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Abstract. Naphthoquinones are secondary metabolites widely distributed in nature and produced by bacteria,
fungi and higher plants. Their biological activity may result from induction of oxidative stress, caused by redox
cycling or direct interaction with cellular macromolecules, in which quinones act as electrophiles. The redox homeo-
stasis is known as one of factors involved in auxin-mediated plant growth regulation. To date, however, little is
known about the crosstalk between reactive oxygen species (ROS) produced by quinones and the plant growth
hormone auxin (IAA). In this study, redox cycling properties of two naphthoquinones, juglone (5-hydroxy-1,4-naph-
thoquinone) and lawsone (2-hydroxy-1,4-naphthoquinone), were compared in experiments performed on maize
coleoptile segments incubated with or without the addition of IAA. It was found that lawsone was much more ef-
fective than juglone in increasing both H2O2 production and the activity of antioxidative enzymes (SOD, POX and
CAT) in coleoptile cells, regardless of the presence of IAA. An increase in the activity of Cu/Zn-SOD isoenzymes
induced by both naphthoquinones suggests that juglone- and lawsone-generated H2O2 was primarily produced in
the cytosolic and cell wall spaces. The cell potential to neutralize hydrogen peroxide, determined by POX and CAT ac-
tivity, pointed to activity of catalase as the main enzymatic mechanism responsible for degradation of H2O2.
Therefore, we assumed that generation of H2O2, induced more efficiently by LW than JG, was the major factor
accounting for differences in the toxicity of naphthoquinones in maize coleoptiles. The role of auxin in the process
appeared negligible. Moreover, the results suggested that oxidative stress imposed by JG and LW was one of mech-
anisms of allelopathic action of the studied quinones in plants.
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Introduction

Juglone (JG) (5-hydroxy-1,4-naphthoquinone) and law-
sone (LW) (2-hydroxy-1,4-naphthoquinone) are naturally
occurring naphthoquinones that are widespread in

nature. They have been identified as secondary metabol-
ites that can be isolated from the leaves, roots, husks
and bark of plants of the Juglandaceae family, particu-
larly black walnut (Juglans nigra) in case of JG, and from
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the leaves of the henna plant (Lawsonia inermis) and
water hyacinth (Eichhornia crassipes) in case of LW (Solar
et al. 2006; Babula et al. 2009; Ashnagar and Shiri 2011;
Nour et al. 2013). Juglone has varying effects on plants,
including an inhibition of seed germination and plant
growth (Hejl and Koster 2004; Böhm et al. 2006;
Sytykiewicz 2011; Babula et al. 2014; Rudnicka et al.
2014), a reduction in the chlorophyll content (Terzi et al.
2003), a disruption of the root plasma membrane and a
decrease in water uptake (Hejl and Koster 2004), as well
as inhibition of photosynthesis (Hejl et al. 1993; Jose and
Gillespie 1998), respiration (Jose and Gillespie 1998; Hejl
and Koster 2004; Babula et al. 2009), transpiration (Jose
and Gillespie 1998) and stomatal conductance (Jose and
Gillespie 1998). In experiments performed on tobacco
BY-2 cells, Babula et al. (2009) showed the ability of
juglone to generate reactive oxygen species (ROS) and
suggested that these substances play an important role
in processes of programmed cell death. Additionally, in
studies carried out on lettuce seedling roots, juglone
caused enhanced production of H2O2, followed by a sig-
nificant increase in the amount of free intercellular cal-
cium ions in both cortical and peripheral cells of the root
cap (Babula et al. 2014). JG and LW display a related
chemical structure (Kumagai et al. 2012), however,
knowledge about the effects of LW in plants is limited
and the main area of LW research has been its inter-
action with animal and human tissues (€Ollinger and
Brunmark 1991; Kumbhar et al. 1996; Dasgupta et al.
2003).

One of the most important mechanisms underlying
the phytotoxic influence of JG and LW is associated with
their strong redox activity, which is involved in the perox-
idation action within the tissues of targeted plants (El
Hadrami et al. 2005; Chobot and Hadacek 2009;
Ashnagar and Shiri 2011; Hao et al. 2012). On the other
hand, some studies have demonstrated the protective
role of juglone and lawsone, which has been observed as
an abatement of oxidative stress and an inhibition of
macromolecular oxidation (Chobot and Hadacek 2009;
Chi et al. 2011; Cheniany et al. 2013).

Oxidative stress refers to the uncontrolled production
of reactive oxygen species (ROS) such as superoxide
anion (O2

.�), hydrogen peroxide (H2O2), hydroxyl radical
(.OH) and singlet oxygen (1O2). Every cell has various
mechanisms, both non-enzymatic and enzymatic, to
regulate the ROS level such as superoxide dismutases
(SODs), catalases (CATs) and peroxidases (POXs) (re-
cently reviewed in K€arkönen and Kuchitsu 2015). In plant
cells, superoxide dismutases act as the first line of
defence against ROS. SODs are classified into three
groups according to their metal cofactor: copper-zinc
(Cu/Zn-SOD), manganese (Mn-SOD) and iron (Fe-SOD)

(Alscher et al. 2002). Unlike other organisms, plants have
multiple SOD forms, i.e. one type of SOD can be present
in several isoforms that have the same catalytic specifi-
city, but have different kinetic proprieties and different
migration rates on a gel (Kephart 1990). SODs catalyse
the reaction of a disproportionation of two molecules of
a superoxide radical ion to an oxygen molecule and H2O2

molecule, which is then further scavenged by catalases
and peroxidases. Since biological membranes are imper-
meable to most of the ROS, SOD isoforms that occur at
sites where O2

.� is generated and play a role in the neu-
tralisation of ROS in all cellular compartments, the cyto-
sol and apoplastic spaces, mitochondria as well as in the
water–water cycle and the ascorbate–glutathione cycle
in chloroplasts (Asada 1999). Most of the H2O2 that is
generated via SOD activity is then scavenged by peroxi-
somal and glyoxysomal catalases, while its molecules,
which are unavailable for catalases, are degraded by per-
oxidases due to their high affinity to H2O2 and their pres-
ence in other cell compartments (Mittler 2002).

There is a close interdependence among the activity of
SOD, CAT and POX because the product of the reaction
that is catalysed by SOD becomes a substrate for POX
and CAT. Moreover, the intermediates of the superoxide
radical anion reduction to an oxygen molecule play a
role in a number of regulatory and signalling processes.
It is believed that H2O2 plays a key role in the regulation
of the expression of antioxidative enzymes (SOD, POX,
CAT) as well as other defence proteins such as
pathogenesis-related proteins and heat shock proteins
(HSPs) (Knight and Knight 2001).

The main aim of the present study was to compare
the effects of two naturally occurring naphthoquinones,
juglone (5-hydroxy-1,4-naphthoquinone) and lawsone
(2-hydroxy-1,4-naphthoquinone), on H2O2 production
and the activity of ROS scavenging enzymes (SOD, POX,
CAT). In addition, the effect of auxin (IAA) on these proc-
esses was also studied. To the best of our knowledge, no
research has been reported on the interdependence be-
tween oxidative stress induced by both naphthoqui-
nones and the effects of plant growth hormone auxin
(IAA). The experiments were performed with segments
of etiolated maize coleoptiles, which are a classical
model system for studies on the mechanism of auxin ac-
tion on plant cell growth. In this system, the number of
cells is constant and an organ grows only through elong-
ation. Interestingly, most of the important evidence on
the molecular mechanisms of auxin action was obtained
in experiments performed with segments of maize cole-
optiles (reviewed in Hager 2003). Despite the large num-
ber of papers that have been published on juglone and
lawsone cytotoxicity, there is still a lack of a clear explan-
ation of their redox cycling properties in plant cells.
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Moreover, our experiments may provide new data on the
allelopathy of both naphthoquinones and the possible
role of IAA in this process.

Methods

Plant material

Caryopses of maize (Zea mays cv. Cosmo) were soaked in
tap water for 2 h, sown on wet wood wool in plastic
boxes and were placed in a growth chamber for 4 days
(Type MIR-553, Sanyo Electric Co., Japan) at 27 6 1 �C.
The experiments were performed with 10-mm-long cole-
optile segments cut from etiolated seedlings. The cole-
optile segments, with the first leaves removed, were
excised 3 mm below the tip and incubated in a control
medium of the following composition: 1 mM KCl, 0.1 mM
NaCl, 0.1 mM CaCl2, initial pH 5.8–6.0.

Before chemical analysis, 20 intact coleoptile seg-
ments were placed in a measuring chamber and
pre-incubated for 2 h in 6.0 cm3 (0.3 cm3 segment�1) of
an intensively aerated control medium. After the pre-
incubation of the coleoptile segments, juglone
(5-hydroxy-1,4-naphthoquinone) (50mM) or lawsone (2-
hydroxy-1,4-naphthoquinone) (100mM), with or without
the addition of indole-3-acetic acid (IAA) (100 lM), were
introduced into the incubation medium for 4 h. The con-
centrations of juglone and lawsone (50 and 100mM, re-
spectively) were selected in accordance with our
previous studies, based on dose–response curves plotted
for the effects of juglone and lawsone on endogenous
and IAA-induced growth of maize coleoptile segments.
In these experiments, the above-mentioned concentra-
tions of juglone and lawsone inhibited both endogenous
and IAA-induced growth of maize coleoptile segments
by ca. 50 % (Rudnicka et al. 2014, 2015). Moreover, the
experimental conditions such as number of coleoptiles
per medium volume, composition of the incubation me-
dium and initial pH of the medium were also adopted
from our previous growth experiments (Karcz and
Burdach 2002; Kurtyka et al. 2011, 2012; Burdach et al.
2014; Rudnicka et al. 2014). All experiments were per-
formed in the time interval of 6 h, covering the time
course of the model curve proposed by Becker and
Hedrich (2002) for IAA-induced growth of maize coleop-
tile segments. On the other hand, our preliminary experi-
ments also evidenced that the 6 h period is long enough
to reveal differences between the action of both naph-
thoquinones. For the detection of H2O2 and the enzyme
assay, samples were collected at 15, 60 and 120 min of
the pre-incubation in the control medium and at 135,
180, 240, 300 and 360 min of the incubation in the me-
diums with IAA, JG and LW. All manipulations and

experiments were conducted under a dim green light
(0.04 W m�2), impinging omnilaterally on the coleoptiles.

Chemicals

Juglone (5-hydroxy-1,4-naphthoquinone) and lawsone
(2-hydroxy-1,4-naphthoquinone) were obtained from
Sigma Aldrich Inc. (St. Louis, MO, USA). The naphthoqui-
nones, juglone and lawsone were dissolved in deionised
water and used at a final concentration of 50 and 100
mM, respectively.

An aqueous stock solution (1 mM) of indole-3-acetic
acid (IAA) (Serva, Heidelberg, Germany) was prepared
with the potassium salt of IAA. IAA was used at a final
concentration of 100 mM.

Hydrogen peroxide detection

The concentration of H2O2 was assayed using an
AmplexVR UltraRed fluorochrome (Molecular Probes). An
aliquot of 100 ml of suspension that was withdrawn from
the vessel in which the coleoptiles were incubated was
immediately placed in a 96-well plate and 10 ml of a
100 mmol solution of AmplexVR UltraRed in a HEPES buffer
(pH 7.0, 0.05 M) was added. After incubating the plate for
20 min at 30 �C in darkness, the fluorescence was
measured at Ex/Em wavelengths 490 nm/585 nm using
a VarioskanVR Flash Spectral Scanning Multimode
Microplate Reader spectrofluorometer (ThermoScientific)
running Varioskan Flash SkanIt Software (2006). The
‘blind’ probes, which contained a 110 ml of 10 mmol solu-
tion of AmplexVR UltraRed in a HEPES buffer (pH 7.0, 0.05
M) or 100 ml of the coleoptile incubation buffer with 10 ml
of a HEPES buffer, were measured to subtract autofluor-
escence of the fluorochrome or coleoptile incubation
buffer, respectively. The standard curve was prepared
using the stabilised H2O2 solution (Sigma Aldrich,
Germany), which was diluted with a HEPES buffer (pH
7.0, 0.05 M) to a concentration range of 0.1–100 mmol.
The concentration of H2O2 is presented as nmol of H2O2

per mg of the fresh weight of a coleoptile.

Enzyme isolation and assay

For protein isolation, maize coleoptiles (20 pcs.) were
placed in 15 ml capacity test tubes with a portion of glass
beads (�0.5 g) and suspended in 0.5 ml of an extraction
buffer. In order to isolate superoxide dismutase and
catalase 0.05 M of a potassium phosphate buffer (pH
7.8) containing protease inhibitors (0.01 M EDTA, 0.01 M
E-64 (transepoxysuccinyl-L-leucylamido(4-guanidino)bu-
tane), 0.01 M DTT (DL-dithiothreitol) were used and
for peroxidase: 50 mM of a phosphate buffer 7.6,
0.86 mM AsA (ascorbic acid), 2.4 mM EDTA (ethylenedia-
minetetraacetic acid), 20 % glycerol and 2 % PVP
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(polyvinylpyrrolidone) were used. The coleoptiles were
homogenised with glass beads in an MP Bio homogeniser
(45 s, 5000 rps). The homogenate was transferred into
an Eppendorf tube and the glass beads were washed
three times with 0.5 ml of the appropriate buffer to a
final volume of 2 ml. Debris was removed by centrifuga-
tion (20 min, 20 000 g, 4 �C). The supernatant that was
obtained was used for the enzyme assays. The protein
content in the supernatant was evaluated according to
the method of Bradford (1976).

Total SOD activity was assayed following Beauchamp
and Fridovich (1971). The reaction mixture contained
2.4�10�6 M riboflavin, 0.01 M methionine and
1.67�10�6 M nitroblue tetrazolium (NBT) in a 0.05 M po-
tassium phosphate buffer, pH 7.8. Afterwards, 2.5 ml of
the reaction mixture and 0.5 ml of the crude extract was
illuminated in glass tubes for 10 min with white fluores-
cent light at an intensity of 60 Wm�2. The absorbance
was measured at 560 nm with an illuminated 2.5 ml of
the reaction mixture and 0.5 ml of a potassium phos-
phate buffer as a control. An SOD activity unit was
defined as the amount that caused a 50 % inhibition of
NBT reduction. Results are given as units of SOD activity
per mg of protein (U mg�1).

The activity of SOD isoforms was determined using an
indirect method that involved the inhibition of NBT as
described by Tukaj and Pokora (2006). Briefly, non-dena-
turating PAGE was performed according to Davies (1971)
with the modification that both the stacking (4.5 %) and
resolving (12.5 %) gels were polymerised with riboflavin
(2.8�10�5 M). Each sample contained 50 mg of the pro-
tein. SODs were located on the gels according to
Beauchamp and Fridovich (1971). The gels were soaked
in 2.45�10�3 M NBT for 20 min, followed by immersion
(15 min) in a solution containing 0.028 M TEMED and
2.8�10�5 M riboflavin in a 0.036 M potassium phos-
phate buffer, pH 7.8. The gels were illuminated until they
were uniformly blue and the sites where SOD was pre-
sent were achromatic. SOD isoforms were identified ac-
cording to their different sensitivities to H2O2 (5 mM) and
KCN (2 mM). Cu/Zn-SOD was inhibited by both CN� and
H2O2, Fe-SOD was resistant to CN- and sensitive to H2O2,
while Mn-SOD was resistant to both chemicals. The activ-
ity of a separate SOD isoform band was calculated by
comparing the relative band intensity mm�2 to the one
obtained for the Cu/Zn-SOD reference pattern of the
defined activity of 4.4 U mg�1 protein (Sigma-Aldrich).
Densitometric analysis was performed using Quantity1D
software (Bio-Rad).

Peroxidase activity was assayed according to Nakano
and Asada (1981) with some modifications of the reac-
tion mixture, which contained 50 mM of a phosphate
buffer (pH 7.0), 18 mM pyrogallol and 0.1 mM H2O2. The

reaction was started by adding 0.25 ml of the enzyme
extract to 0.75 ml of the reaction mixture. The oxidation
of pyrogallol was measured by the decrease in absorb-
ance at 430 nm for 1 min at 25 �C (Hitachi U-2010 spec-
trophotometer, Japan). The enzyme activity was
quantified using the molar extinction coefficient for pyro-
gallol (e¼2.47 mM�1cm�1) and the results are expressed
as mM pyrogallol oxidised�min�1�mg�1 protein.

Catalase activity was determined spectrophotometric-
ally (Hitachi U-2010, Japan). The reaction mixture con-
tained 50 mM of a sodium phosphate buffer (pH 7.0) and
10 mM H2O2. CAT activity was estimated by monitoring
the decrease in absorbance (k¼240 nm) that was
caused by H2O2 (e¼36 M�1 cm�1) consumption (Aebi
1984). The results are expressed as lM of consumed
H2O2�min�1�mg�1 protein.

Statistical analysis

Statistical analysis was performed using MS Excel 2010
(Microsoft) and Statistica 9.0 (StatSoft). All data were ex-
pressed as mean 6 SD of at least four independent ex-
periments, with two repeats for each measurement. In
each sampling hour, effects of LW or JG in the presence
or absence of IAA were analysed in four independent ex-
periments, including two technical repeats of each
measurement (n¼ 8), except for the interval of 0–2 h, in
which only the control samples were analysed. SOD iso-
forms were examined in three independent experiments
(isolation and PAGE analysis), including two technical re-
peats of each measurement (n¼ 6). Data were tested
for normal distribution and variance homogeneity with
the Levene’s test. To compare results obtained for differ-
ent variants, ANOVA and Tukey’s post hoc test were per-
formed at P�0.05. Two-way ANOVA at P�0.05, with
treatment variant and time as two predictor variables,
was used to evaluate the time-dependent effects of
chemicals applied.

Results

Hydrogen peroxide production

The first step in our study was to analyse the occurrence
of H2O2 in the control medium during the pre-incubation
(first 2 h) and incubation (next 4 h) of the maize coleop-
tiles. The highest level of H2O2 (58.99 6 2.89 nmol mg�1

fresh weight) was recorded after 1 h of the pre-incuba-
tion of the segments, after which the H2O2 concentration
decreased and was maintained at a constant level
(9–16 nmol mg�1 fresh weight) (Fig. 1). The 2 h pre-incu-
bation time appeared to be long enough to prevent oxi-
dative stress associated with preparation (cutting) of
maize coleoptile segments (F6,22¼ 136, P¼ 0.0016). The
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addition of IAA at a final concentration of 100 mM to the
incubation medium at 2 h did not significantly affect the
level of H2O2 that was determined in each of the follow-
ing hours of exposure (F12,44¼ 1.85, P¼ 0.012), though
it changed with the time of incubation [see Supporting
Information—Table S1] (F12,44¼ 241.5, P¼ 0.038). The
application of either juglone or lawsone after 2 h of the
pre-incubation of a segment in the control medium
resulted in an increase in H2O2 production, which was
significantly higher in the presence of lawsone (F10,42¼
115, P¼ 0.0023) than in juglone (F10,44¼ 67, P¼
0.0021), regardless of the time of incubation [see
Supporting Information—Table S1] (F12,44¼ 3.496, P¼
0.03 and F12,44¼ 5.928, P¼ 0.008, respectively). The
highest levels of H2O2 were detected 1 h after application
for juglone (44.77 6 2.69 nmol mg�1 fresh weight) and
2 h later for lawsone (71.00 6 4.26 nmol mg�1 fresh
weight). These maximal values declined gradually for JG
and reached the control value within the next 3 h; how-
ever, they decreased rapidly for LW (Fig. 1). The addition
of IAA together with juglone or lawsone did not signifi-
cantly change the level of H2O2 production that was
observed for JG (F4,25¼ 2.23, P¼ 0.015) or LW (F4,25¼
2.13, P¼ 0.012) alone.

Antioxidative enzyme activity

Superoxide dismutase. In the control maize coleoptile
segments, total SOD activity ranged from 6 to 20 U mg�1

protein and depended on the duration of the experiment
(Fig. 2). The highest enzymatic activity, 19.35 6 0.97 U
mg�1 protein, was detected 1 h after the preparation of
the coleoptile segments; however, it decreased to 6–10 U

mg�1 protein in the subsequent hours of incubation. The
addition of IAA after 2 h of segment pre-incubation re-
sulted in a decrease in SOD activity in the control sam-
ples at 3–4 h of the experiment (F6,22¼ 56, P¼ 0.0045).
Afterwards, the enzymatic activity remained at the same
level (F6,22¼ 56, P¼ 0.0045), regardless of the presence
of auxin and time of incubation [see Supporting
Information—Table S1] (F6,22¼ 460, P¼ 0.86). After 1
and 2 h of the exposure of the coleoptile segments to JG
and LW (3 and 4 h of the experiment), the activity of SOD
showed a significant increase (F10,42¼ 136, P¼ 0.0018),
nearly two-fold greater in the presence of LW (F4,25¼ 96,
P¼ 0.0026) than JG (F4,25¼ 74, P¼ 0.0035). In most
cases (except for the fourth hour of the experiment), the
addition of IAA together with LW caused a decrease in
SOD activity (Fig. 2; F4,25¼ 23, P¼ 0.013; see Supporting
Information—Table S1; F4,25¼ 1.964, P¼ 0.02), not
observed if IAA was applied with JG (Fig. 2; F4,25¼ 1.56,
P¼ 0.016; see Supporting Information—Table S1;
F4,25¼ 3.599, P¼ 0.09).

Five SOD isoenzymes with different migration rates
in the polyacrylamide gel were identified in the maize
coleoptile segments [see Supporting Information—
Table S1]. Using the KCN and H2O2 inhibition assay, two
isoforms of Mn-SOD, which are referred to as Mn-SOD 1
and Mn-SOD 2, were found. We also identified three iso-
forms of Cu/Zn-SOD, namely Cu/Zn-SOD 1, 2 and 3.
However, Fe-SOD was not found in the maize coleoptile
tissue.

In the control coleoptiles, the activity of each identi-
fied isoform of Cu/Zn-SOD fell within a range of
1.05 6 0.12 to 2.95 6 0.18 U mg�1 protein (Table 1). As

Figure 1. Generation of hydrogen peroxide in maize coleoptile segments exposed to juglone (JG) (50 mM) and lawsone (LW) (100 mM).
Control, JG- and LW-treated coleoptiles were incubated for 4 h with or without indole-3-acetic acid at a concentration of 100 mM. The arrow
indicates the moment of the application of IAA, JG and LW to the coleoptile incubation medium. The amount of hydrogen peroxide detected
in the coleoptile incubation medium was expressed per fresh weight unit. Values are the means of at least four independent experiments.
Bars indicate 6 SDs. Means followed by the same letters are not significantly different from each other (P�0.05) according to the ANOVA
and Tukey’s post hoc test.
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for total SOD, the highest activity of SOD isoforms was

detected at 1 h of segment incubation in the control me-

dium (F18,165¼ 235, P¼ 0.0042 for Cu/Zn-SOD; F12,112¼
35, P¼ 0.0042 for Mn-SOD) and also at 4 and 6 h of incu-

bation in the case of the Cu/Zn-SOD 3 isoform (F18,165¼
235, P¼ 0.0042). Both JG and LW treatment resulted in

an increase in the activity of all of the Cu/Zn-SOD iso-

forms (F42,357¼ 112, P¼ 0.012) (Table 1). The activity of

the Cu/Zn-SOD 1 and 3 isoforms increased within 1 h of

JG or LW treatment; however, the decreased in LW-

treated tissues after the third hour (F12,117¼ 35, P¼
0.0045 and F12,117¼ 28, P¼ 0.0036, respectively). The

Cu/Zn-SOD 2 isoform exhibited an elevated although ra-

ther constant activity level in the JG-treated tissues

(F42,357¼ 112, P¼ 0.012). The highest stimulation of Cu/

Zn-SOD activity was recorded for the Cu/Zn-SOD 3 iso-

form at 3 h exposure (F6,22¼ 32, P¼ 0.0031). At the

same time, all of the Cu/Zn-SOD isoforms displayed the

Figure 2. Effect of juglone (JG) and lawsone (LW) treatment on the enzymatic activity of total superoxide dismutase (SOD) in maize coleop-
tiles. Coleoptiles were incubated with the naphthoquinones (added after 2 h of segment pre-incubation) for 4 h, with or without auxin (100
mM). Values are the means of four independent experiments. Bars indicate 6 SDs. Means followed by the same letters are not significantly dif-
ferent from each other (P�0.05) according to the ANOVA and Tukey’s post hoc test.

......................................................................................................................................................................................................................

Table 1. Effect of juglone (JG) and lawsone (LW) treatment on the enzymatic activity of three Cu/Zn-SOD isoforms detected in 4-day-old
maize coleoptile segments.

Treatment Time (min)

15 60 120 135 180 240 300 360

Control Cu/Zn-SOD 1 1.05 a 1.71 b 1.33 a 1.39 a 1.40 a 1.83 b 1.91 b

Cu/Zn-SOD 2 1.28 a 2.95 c 1.77 b 1.86 b 1.65 b 1.98 b 1.05 a

Cu/Zn-SOD 3 1.27 a 2.36 c 1.66 b 1.81 b 2.60 c 1.20 a 2.50 c

Juglone Cu/Zn-SOD 1 2.44 c 4.07 d 3.28 d 2.99 c 3.47 d

Cu/Zn-SOD 2 3.17 d 4.72 e 3.73 d 3.51 d 3.32 d

Cu/Zn-SOD 3 2.62 c 3.38 d 3.01 c 4.29 e 2.74 c

Lawsone Cu/Zn-SOD 1 2.59 c 4.81 e 4.60 e 1.52 a 2.64 c

Cu/Zn-SOD 2 3.13 d 5.51 e 5.92 e 2.85 c 2.77 c

Cu/Zn-SOD 3 3.63 d 4.65 e 4.64 e 2.84 c 3.56 d

The activity of a separate SOD isoform band was calculated by comparing the relative band intensity to the one obtained for the Cu/Zn-SOD

standard of the defined activity of 4408 U mg�1 protein. Means followed by the same letters are not significantly different from each other

(P�0.05) according to the ANOVA and Tukey’s post hoc test. Each value stands for the mean (n¼4).
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greatest activity in the tissues that had been exposed to
LW at 1 and 2 h (F12,117¼ 35, P¼ 0.0045) (Table 1).

The average activity of Mn-SODs in the control coleop-
tile tissues was similar to that of the Cu/Zn-SOD isoform
and attained a level of 1.02 6 0.08 to 2.87 6 0.12 U mg�1

protein (Table 2). As in the case of the Cu/Zn-SOD iso-
forms, both LW and JG treatment stimulated the activity
of the Mn-SOD isoforms (F16,156¼ 67, P¼ 0.0075). In the
JG-exposed coleoptiles, the Mn-SOD 1 isoform showed
an increased (F8,36¼ 22, P¼ 0.0024), though constant
level, while the activity of Mn-SOD 2 fluctuated in the
subsequent hours of exposure. Nevertheless, the activity
of both Mn-SOD isoforms was much higher than in con-
trol tissues at 3 h of LW treatment (F27,234¼ 144, P¼
0.019) (Table 2).

Peroxidase and catalase activity

Peroxidases (POX) activity in the control maize coleoptile
tissue increased until 2 h (F6,22¼ 133, P¼ 0.0025) when
it attained peak value of 298.91 6 20.92 12 U mg�1 pro-
tein. As shown in Fig. 3, the application of auxin resulted
in a significant decrease in the POX activity (F6,22¼ 29,
P¼ 0.0014); however, POX activity was not affected nei-
ther by JG nor LW (Fig. 3; F10,42¼ 1.63, P¼ 0.0016), re-
gardless of the presence of IAA in the incubation medium
(see Supporting Information—Table S1; F10,42¼ 85.5,
P¼ 0.54 and F10,42¼ 21.8, P¼ 0.23, respectively).

In the untreated maize coleoptiles, the highest CAT
activity of ca. 300 U mg�1 protein was detected within
the first 2 h, while in the subsequent hours of incubation,
it decreased below 100 U mg�1 protein (F6,22¼ 53, P¼
0.0017) (Fig. 4). IAA applied to the incubation medium at
2 h did not significantly change CAT activity (F6,22¼ 1.65,
P¼ 0.023). The addition of both juglone and lawsone

after 2 h of segment pre-incubation in the control me-
dium resulted in an increase in CAT activity, regardless of
the presence of auxin (F10,42¼ 2.04, P¼ 0.021).

Discussion

The obtained results indicate that both juglone and law-
sone, in the presence or absence of IAA, contribute to
H2O2 generation and activity of ROS scavenging enzymes
(SOD, POX and CAT) in maize coleoptile segments.
Previous reports evidenced both pro- and antioxidative
action of quinones, depending on their chemical struc-
ture, particularly the number and arrangement of hy-
droxyl substituents (Liszkay et al. 2004; Murakami et al.
2010; Klotz et al. 2014), as well as on the dose (Babula
et al. 2014), time of exposure (Kot et al. 2010) and co-
presence of other factors that modulate redox homeo-
stasis, including plant hormones, e.g. IAA (Liszkay et al.
2004; for a review see Tognetti et al. 2012). Our results
indicate that the concentrations of JG and LW used here
induce oxidative stress in cells of coleoptiles. This can be
clearly seen in the amount of H2O2 that was generated
(Fig. 1) and the elevated activity of the antioxidative en-
zymes (Figs 2 and 4), particularly the superoxide dismu-
tase isoforms (Tables 1 and 2). The highest level of H2O2

recorded after 1 h of the pre-incubation of the segments
in control medium probably is associated with prepar-
ation of maize coleoptile segments and is in good agree-
ment with the growth rate kinetics of maize coleoptile
segments after their excision from maize seedlings
(Karcz and Burdach 2002; Karcz and Kurtyka 2007;
Burdach et al. 2014). The total amount of H2O2 produced
and the increased level of superoxide dismutase activity
indicate that LW is a more efficient oxidative stress than

......................................................................................................................................................................................................................

Table 2. Effect of juglone (JG) and lawsone (LW) treatment on the enzymatic activity of two Mn-SOD isoforms detected in 4-day-old maize
coleoptile segments.

Treatment Time (min)

15 60 120 135 180 240 300 360

Control Mn-SOD 1 2.87 d 2.81 d 1.34 a 1.02 a 1.38 a 1.72 b 1.22 a

Mn-SOD 2 1.59 b 1.80 b 1.48 a 1.09 a 1.83 b 1.87 b 1.18 a

Juglone Mn-SOD 1 2.24 c 2.61 c 2.02 c 2.21 c 2.26 c

Mn-SOD 2 2.14 c 1.54 b 1.60 b 2.19 c 1.59 b

Lawsone Mn-SOD 1 1.83 b 2.31 c 1.61 b 3.13 e 2.68 d

Mn-SOD 2 1.90 b 2.33 c 2.68 d 3.18 e 1.99 b

The activity of a separate SOD isoform band was calculated by comparing the relative band intensity to the one obtained for the Cu/Zn-SOD

standard of the defined activity of 4408 U mg�1 protein. Means followed by the same letters are not significantly different from each other

(P�0.05) according to the ANOVA and Tukey’s post hoc test. Each value stands for the mean (n¼4).
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JG. In comparison with JG, LW-treated tissues displayed
a 2 h delayed and at least two-fold higher maximum
H2O2 production (Fig. 1). In contrast, the studies with
jack bean urease that were carried out by Kot et al.
(2010) showed that the effectiveness of urease inhibition
by juglone with reference to the quantity of generated
H2O2 was 2.5 times higher than that of lawsone.
Although the time required for the induction of SOD ac-
tivity was similar for both quinones, the stimulation of
SOD activity was much more pronounced in the LW-
exposed coleoptiles. Since H2O2 is a molecule that is
involved in the regulation of the activity and expression

of ROS scavenging enzymes as a product of SOD activity
(Alscher et al. 2002), and is a substrate for peroxidases
and catalases (Mittler 2002), we considered the differ-
ences in the induction of SOD isoform activity as the
main factor that determined the level of hydrogen perox-
ide. Our results indicate that the activity of catalase in
maize coleoptiles is the main enzymatic mechanism that
is responsible for the degradation of the H2O2 that is gen-
erated under the oxidative stress induced by JG or LW
(Fig. 4). We found that exposure to both quinones re-
sulted in at least ca. a two-fold stimulation of catalase
activity, regardless of the time of exposure or the type of

Figure 3. Effect of juglone (JG) and lawsone (LW) treatment on the total peroxidase (POX) activity in maize coleoptiles. Coleoptiles were incu-
bated with the naphthoquinones (added after 2 h of segment pre-incubation) for 4 h, with or without auxin (100 mM). Values are the means
of four independent experiments. Bars indicate 6 SDs. Means followed by the same letters are not significantly different from each other
(P�0.05) according to the ANOVA and Tukey’s post hoc test.

Figure 4. Effect of juglone (JG) and lawsone (LW) treatment on the enzymatic activity of catalase (CAT) in maize coleoptiles. Coleoptiles
were incubated with the naphthoquinones (added after 2 h of segment pre-incubation) for 4 h, with or without auxin (100 mM). Values are the
means of four independent experiments. Bars indicate 6 SDs. Means followed by the same letters are not significantly different from each
other (P�0.05) according to the ANOVA and Tukey’s post hoc test.
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quinone applied. We also observed that, except for the
moment of the application of JG and LW, peroxidase ac-
tivity was not involved in the neutralisation of H2O2

(Fig. 3). It can either be assumed that the enzyme did
not participate in H2O2 scavenging or that it was in-
hibited by an elevated H2O2 concentration (Hema et al.
2007). We would rather explain the lack of an effect of
LW or JG on the peroxidase activity with its H2O2-medi-

ated inhibition rather than with direct LW or JG action.
Some experimental data indicate a greater resistance of
catalase to high H2O2 concentrations (Asada 1999;
Alscher et al. 2002). In the present study, we identified

five SOD isoforms (Cu/Zn-SOD 1, 2 and 3 as well as Mn-
SOD 1 and 2) in maize coleoptile segments. However, we
did not determine any Fe-SOD isoforms, typically as-
signed to chloroplasts (Scandalios 1993; Allen et al.
2007) [see Supporting Information—Figure S1]. Such

an observation probably results from the fact that cole-
optile segments were excised from etiolated maize seed-
lings. All five of the SOD isoforms that were identified in
the examined tissue responded to JG- and LW-induced
stress. Generally, the Cu/Zn-SOD isoforms attained the

highest enzymatic activity within the first 2 h of exposure
to quinones; afterwards, the activity gradually decreased
to a level only slightly higher than in the control cells. Cu/
Zn-SOD is primarily considered to be a cytosolic enzyme

(Allen et al. 2007); however, because it is also present in
the chloroplasts and cell wall space, we believe it is rea-
sonable to assume that both JG and LW induce oxidative
stress in the cytosolic or cell wall spaces of maize coleop-
tiles. In contrast to Cu/Zn-SOD, the highest recorded ac-

tivity of mitochondrial Mn-SOD isoforms was observed at
2 and 3 h of coleoptile exposure to JG and LW with ef-
fects of LW appearing to be more pronounced in com-
parison with JG. Since mitochondrial activity is assumed

to be the only source of metabolic energy in the tissue of
an etiolated coleoptile (Hager 2003), the elevated activ-
ity of Mn-SOD isoforms, which are associated with the
mitochondrial space, can be expected. Among all of the
SODs, Mn-SOD displayed the highest resistance to the

increased concentrations of H2O2 (Allen et al. 2007).
Moreover, due to the fact that the cytosolic space may
be the site of the modification of JG and LW (Sharma
et al. 2009) or their cross-reaction with glutathione

(Sytykiewicz 2011), the mitochondrial space might be
less susceptible to JG- or LW-mediated oxidative stress
(Hejl et al. 1993). Therefore, it is not surprising that the
induction of this isoform activity is delayed in compari-
son to the cytosol. On the other hand, since both quin-

ones may potentially interact with the compounds of the
mitochondrial electron transport chain (particularly sub-
stitute other quinones), a mitochondrion is likely to be

expected as the main target action site of

naphthoquinones.
According to Schopfer et al. (2002), the coleoptile

growth of maize seedlings is accompanied by the release

of reactive oxygen intermediates in the cell wall. These

authors found that auxin promoted the release of O2
�

and the subsequent generation of _OH when elongation

growth is induced by IAA. Moreover, their experimental

data indicated that the generation of _OH in the cell wall

causes an increase in the wall extensibility in vitro and

replaces auxin in the induction of growth. It was also

proposed that auxin not only induces cell elongation but

is also involved in the tolerance to oxidative stress (for a

review see Tognetti et al. 2012). On the one hand, auxin

can modulate ROS homeostasis by regulating H2O2 levels

(Iglesias et al. 2010), inducing ROS detoxification en-

zymes (Laskowski et al. 2002) and interacting with other

hormonal signalling networks (Sun et al. 2009; De Tullio

et al. 2010). On the other hand, the response and sensi-

tivity to auxin are affected by the redox state (Bashandy

et al. 2010). For example, an increase in ROS levels can

affect auxin biosynthesis (Woodward and Bartel 2005),

transport (Grunewald and Friml 2010) and distribution

(Pasternak et al. 2005; Santelia et al. 2008). Here, in most

cases, presence of auxin did neither affect the activity of

antioxidative enzymes nor production of hydrogen per-

oxide. In the presented experimental model, we also did

not establish any relationships between the effects of JG

or LW and presence of the applied auxin. Such an obser-

vation may be associated with the ability of JG (probably

of LW as well) to inhibit the auxin-dependent interaction

between Aux/IAA proteins (family of transcriptional

regulators) and the SCF-TIR1 complex, which in turn

blocks auxin activity (Dharmasiri et al. 2003).

Conclusions

To conclude, we found that LW was a more effective oxi-

dative stress inducer in maize coleoptile segments than

JG. It was found that JG- and LW-mediated changes in

the activity of Cu/Zn-SOD isoenzymes are the main fac-

tors that determine the amount of H2O2 that is gener-

ated in tissues that are exposed to both quinones. The

cell potential to neutralise hydrogen peroxide, which is

determined by the POX and CAT activity, points to the ac-

tivity of catalase as the main enzymatic mechanism re-

sponsible for the degradation of the H2O2 that is

generated under the oxidative stress that is induced by

JG or LW in maize coleoptiles. The results presented here

also indicate that IAA does not play any role in JG- and

LW-induced oxidative stress in maize coleoptiles.
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