected the mean performance of the population,

E[φt(TB)], to be greater than the performance of the mean phenotype,

φt(E[TB]), due to the disproportionately high performance of low-

tumble-bias cells. In the high-CheR population, we expected these

differences to be smaller since in this region φt(TB) was linear.

These predictions were confirmed by the data. For the low-CheR

population, E[φt(TB)] > φt(E[TB]) for all time points (Fig 4B), while

for the high-CheR case (Fig 4C), E[φt(TB)] � φt(E[TB]) for all time

points. Although less obvious due to the cells’ higher speed and

consequently faster equilibration throughout the device, Jensen’s

inequality also appeared to apply to cells with low CheY at early

time points (Fig EV5D). This suggested that the nonlinear portion of

φt(TB) was not solely the result of the increased adaptation time of

the low-CheR cells.

The functional form of the phenotype-to-performance map,

φt(TB), suggested that there should be at least two ways in which

selection could alter the non-genetic diversity of a population to

improve its performance. One way would be to alter the mean

phenotype, E[TB], without changing the shape of the phenotypic

A B C

D E

Figure 4. Non-genetic heterogeneity strongly affects mean population performance when performance is a convex function of phenotype.

A Data from the 100 lM and 10 lM IPTG experiments were combined to produce a map from phenotype (tumble bias, TB) to performance (distance past the gate,
φt(TB)). The lowest tumble bias point is 0.0025.

B, C The mean performance of the population (closed circles, same as in Fig 3F) and the performance of the mean phenotype (open circles) over time for cells induced
with 10 lM (B) or 100 lM (C) IPTG. The mean tumble bias � 2 standard errors was 0.044 � 0.0005 for the low-CheR population (B), and 0.175 � 0.0006 for the
high-CheR population (C). In each case, the performance of the mean phenotype was calculated by averaging the performance of cells within 0.01 of the mean
tumble bias. In all cases, error bars indicate � two times the standard error of the mean.

D, E Predictions of performance for hypothetical populations. (D) A series of hypothetical tumble bias distributions were generated using a gamma function with
parameters [k; h] of [36; 4.17 × 10�3], [16; 6.25 × 10�3], [4; 0.0125] (dark to light green), and [1; 0.05] (magenta). The parameters for the green curves were chosen
to have decreasing means and identical standard deviations (SDs). The light green and magenta distributions were chosen to have the same mean and different
SDs. (E) φt(TB) from (A) was interpolated and used to generate predicted performance curves for the tumble bias distributions in (D).
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distribution P(TB). Another way would be to alter the shape of

P(TB) without changing E[TB]. For example, through mutations in

regulatory elements that changed protein expression noise (Frankel

et al, 2014) or mutations that affected protein partitioning during

cell division. Since the empirical map φt(TB) describes the perfor-

mance of any phenotype, we sought to examine these possibilities

by creating different hypothetical populations P(TB) and convolving

them with φt(TB) (Fig 4D and E, following the concept in Fig 1A).

For simplicity, we used a gamma distribution for P(TB). When

populations contained cells that were mostly in the linear regime of

φt(TB), reducing the mean phenotype from 0.15 to 0.10 had a negli-

gible effect (Fig 4E, compare dark to medium green). Reducing it

further to 0.050 put more low-tumble-bias cells in the nonlinear

regime, significantly increasing population performance (Fig 4E,

light green). However, an even larger improvement in performance

was obtained when the mean was maintained at 0.050, but

the shape of the distribution was widened to include more cells in the

nonlinear region (Fig 4E, magenta). This occurred because

the nonlinear performance increase provided by the low-tumble-bias

cells more than compensated for the presence of the poorer-

performing high-tumble-bias cells. Thus, depending on the

functional form of φ(X), changes to the shape of the non-genetic

diversity, P(X), can have large effects on population performance,

on a par with, or greater than, changes to the mean, E[X], alone.

Discussion

We have shown that non-genetic diversity observed in E. coli swim-

ming behavior determines population performance and can be

directly modulated by changes in the expression of individual genes.

Critically, we found that changing gene expression modifies not only

the mean performance of a population, but also the discrepancy

between the mean performance and that of the mean phenotype. In

other words, changing gene expression can affect how important

the tail of the distribution of phenotypes is in determining popula-

tion performance. This is because such changes can place the popu-

lation in a regime in which the relationship between phenotype and

performance is nonlinear. In E. coli, it was possible to enter this

nonlinear regime by decreasing tumble bias through modulating the

expression level of proteins relating to either the adaptation mecha-

nism (CheR; Fig 3) or the response regulator (CheY and CheZ;

Fig EV5). This confirms previous theoretical work which showed

that tumble bias could have a large influence on performance

(Dufour et al, 2014). Because biological function is typically

executed by many cells expressing the same pathway, these results

provide quantitative insight into the ways in which non-genetic

diversity modulates biological function.

The implications of our findings are most immediately relevant

to pathogenic strains of E. coli and other pathogenic bacteria such

as Salmonella enterica (which shares an almost identical chemotaxis

pathway with E. coli), which require chemotaxis for infection

(Stecher et al, 2013). Characterizing population non-genetic diver-

sity would be crucial, for example, in predicting the arrival time of

bacteria to a wound site and the subsequent establishment of an

infection, which often requires < 100 pathogenic organisms (Sewell,

1995). In this scenario, equating population performance with its

mean performance would lead to serious overestimates of the initial

time of arrival due to the nonlinear impact of high-performing

subpopulations on the performance of the entire population. In

other scenarios, such as those requiring a large group of cells to

arrive in a location precisely at the same time, or for cells to stay

close to an attractant source, non-genetic diversity might hinder

successful completion of the task. In such cases, we would expect

the phenotype-to-performance map to be concave rather than

convex (Frankel et al, 2014), favoring the reduction of diversity

through selection.

Our data demonstrate the direct biological relevance of Jensen’s

inequality for biological behavior, as well as the fundamental

impact of nonlinear performance curves on collective performance

in heterogeneous populations. Although in this case the perfor-

mance function was convex, our results can be easily generalized to

both convex and concave nonlinearities in performance, as mathe-

matically both are included under this formalism. Since convex and

concave relationships between phenotype and performance (or fit-

ness) are a common feature of biological systems (Golowasch et al,

2002; Simonsen et al, 2014; Pickett et al, 2015; Sinclair, 2015),

Jensen’s inequality is likely to apply to many other populations. In

such cases, the conventional concept of “average phenotype” (i.e.,

one which is provided by population-averaged measurements) will

provide a poor prediction of performance; rather, the performance

distribution of diverse individuals in genetically identical popula-

tions must be considered.

It was previously shown that mutations in regulatory elements

can alter the variability of gene expression as measured by mRNA

transcripts (Jones et al, 2014), raising the possibility that gene

expression noise is an evolutionarily tunable parameter. Here, we

build on these results by linking the phenotypic distribution of a

population to its performance of a specific task and highlight the

effect of nonlinearity in the performance function. Since natural

selection acts on phenotypes based on their performance, we have

established the existence of the necessary feedback between gene

expression and the environment that makes selection on non-

genetic diversity plausible. Together, these mechanisms provide

experimental support for the idea (Frankel et al, 2014) that a clonal

population might be able to adapt to complex, time-varying environ-

ments via mutations in regulatory elements, thereby achieving

higher fitness while bypassing potentially deleterious modifications

to existing protein-encoding genes.

Materials and Methods

Strains and media

Unmodified RP437 was used as the “wild-type” strain. The inducible

CheR strain was based on RP437; details of its construction are

given below. The IPTG-inducible, mRFP-tagged CheY, arabinose-

inducible, EYFP-tagged CheZ strain was based on a DcheYcheZ
derivative of RP437 (Sourjik & Berg, 2002). The cheY-containing

plasmid was pTrc99A, which provided ampicillin resistance, while

the cheZ-containing plasmid was pBAD33, which provided chloram-

phenicol resistance. Cells were grown in M9–glycerol medium (M9

salts [12.8 g/l Na2HPO4, 3.0 g/l KH2PO4, 0.5 g/l NaCl, 1.0 g/l

NH4Cl], 1.0 g/l tryptone, 10 g/l glycerol). Chemotaxis buffer (CB;

M9 salts with 0.1 mM EDTA, 0.01 mM L-methionine, and 10 mM
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DL-lactate, 0.05% w/v polyvinylpyrrolidone-40) was used for wash-

ing cells and in the microfluidic device.

Microfluidic device design and fabrication

Microfluidic devices were constructed from the biocompatible and

oxygen-permeable silicone polymer polydimethylsiloxane (PDMS)

on coverglass following standard soft lithography protocols for two-

layer devices (Xia & Whitesides, 1998). The master molds for the

device consisted of two silicon wafers with features created using

ultraviolet (UV) photoresist lithography. The bottom wafer had

features for the device channels and was created using SU-8

negative resist. Portions of the channel layer that were designed be

opened and closed by pressure actuated valves were created with a

second coat of SPR positive resist on the same wafer, which was

used to create a rounded channel profile that can collapse fully if

depressed from above. The second, top wafer contained features for

the control channels that close the collapsible features in the bottom

wafer. The top wafer was created using SU-8 negative resist.

Silicon wafers were first cleaned using buffered oxide etch and then

spin-coated with the photoresists using manufacturer specifications

to achieve 10-lm layers of each photoresist. The resists were then

cured using UV light exposure through photomasks designed in CAD

software and printed by CAD/Art Services Inc. (Bandon, Oregon),

again following photoresist manufacturer specifications. Subsequently,

wafers were baked and the uncured photoresist was dissolved.

After curing the SPR coat, the features were then baked further to

produce a rounded profile. After both wafers were complete, a protec-

tive coat of silane was applied by vapor deposition.

To cast and manufacture the two-layer device, the top wafer was

coated with a 5-mm-thick layer of degassed 10:1 PDMS-to-curing

agent ratio (Sylgard 184; Dow Corning). For the bottom layer, a 20:1

mixture was prepared and spin-coated to create a 100-lm-thick

layer. The two layers were partially baked for 45 min at 70°C. The

top layer was then cut and separated from the wafer, and holes were

punched from the feature side using a sharpened 20-gauge blunt-tip

needle to make external connections to the control valve lines, then

aligned and laminated onto the bottom layer. The stacked layers

were baked together for 1.5 h at 70°C and allowed to cool. The lami-

nated layers were then cut out and the remaining ports were

punched to make external connections with the channels.

Next, the cut and punched PDMS devices were bonded to

24 × 50 mm glass coverslips (#1.5). The PDMS was cleaned with

transparent adhesive tape (Magic Tape; Scotch) followed by rinsing

with (in order) isopropanol, methanol, and Millipore-filtered water,

air-drying between each rinse. The glass was rinsed with acetone,

isopropanol, methanol, and Millipore-filtered water, air-drying

between each rinse. The PDMS device was tape-cleaned an addi-

tional time before it was placed with the coverslip in a plasma bond-

ing oven (Harrick Plasma). After 1 min of exposure to plasma under

vacuum, the device was laminated to the coverslip and then baked

on an 80°C hotplate for 15 min to establish a covalent bond. Devices

were stored at room temperature and used within 24 h.

Microfluidic gradient experiment

For microfluidic chemotaxis assays, cells were streaked from frozen

stocks onto LB agar plates. A single colony was picked and grown

overnight to saturation in M9–glycerol medium plus the desired

amount of IPTG, arabinose, ampicillin, and chloramphenicol, as

appropriate. The OD of this overnight culture was measured and

subcultured with shaking at 30°C for 4.5 generations to exponential

phase (OD600 � 0.15) in 12–15 ml fresh M9G media plus the desired

amount of IPTG, arabinose, and antibiotics as appropriate. The

subculture was split evenly into two 15-ml Falcon tubes and spun

for 5 min at 956 g in a benchtop centrifuge. The supernatant was

decanted, and the cells were gently resuspended in the residual

liquid by rocking and flicking the tube. The resuspended pellets

were then combined and transferred to a 1.5-ml Eppendorf tube.

Cells were then washed three times in CB. Washing was done by

centrifuging the tube for 3 min at 1,700 g removing the supernatant

with a pipette, gently adding 1 ml CB, and then resuspending the

pellet by rocking and flicking. After washing, cells were resus-

pended in 0.5 ml CB, and diluted, if necessary, to an OD600 of

0.8–1.5 for experiments with an attractant gradient or 2–3 for experi-

ments without attractant.

Immediately before setting up the device, it was injected with

5 ll 10% w/v benzophenone in acetone. This organic photoinitiator

permeated the PDMS and ensured robust PEG hydrogel polymeriza-

tion (described below) at the fluid–PDMS interface.

Sample lines were connected to reservoirs mounted on a manifold

of manual stopcocks allowing for independent three-way selection

between tank pressure regulated at tunable 0–3 psi of compressed

nitrogen (“on”); atmospheric pressure (“off”); and sealed (typically

not used). The lines were primed and reservoirs filled by introducing

negative pressure into the manifold through an auxiliary port and

subsequently connected to the PDMS device via stainless steel

20-gauge connector blunt stubs. The valve lines were similarly set

up, except all lines were filled halfway with water, no reservoirs

were used, and the manifold had computer-controlled solenoid

valves. Tank pressure to the valve manifold was regulated to 25 psi.

Hydrogel walls were created by polymerization of photoreactive

derivative of poly(ethylene glycol) with diacrylate groups (PEGDA)

using UV light, which was delivered from a high-pressure mercury

lamp. The chamber was first flooded with wall solution (10% v/v

PEGDA, 700 average molecular weight; 0.05% w/v LAP photoinitia-

tor; 1 ng/ml resorufin to visualize solution) introduced through one

of the sample lines. The walls were formed by engaging the micro-

scope pinhole aperture for the light source (100-lm-diameter

exposed area using a 10× objective), and exposing a stripe of PEGDA

(in at least two passes) at the source and sink side of the observation

chamber. The chamber was then flushed with CB from a different

sample line until no resorufin dye remained (~40–60 min).

Source and sink solutions were continuously circulated on either

side of the observation chamber through channels that were sepa-

rated by the hydrogel walls so that diffusion was possible without

cross flow. In both the gradient and no-gradient experiments, the

sink solution was CB. In the gradient case, a solution of 1 mM

MeAsp and 10 lM fluorescein in CB was used as the source,

whereas in the no-gradient case, CB was used. To establish the

gradient, all valves isolating the observation chamber from the rest

of the device were engaged except for one on the sink side, which

was left open to replace fluid lost to evaporation. This had no

measurable effect on the shape of the gradient, but failure to

perform this step resulted in the formation of negative pressure in

the observation chamber, which could cause unexpected behavior
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during cell loading. The gradient was allowed to equilibrate for

6.5 h before cell loading.

Cells were loaded into one of the sample line reservoirs and

cycled into a section of device separate from the main channel to

avoid disturbing the gradient. The cell-retaining gate was then

closed, and cells were flowed into a narrow strip of the sink side of

the main channel behind the gate. All valves surrounding the main

channel were then closed, and the experiment was started by simul-

taneously beginning the automated acquisition and opening the cell-

retaining gate.

Running experiment and data acquisition

A custom MATLAB script was used to control the automated stage

(Prior) of the microscope (Nikon Ti-U) via the MicroManager inter-

face (Edelstein et al, 2014). Starting at the gate, eight 1-min movies

were sequentially acquired across the observation chamber using an

EM-CCD camera (a 1,024 × 1,024 array of 13 × 13 lm pixels; Andor)

or a scientific CMOS camera (2,048 × 2,048 array of 6.5 × 6.5 lm
pixels, with 2 × 2 binning; Hamamatsu) at 8.78 frames/s through a

10× phase-contrast objective (Nikon CFI Plan Fluor, N.A. 0.30, W.D.

16.0 mm). After reaching the end of the observation chamber, acqui-

sition started over at the gate. Overlapping regions were accounted

for during data analysis. For the experiments without a gradient, four

positions were used to observe the first 4.5 mm of the chamber.

Before and after each movie, a fluorescence image was acquired by a

LED illuminator (Lumencor SOLA light engine, Beaverton, OR)

through the YFP block (Chroma 49003; Ex: ET500/20x, Em: ET535/

30 m) to capture the fluorescein gradient. Fluorescein has approxi-

mately the same diffusion coefficient as MeAsp (Ahmed et al, 2010),

making it a good indicator of the MeAsp gradient in the device.

Single-cell tracking and run/tumble processing

To identify objects, the movies were background-subtracted by

averaging over 6-s windows and subtracting that average from each

frame in that window. We used the radial-symmetry-center method

(Parthasarathy, 2012) to identify objects and tracked the motions of

objects from frame to frame using the U-track software package

(Jaqaman et al, 2008).

Cells were assumed to be in one of three possible states, “run”,

“tumble”, or “intermediate”. The intermediate state captured the

entrance or exit of a cell from a tumble (Berg & Brown, 1972), or

the minor changes in speed and direction that occur when a small

fraction of flagella change to clockwise rotation (Turner et al, 2016).

States were assigned based on a previously described clustering

algorithm (Dufour et al, 2016).

Analysis of trajectories

Movies were processed on the Omega cluster at the Yale High

Performance Computing facility or on Dell workstations. To remove

non-cell tracks (e.g., dust and spurious detection of microfluidic

device features) and damaged cells, we filtered the tracks to have a

mean speed (with tumbles) and mean run speed (excluding

tumbles) between 5 and 60 lm/s, a maximum mean squared

displacement of at least 30 lm2, and a tumble bias between 0 and

0.5. We also filtered tracks on the estimated spatial standard

deviation provided by the detection algorithm (Parthasarathy,

2012). Large values of this parameter tended to be out-of-focus

background noise. The threshold value of this parameter, which

was sensitive to the exact focal plane of the experiment, was deter-

mined manually on a per-experiment basis.

Track length presented a particular problem. On the one hand,

confidence in the estimate of tumble bias increases with the length

of the track. On the other hand, discarding too many short tracks

distorts the density estimate. This is because track length is

inversely correlated with higher cell density, and cells are moving

from a region of high cell density to a region of low cell density.

We picked a minimum track length of 6 s, since this did not signif-

icantly distort our estimate of position versus time, and provided

at least 53 frames to estimate a tumble bias. Consistent with this

idea, increasing the minimum track duration to 20 s appeared to

slightly increase the mean position of cells with lower tumble

bias, but this effect did not significantly change the outcome

(Appendix Fig S4).

Movies were subdivided into five spatial regions along the gradi-

ent axis to calculate the cell density across the movie. The mean

position as a function of time was calculated by taking the average

position of all cells detected in each sink-to-source scan (“sweep”)

of the microscope stage across the device. The time points were

determined by the midpoint of each stage scan.

The total number of cells observed was estimated by assuming

that a track observed for the entire n frames of a movie represented

one cell. Thus, one frame of observation was counted as 1/nth of a

cell, and the total number of cells was calculated by multiplying

the total number of objects observed over all frames of all movies

by 1/n.

Quantifying the gradient profile

The shape of the MeAsp gradient was reconstructed from the fluo-

rescein images by first normalizing each image to a flat-field image

acquired from a reference slide (Ted Pella, Redding, CA) or from a

“blank” fluorescent image of the observation chamber before setting

up the gradient (i.e., in the absence of fluorescein) to correct for

systematic distortions in fluorescence illumination across the frame.

Images from the sink and source loops (which were also flat-field-

corrected) were used as reference values to determine the fluores-

cence intensity corresponding to 0 and 1 mM MeAsp, respectively.

These values were used to determine the concentration of MeAsp at

each position along the gradient. Images taken before and after each

movie were averaged. The resulting intensity profile was averaged

across the dimension orthogonal to the gradient to produce a 1D

profile along the gradient dimension, and regions of overlap were

trimmed. The resulting space–time surface of gradient concentration

information was smoothed by fitting a fifth-order, two-dimensional

(space and time) polynomial.

Strain construction

The mCherry-tagged CheR gene was inserted into the chromosome

by first recombining it into the readily recombining strain MG1655

and then transferring into a CheR-deletion mutant of the infre-

quently recombining RP437 strain using P1 phage transduction.

Cells were grown in standard recipes for Luria broth (LB),
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super-optimal broth (SOB), or SOB with catabolite repression (SOC)

as specified. Plates were made with media plus 1.5% agar and

antibiotics as specified. Gibson assembly (Gibson et al, 2009) was

used to a create plasmid containing the recombination insert. The

complete insert consisted of a mCherry::cheR sequence encoding an

N-terminal fusion protein followed by an FRT-sequence-bounded

(Cherepanov & Wackernagel, 1995) kanamycin resistance cassette.

The source plasmid for the mCherry sequence was created by first

codon-optimizing published sequences for expression in E. coli and

then de novo synthesizing plasmids (Invitrogen) containing these

sequences within the pUC19 cloning vector sequence. The sequence

for cheR was PCR-amplified from the RP437 genome. The FRT-

kanR-FRT cassette was PCR-amplified from pCP15 (Cherepanov &

Wackernagel, 1995). The vector backbone for the final plasmid

construct was pUC19.

The assembled recombination insert was PCR-amplified from the

plasmid with primers containing homology for the region following

chromosomal pLac in MG1655. Linear insert fragments were gel-

purified. They were PCR-amplified again from the fragment using

the same template and gel-purified again. Before transforming with

the fragment, MG1655 cells were first transformed with pKD46

(Datsenko & Wanner, 2000) encoding a lambda-red recombinase

cassette and selected on LB with ampicillin (100 lg/ml) plates at

30°C. Next, an overnight culture was prepared in 5 ml SOC with

100 lg/ml ampicillin. Overnight culture was diluted 1:500 into 5 ml

SOB with 100 lg/ml ampicillin and either 1 mM or no arabinose

and grown to OD 0.6 (about 3 h). The subculture was centrifuged at

3,800 g for 7.5 min at 4°C. After aspirating the supernatant, the

pellet was washed with 1 ml 10% glycerol in a 4°C temperature-

controlled room three times by centrifugation for 3 min at 3,800 g,

then resuspended in 50 ll 10% glycerol. To this suspension, 1 lg
of recombination insert fragment DNA was added and electro-

porated, followed by immediate recovery in 1 ml SOC at 37°C for

2 h. The culture was then washed twice with 1 ml M63 salts by

centrifugation for 3 min at 3,800 g, then resuspended in 100 ll
of M63 salts and spread on LB agar with 50 lg/ml kanamycin.

Plates were incubated overnight at 43°C to remove pKD46.

Colonies were streaked out twice on LB agar with 50 lg/ml

kanamycin to purify and screened for ampicillin sensitivity. The

insertion site was PCR-amplified from a genomic DNA prep and

verified by sequencing.

To create the P1 phage donor lysate, overnight saturated culture

of the donor strain in LB was first diluted 1:100 into 3 ml transduc-

tion growth medium (TG; LB with 5 mM CaCl2 and 0.2% w/v

glucose). The subculture was grown 30 min at 37°C, and then,

75 ll P1 phage stock was added. After a 3-h incubation, 10 ll of
chloroform was added. The sample was then pelleted and the aque-

ous supernatant was saved and stored at 4°C.

In order to transduce mutations from donor lysate into the recipi-

ent strain, the overnight saturated culture in LB of the recipient

strain was diluted 1:100 into 10 ml TG until late exponential phase

at 37°C. The cells were pelleted and resuspended in 2.5 ml transduc-

tion reaction medium (TR; LB with 5 mM CaCl2 and 100 mM

MgSO4). A dilution series was prepared from 1:1:0 to 1:0:1 of recipi-

ent cells, TR, and donor lysate in a total volume of 200 ll. Trans-
duction reactions were incubated without shaking at 37°C for

30 min. Cells were grown in 1 ml of LB combined with 200 ll of
1 M sodium citrate pH 5.5 for 1 h at 37°C with shaking. Next, cells

were pelleted and resuspended in 100 ll transduction selection

medium (TS; LB with 20 mM sodium citrate) and plated on TS agar

with 25 lg/ml kanamycin and grown overnight at 37°C. Large

colonies were selected and colony-purified twice on TS agar with

25 lg/ml kanamycin.

Following transduction, the antibiotic marker was removed via

FRT excision by first transforming with pCP20 (Cherepanov &

Wackernagel, 1995) and selecting on LB with 100 lg/ml Amp at

30°C overnight to remove the FRT-bounded region. After re-

streaking on LB with no antibiotic, cells were grown overnight at

43°C to remove pCP20. Sensitivity to both kanamycin and ampicillin

was verified, and the insertion site was sequence-verified.

Simulations

Simulations were performed using a standard model of the chemo-

taxis pathway and previously described simulation methods

(Sneddon et al, 2012; Frankel et al, 2014). Population diversity was

created using a noisy gene expression model (based on Løvdok

et al, 2009), which takes into account the effect of promoter

sequences, ribosome binding sites, and operon structure to generate

individual cells each with different numbers of the chemotaxis

proteins (CheRBYZAW) and receptors (Tar, Tsr; Frankel et al,

2014). The gene expression, molecular pathway, and dynamics-

based simulation were unchanged from our previous work (Frankel

et al, 2014). We note changes to specific parameter values below.

Our previous model assumed that cells had one flagellum per cell,

but to make the model more realistic, we added a model of multiple

interacting flagella (Sneddon et al, 2012) and used five flagella per

cell with a 3 flagella minimum bundle size for each cell.

Most parameters were unchanged from our previous simulation

paper, but some parameters of the model were adjusted to achieve

better agreement with the experimental observations in this work.

The number of Tar receptors per assistance neighborhood was

changed to 6, which is consistent with previously reported values

(Keymer et al, 2006; Mello & Tu, 2007; Shimizu et al, 2010).

Following the inclusion of the multiple flagella model, the parame-

ter controlling the amount of extrinsic noise in the gene expression

model, x, was reduced from 0.26 to 0.08, and the autophosphory-

lation rate of CheA was raised from 12.2 to 12.35 in order to

produce better agreement with the experimental tumble bias distri-

bution. A Gaussian distribution of run speed was introduced in the

model with mean and variance chosen to closely match the given

data being modeled. Run speed was not correlated with the other

parameters. When modeling the populations with inducible CheR

expression, the parameter representing the mean level of CheR

expression in the noisy gene expression model was adjusted until

good agreement with the experimental tumble bias distribution was

observed. See the legend to Fig EV3 for the speed distribution

parameters and the mean number of CheR molecules used in each

simulation.

We found that cells in the device without a gate or attractant

gradient had a mean run-to-run change in angle of 81° (90° indicates

no angular persistence). This is substantially greater than the previ-

ous observation of 62� (Berg & Brown, 1972) and could be due to

differences in our experimental conditions. We used different

growth media, different motility media, and a different strain. In

addition, the observations of Berg and Brown (1972) were

ª 2016 The Authors Molecular Systems Biology 12: 895 | 2016

Adam James Waite et al The consequences of non-genetic diversity Molecular Systems Biology

11



performed in a 3D environment, whereas our cells were constrained

to a pseudo-2D environment with a depth of 10 lm. Since simula-

tions showed that such a small persistence did not affect cell perfor-

mance, we did not include directional persistence in the model.

In order to simulate cells in the microfluidic environment, we

introduced cell–boundary collision rules to the simulation. Experi-

mentally, cells are observed to slow down slightly when colliding

with a boundary, and then follow the boundary for a short time

after the collision. Thus, when cells crossed a boundary in the simu-

lation, their centroid was repositioned to the nearest boundary at

the end of the time step and their headings redirected to lie in the

boundary plane. This had the effect of generally causing them to

proceed along the boundary until redirected by diffusion or a

tumble, similar to observed cell behavior in microfluidics. The

gradient used in the simulation was exactly the function derived

from experimental data (see “Quantifying the gradient profile”).

Cells in the simulation were initialized in a region corresponding to

the area behind the gate in the experiment, and the simulation envi-

ronment dimensions were also matched to the experiment. Each

simulation had 16,000 trajectories.

In order to analyze the simulations and the experiments in the

same way, a pseudo-microscope procedure was applied to the simu-

lation data. A series of “movies” with the same time and space

boundaries as those in the experiment were created by logically

masking the simulated cell trajectories according to these bounds.

Paralleling the experimental acquisition, the portions of cell trajecto-

ries that fell within each mask were extracted and treated as new,

independent trajectories containing information about position and

run state at each time point. This was repeated along the simulation

environment and over simulation time following the position and

time data from the microscope. Downstream analysis of the simula-

tion data was handled in the same manner as the experimental data.

Single-cell fluorescence measurements

Cells were prepared as described in “Microfluidic gradient experi-

ment” except that cells were resuspended in the residual buffer after

the last wash. To create agar pads, two identical glass slides wrapped

with a single layer of masking tape were placed on either side of a

standard glass slide. 10 ml of 1% agarose was prepared and allowed

to cool for 5 min. 60 ll of agarose was added to the middle slide,

and a fourth slide was placed on top perpendicular to it. After the

agarose solidified, the top slide was carefully removed by sliding it

off the bottom slide. 0.5–1 ll of concentrated cell solution was added

to the pad, and a coverslip was placed on top. The edges were sealed

using VALAP (1:1:1 Vaseline:lanolin:paraffin by weight). Phase-

contrast and fluorescence (RFP; Chroma 49008; Ex: ET560/40×, Em:

ET630/75 m) images were taken at 100× magnification in order to

determine cell outlines and mCherry relative concentration, respec-

tively. RFP-channel images of wild-type RP437 were used to deter-

mine autofluorescence, which was negligible (< 1% of signal). An

RFP-channel image of a reference slide (Ted Pella, Inc.) was used for

flat-field correction. Flat-field correction was done using Fiji (Schin-

delin et al, 2012) by first dividing the image of the reference slide by

its mean. Then, each sample image was divided by this reference

image. Flat-field-corrected images were analyzed using Microbe-

Tracker (Sliusarenko et al, 2011), modified to work with Linux

(source code available at https://github.com/nodice73/MicrobeTrac

ker; parameters used for analysis are saved as “alg4ecoli_AW.set” in

this repository). Background correction was done within Microbe-

Tracker. The meshes on each analyzed image were manually

inspected and corrected if necessary. Fluorescence histograms were

generated using the “mtHist.m” script.

Expanded View for this article is available online.
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