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Abstract

Exploration of dynamic processes in proteins and nucleic acids by spin-locking NMR experiments 

has been facilitated by the development of theoretical expressions for the R1ρ relaxation rate 

constant covering a variety of kinetic situations. Herein, we present a generalized approximation to 

the chemical exchange, Rex, component of R1ρ for arbitrary kinetic schemes, assuming the 

presence of a dominant major site population, derived from the negative reciprocal trace of the 

inverse Bloch-McConnell evolution matrix. This approximation is equivalent to first-order 

truncation of the characteristic polynomial derived from the Bloch-McConnell evolution matrix. 

For three- and four-site chemical exchange, the first-order approximations are sufficient to 

distinguish different kinetic schemes. We also introduce an approach to calculate R1ρ for linear N-

site schemes, using the matrix determinant lemma to reduce the corresponding 3N × 3N Bloch-

McConnell evolution matrix to a 3 × 3 matrix. The first- and second order-expansions of the 

determinant of this 3 × 3 matrix are closely related to previously derived equations for two-site 

exchange. The second-order approximations for linear N-site schemes can be used to obtain more 

accurate approximations for non-linear N-site schemes, such as triangular three-site or star four-

site topologies. The expressions presented herein provide powerful means for the estimation of Rex 

contributions for both low (CEST-limit) and high (R1ρ-limit) radiofrequency field strengths, 

provided that the population of one state is dominant. The general nature of the new expressions 

allows for consideration of complex kinetic situations in the analysis of NMR spin relaxation data.
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Introduction

Dynamic processes in proteins and nucleic acids can be studied using various techniques in 

nuclear magnetic resonance (NMR) spectroscopy [1]. Nuclear spin relaxation in the 

presence of a radiofrequency (rf) field is characterized by the rotating-frame R1ρ and R2ρ 
relaxation rate constants. Rotating-frame relaxation measurements can be used to study 

conformational and chemical processes that range from slow to fast on the chemical shift 

time scale [2]. In particular, spontaneous inter-conversion between different protein 

structures, ligand-binding events, chemical reaction kinetics, and protein folding processes 

that occur with rate constants between 10 and 105 s−1 can be probed by R1ρ experiments 

with rf field strengths ranging from Hz (CEST-limit) to kHz (R1ρ-limit) [2, 3]. Most 

analyses of experimental data have assumed two-state exchange kinetics, but examples 

featuring three-site [4, 5], four-site [6, 7] and other [8] topologies illustrate the need to 

provide theoretical insight into more complex kinetic schemes.

Exact numerical solutions for R1ρ can be obtained by numerical integration of the Bloch-

McConnell differential equation or by calculation of the largest (least negative) real 

eigenvalue of the Bloch-McConnell evolution matrix and elegant fast numerical algorithms 

have been described [9]. However, analytic expressions for R1ρ facilitate understanding of 

the relationship between model parameters and the phenomenological relaxation rate 

constant and can lead to new methodological advances. For example, first-order expressions 

show the importance of the minor state resonance frequency when exchange is not fast [10] 

and the effect of differential relaxation (from processes other than chemical exchange) of the 

major and minor states [2, 11]. As another example, the perturbation treatment of N-site 

exchange mechanisms provides insight into the reduction of complex exchange schemes to 

simpler ones if exchange within subgroups of states is fast compared to exchange between 

subgroups [12]. In addition, analytic solutions allow straightforward symbolic differentiation 

with respect to model parameters. The obtained derivatives can be used in gradient-based 

minimization procedures, such as the Levenberg-Marquardt algorithm, to find optimal 

parameters more efficiently than possible with either numerically estimated derivatives, or 

non-gradient-based methods, such as grid-search or simplex routines.

Analytical solutions for R1ρ for two-state exchange outside the fast-exchange limit were 

obtained previously by finding the least negative (smallest magnitude) real root of the 

characteristic sixth-order polynomial derived from the Bloch-McConnell evolution matrix. 

An approximation retaining only the two lowest-order terms (first order in the eigenvalue) is 

valid for highly skewed site populations [10, 11]. The Laguerre approximation to a second-

Koss et al. Page 2

J Magn Reson. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



order truncation of the sixth-order characteristic polynomial is more accurate than the first-

order treatment for site populations that are less skewed [13]. In an alternative approach, the 

relevant 6 × 6 Bloch-McConnell matrix for the two exchanging magnetization vectors is 

reduced to a 3 × 3 matrix describing evolution of the average magnetization. The average 

magnetization approach yields expressions of similar accuracy as the Laguerre 

approximation, but somewhat increased algebraic complexity [14]. The average-

magnetization approach also yields analytical, although complex, expressions for R1ρ for a 

general N-site exchange mechanism (vide infra). Compact analytical solutions for N-site 

schemes can be obtained by perturbation theory applied to the 3N × 3N Bloch-McConnell 

evolution matrix [12]. The general solution obtained from this approach is valid only if one 

of the N populations is highly dominant. While most treatments of R1ρ have assumed a 

constant-amplitude rf field, the theoretical and experimental results have been extended to 

time-varying adiabatic sweeps of the rf field [9, 15–18].

Herein, we present a general approach to obtain first-order approximations for R1ρ, which 

are valid for any kinetic scheme in which one site is sufficiently highly populated. 

Furthermore, we introduce an approach to reduce the 3N × 3N Bloch-McConnell matrix for 

any linear exchange scheme to a 3 × 3 matrix by repetitive use of the matrix determinant 

lemma.

Theory

The Bloch-McConnell equation is

(1)

in which M(t) = [M1(t), …, MN(t)]T, Mj(t) = [Mxj(t), Myj(t), Mzj(t)]T, and N is the number 

of exchanging states. The evolution matrix has the form:

(2)

in which,

(3)
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(4)

0 and I are the zero and identity matrices, respectively, with dimensions set by context (3 × 3 

in Eq. 2); δj = j− ωrf is the resonance offset frequency, j is the resonance frequency, and R1j 

and R2j are the longitudinal and transverse relaxation rate constants in the absence of 

exchange, respectively, for spins in the jth site; ωrf and ω1 are the frequency and amplitude 

(measured in frequency units; termed the Rabi frequency) of the rf spin-lock field;  and 

 are the population-averaged longitudinal and transverse relaxation rate constants in the 

absence of exchange; and  is assumed. The elements of the N × N kinetic rate 

matrix k are kjn, the (pseudo) first-order rate constant for transitions from state j to state n (j 
• n) and

(5)

The formal solution to the Bloch-McConnell equation is given by:

(6)

in which |ui〉 and λi are the right eigenvectors and eigenvalues of the Bloch-McConnell 

evolution matrix.

In a typical measurement of R1ρ, initial magnetization is aligned along a tilted rotating frame 

of reference, yielding Mj(0) ∝ pjv, in which pj is the equilibrium population of the jth state, v 

= [sinθ, 0, cosθ]T, tan θ = ω1/ΔΩ, and  is the population-average resonance 

offset frequency. In turn, the spin-locked z-magnetization in the tilted frame of reference 

following the relaxation period is M′z(t) = dM(t) in which d = [v, …, v] is a 1 × 3N row 

vector. If p1 → 1, perturbation theory shows that |u1> → [v, 0, …, 0]T; consequently, the 

decay of the spin-locked magnetization is highly monoexponential with damping constant 

λ1 (which will be simply called λ in the following) [12]. If |u1> diverges from [v, 0, …, 0]T, 

then contributions from other eigenvalues contribute to the magnetization decay. In such 

cases, the magnetization decay contains oscillatory components, arising from complex 

eigenvalues, but inhomogeneity of the B1 field suppresses these contributions, particularly 

for long relaxation times (such as those used in CEST experiments). The ideal result that |
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u1> → [v, 0, …, 0]T, i.e. yielding negligible contributions from other eigenvalues, also is 

approached for larger values of the exchange rate constants, the resonance offset, and the 

spin-lock field (vide infra). The effects of dispersion of the eigenbase relative to the tilted 

frame are reduced if the site magnetizations are aligned with their own tilted frames, defined 

by tanθj = ω1/ΔΩj, as would be obtained by an adiabatic sweep shorter than the jump time 

between states. Broadly speaking, the assumption that the R1ρ relaxation can be described 

by a monoexponential decay is more accurate with off-resonance irradiation, larger 

exchange kinetic rate constants, larger ω1 and with relatively larger population of the 

dominant chemical state.

The R1ρ relaxation rate constant therefore can be defined to be the negative of the largest 

(least negative) real eigenvalue of the evolution matrix, i.e. R1ρ = −λ. The eigenvalues are 

given by the zeros of the characteristic polynomial:

(7)

in which |A| is the determinant and Tr[A] is the trace of the matrix A, respectively. The last 

line is obtained assuming that the magnitude of the desired eigenvalue is small. With the 

aforementioned definition of R1ρ we then obtain

(8)

When values of R2j are small, the above expression can be simplified to first-order in R by 

the following:

(9)

Solving this equation for λ and using Eq 4 gives,

(10)

in which
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(11)

(12)

and is the largest negative real eigenvalue of L + K in Eq. 11. For two-state exchange, Eq. 

10 is identical to Eq. 5 of Baldwin and Kay [11]. If  for all j, Eq. 10 reduces to Eq. 

11 in Trott and Palmer [10] and Eq. 9 in Baldwin and Kay [11]. In addition, if the population 

of the dominant site is large, then Eq. 12 simplifies to

(13)

so that

(14)

Equations 10–14 are the major results of this work. The approximations leading to these 

equations are accurate if 1/λ dominates the sum of the inverses of the other eigenvalues for 

L + K and L + R + K because for a matrix A, . As discussed elsewhere 

[19], the conditions for which this approximation holds depends in general on all the 

parameters in Eq. 1, but usually is met if one of the sites is sufficiently more highly 

populated than the other N − 1 sites. Expressions obtained from Eqs. 10–14 for N-site 

exchange (N > 2) are more complex than those obtained using the perturbation approach of 

Trott and Palmer [12], but are accurate for a larger range of site populations. Crucially, the 

matrix traces and inverses in these expressions do not need to be expanded algebraically for 

analysis of experimental data because the necessary derivatives with respect to model 

parameters can be obtained symbolically, as shown in Supplementary Material III (S16–

S23).

The above first-order approach can be extended in accuracy by considering the evolution of 

the average magnetization, rather than the N individual magnetization vectors. As shown by 

Trott and coworkers [14], the evolution equation for the average magnetization <M>(t) 
under the steady-state approximation is:
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(15)

in which 〈Lk〉 is the 3 × 3 population average of the N individual site matrices

(16)

and rows 2, …, N of U are orthogonal. The blocks F2, F3, and F4 have dimensions 3 × 3(N 

−1), 3(N −1) × 3, and 3(N − 1) × 3(N − 1), respectively. Using the above ansatz,

(17)

leading to:

(18)

from which R1ρ can be obtained using Eqs. 10 or 14.

Two-site chemical exchange

For two-site exchange between sites A and B, Eq. 10 yields the expression of Baldwin and 

Kay [11] and Eq. 11 yields the original expression (Eq. 24) of Trott and Palmer [10]:

(19)

in which Δω = ΩB − ΩA, , , and kex = k12 + k21. The average 

magnetization approach (Eq. 18) gives

(20)

which is identical to Eq. 74 of Trott et al. [14]. Equation 20 approaches Eq. 19 as pB → 0.
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Recently, we showed that the R1ρ relaxation rate constant for two-site exchange could be 

reduced to the reciprocal of the trace of a 3 × 3 matrix [20]. This derivation is reproduced 

below, in slightly more compact form to motivate the subsequent treatment of chemical 

exchange in linear chains with three or more sites. The exchange matrix K is rank-deficient 

and can be factored as:

(21)

As before, the eigenvalues of L + K are determined by equating the characteristic 

polynomial to 0:

(22)

in which the last line is obtained using the matrix determinant lemma. A series of 

manipulations that utilize the block structure of L yields:

(23)

in which

(24)

(25)
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The right-hand side of the last line of Eq. 23 now is the determinant of a matrix with 

dimension 3 × 3, rather than 6 × 6 as in the starting expression. As above, when λ is small in 

magnitude, the determinant can be expanded to first order in λ and solved to yield

(26)

Substituting Eq. 25 into Eq. 26 yields:

(27)

as a first-order approximation and yields a result identical to that obtained from Eq. 11 and 

shown in Eq. 19.

Unlike Eq. 11, the determinant of the last line of Eq. 23 can be expanded to second order in 

λ to give

(28)

in which M1(A) is the first minor of the matrix A. The Laguerre approximation of the root 

of Eq. 28 gives:

(29)

For two-site exchange schemes, X, Y and Z from Eq (25) are substituted into Eq. 29. This 

result can be expanded to show that this is an expression for two-site exchange identical to 

the second-order approximation of Miloushev and Palmer and is more accurate than Eqs. 8 

or 11:

(30)

R1ρ can be obtained by substituting Rex from Eq. 30 into Eqs. 10 or 14. For a significantly 

large R1ρ contribution at = 0 (for example, for large ω1 or ), Eq. 14 is preferred.
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Three-site chemical exchange

We next consider the linear three-site exchange mechanism:

(31)

in which the evolution matrix has the form:

(32)

If pA >> pB and pA >> pC, then the N-site perturbation formalism of Trott and Palmer [12] 

yields the compact expression:

(33)

The first-order expressions for Rex and R1ρ are obtained by substituting Eq. 32 into Eqs. 10–

14. For completeness, the average magnetization approach defines the matrix U for a three-

site scheme as:

(34)

from which the average magnetization expression for R1ρ is obtained from Eqs. 15–18. The 

resulting expanded first-order and average magnetization expressions are lengthy and not 

reproduced here.

In light of the above derivation for two-site exchange, the exchange matrix in Eq. 32 can be 

factored as:

(35)

By use of the matrix determinant lemma,
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(36)

The second matrix on the last line of Eq. 36 can be factored as

(37)

so that a second application of the matrix determinant lemma gives:

(38)

The determinant of the 9 × 9 original Bloch-McConnell matrix has now been reduced to the 

determinant of a 3 × 3 matrix, once again. The products are expanded to obtain a polynomial 

in λ:

(39)

Keeping only the two lowest-order terms, we immediately obtain first- and second-order 

approximations by substituting X, Y and Z into Eqs. 26 and 29:
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(40)

The first-order approximation is identical to that obtained from Eq. 11.

Four-site chemical exchange

The four-site linear kinetic scheme is

(41)

The exchange matrix again is factorizable:

(42)

As shown in Supplemental Material I (Eqs. S1–S5), three successive applications of the 

matrix determinant lemma again reduces the 12 × 12 dimensional problem to the 

determinant of a 3 × 3 matrix, yielding:

(43)

which can be substituted into Eqs. 26 and 29 to give the first- and second-order expressions 

for λ.

Triangular and more complex kinetic schemes

The triangular (all-with-all) three-site kinetic scheme has the kinetic matrix:
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(44)

in which K0 is the kinetic rate matrix for the linear system. The first-order approximation of 

the eigenvalue according to Eq. 11 is then:

(45)

Additional insight is obtained by using the factorization of the matrix K. The Woodbury 

formula for the matrix inverse gives the result:

(46)

in which

(47)

Therefore, the first-order approximation for the triangular state is:

(48)

using only the first-order approximation of Rex for the linear system. If exchange between 

sites B and C (not part of the linear fragment) is slow, compared to exchange with site A, 

then the simplification

(49)

is obtained; this is the “weak minor site exchange” limit [12].
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As shown in Supplemental Material II (Eqs. S6–S15), the modified expression:

(50)

which is called Woodbury approximation herein, leads to increased accuracy if the boundary 

condition

(51)

is satisfied. However, replacing both first-order approximation terms for the linear system 

with second-order approximations is not as accurate. The boundary condition implies that 

high accuracy of the linear approximations relative to that of the triangular first-order 

approximation yields a more accurate Woodbury approximation.

More complex kinetic schemes are also accessible using this approach because the 

Woodbury formula can be use in a nested manner:

(52)

Therefore, the Woodbury approximation for complex kinetic schemes is

(53)

The same boundary condition as above applies. In using the Woodbury approximation, K 
can only be replaced by K0 + UVT if the number of sites in K0 and K are identical. An 

example for a scheme where this is not immediately possible would be the star four-site 

scheme (three minor sites in exchange with one central major site). However, minimally 

occupied pseudo-sites that rapidly exchange with a site with an identical offset can be 

introduced as necessary (vide infra).
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Results

The accuracy of the above theoretical expressions for the R1ρ relaxation rate constant was 

tested for selected values of the model parameters for two-, three-, and four-site kinetic 

schemes. Illustrative results are presented in Figures 1–3, respectively and additional figures 

are given in Supplemental Information.

The dependence of the Rex contribution to R1ρ on the chemical exchange rate constant kex = 

k12 + k21 and on the rf frequency offset for two-site exchange is illustrated in Figure 1 for 

the extreme case with pA = pB = 0.5. The accuracy of the expressions increases from the 

first-order result (Eqs. 11 or 19), to the average magnetization result (Eq. 20), and to the 

second-order Laguerre result (Eqs. 29 or 30). These results are consistent with those 

obtained in the original publications describing these theoretical expressions [10, 13, 14].

For the example presented in Fig. 1, the largest negative eigenvalue dominates the inverses 

of the other eigenvalues, as illustrated in Figure S1. However, the first-order approximations 

given in Eqs. 8, 10 and 14 differ in the treatment of relaxation by mechanisms other than 

chemical exchange. If the values of R2j vary substantially between sites, Eqs. 8 or 10 are 

more accurate than Eq. 14. Equation 14 is more accurate than Eqs. 8 or 10 if  or 

for a significantly large R1ρ contribution at = 0 (for example, for large ω1 or ). 

Furthermore, as shown in the example in Figure 2, the higher powers of R that contribute to 

Eq. 8 reduce accuracy slightly compared to the truncated first-order expression of Eq. 10. 

Thus, Eqs. 10 or 14 are the preferred first-order approximations for practical use.

The dependence on the rf frequency offset of the Rex contribution to R1ρ is shown in Figure 

3 and Supplemental Information Figures S2 – S4 for a linear three-site kinetic scheme. 

Results are shown for values of ω1 between 50 s−1, which corresponds to values that would 

be used in CEST experiments, to 1250 s−1, which corresponds to values that would be used 

in relaxation dispersion experiments. As shown previously using the N-site perturbation 

approach [12], local maxima in Rex (which would correspond to local minima in CEST 

experiments) are obtained when the rf frequency is resonant with the frequencies of the 

sparsely populated states. The widths of the profiles around the local maxima depend on the 

kinetic rate constants and the strength of the ω1 field [12]. Consequently, in the fast-

exchange limit, discrimination between sites becomes increasingly difficult; in this limit, Rex 

depends only on the offset relative to the average chemical shift (Figure S2). Congruent with 

the results for two-site exchange, the second-order results are more accurate than the first-

order ones. However, as shown in Figures 3 and S3, for skewed populations, the main region 

of difference between results for first- and second-order approximations is near resonance 

with the major species. Both first- and second-order expressions for Rex become less 

accurate as the site populations become less highly skewed (Fig. 2). The second-order 

approximation for Rex is also accurate when the time scales of the two exchange regimes in 

the three-site linear kinetic scheme are distinct (k12+k21 = 200 s−1, k13+k31 = 5000 s−1, 

Figure S3).

Not only for first-order approximations, but also for the other approximations introduced 

herein, R1ρ is in practice best obtained from Rex by adding Reff (from Eqs. 12 or 13) to sin2θ 

Koss et al. Page 15

J Magn Reson. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rex. Figure S4 compares various second-order approximations for R1ρ, exemplified for the 

linear three-state kinetic scheme. Rex is obtained from Eqs. 29 and 40, and then substituted 

into either Eq. 10 or Eq. 14. In order to include terms that are of higher order in R, a second 

order approximation based on L + R + K, rather than L + R, was also used by replacing 

with  in Eq. 40. Eq. 14 is more accurate if the values of R2k do not vary substantially 

between sites and if the R1ρ contribution at = 0 is large. Such large R1ρ is obtained for 

higher amplitude ω1 fields, much higher population of the dominant site, or . Eq. 10 

is more accurate in most other cases. Using an untruncated second-order approximation 

based on L + R + K, which does not use Reff and includes higher-order R terms, usually is 

not more accurate than the second-order R1ρ approximations from Eqs. 10, 29 and 40. The 

second-order approximation from Eqs. 11, 29 and 40 is accurate even if no major population 

is present (Fig. S4, pA = pB = pC = 0.33); however, accuracy is lower than that obtained if 

one population is dominant. The assumption that R1ρ is identical to the largest negative 

eigenvalue will obtain only with the appropriate combination of other parameters, as 

discussed above. In the given example, the contribution of the largest negative eigenvalue to 

the magnetization decay t = 0 s and = 0 s−1 is only 83%, mostly due the presence of negative 

complex eigenvalues (using Eq. 6, similar to Fig. S1).

The dependence of the Rex contribution to R1ρ on the rf frequency offset is shown in Figure 

4 for a linear four-site kinetic scheme, a four-site star-like scheme, and a four-site kite-like 

scheme with one dominant site population pA = 0.90 in all cases. As above, results are 

shown for values of ω1 between 50 s−1 and 1250 s−1. The values of Rex are very sensitive to 

the presence or absence of kinetic exchange between two minor sites, as illustrated in Figure 

4 by comparing the star-like and kite-like topologies. In addition, as previously noted [12], 

fast averaging within a subset of sites can lead to a Rex profile with an apparent reduction in 

the number of discernable “effective sites”. This phenomenon is frequently of practical 

importance in reducing N-site kinetic schemes to simpler apparent topologies. For example, 

in studies of protein folding, fast averaging amongst conformations in the unfolded 

ensemble allows a two-state-like description of exchange between a folded and a “random-

coil-like” effective unfolded state [21]. As another example, fast averaging amongst side 

chain rotameric states with different populations (a 2M-site model in which M is the number 

of rotamers) results in an effective two-state-like model termed population-shuffling [8].

The Woodbury approximation can be used to obtain improved estimates of Rex for complex 

N-site schemes by combining second- and first-order linear N-site approximations with 

coupling factors for the nonlinear interchanges between sites. The Woodbury approximation 

is often, but not always more accurate than the first-order expression, which is exemplified 

by Rex profiles for the triangular three-state scheme (Figure S5). The values of the kinetic 

rate constants for the non-linear part of the scheme changes the relative accuracy of the two 

approximations. The accuracy of the Woodbury approximation also depends on which 

components of the kinetic scheme are chosen as the linear fragment, as demonstrated for the 

triangular three-state scheme (Figure 5). Excluding the slowest exchange process in the 

scheme from the linear fragment leads to the highest accuracy of the Woodbury 

approximation. If this exchange process is much slower than the processes in the linear 

fragment, the Woodbury approximation can be reduced further using Eq. 49. In the example 
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given for the kite-like four-state scheme (Figure 4), the Woodbury approximation from Eq. 

50 is more accurate than the first-order approximation. The Woodbury approximation also is 

accurate when the populations are not skewed (Figure S6). The possibility to substitute any 

N-site linear scheme by an (N+1)-site scheme is illustrated for the triangular scheme in 

Figure S7. This gives access to Woodbury approximations for N-site schemes from which a 

N-site linear sub-scheme cannot be readily extracted.

Discussion and Conclusion

The perturbation approach of Trott and Palmer [12] provides simple closed-form 

approximations for R1ρ when the population of one site is much greater than the populations 

of the others (typically pA > 0.90, depending on other parameters). The main result obtained 

herein is a first-order approximation of R1ρ for any kinetic scheme. For linear kinetic 

schemes, the matrix determinant lemma can be used to reduce the determinant of the 3N × 

3N Bloch-McConnell matrix to the determinant of a 3 × 3 matrix polynomial. This latter 

approach leads to both first- and second-order approximations of R1ρ. The first-order 

expressions of Eqs. 8, and 10 and the second-order expressions of Eq. 29 for linear chains 

are more accurate than the expressions obtained from the perturbation approach when the 

population of the major state is less dominant. The first-order approximation of the 

eigenvalue of the evolution matrix for the average magnetization (Eq. 18) yields expressions 

for R1ρ that have accuracies between the first- and second-order expressions. For these and 

other N-site kinetic schemes, the first-order analysis described above in Eq. 10 frequently 

provides analytical solutions that are accurate enough to differentiate between different 

kinetic scenarios provided that the site populations are skewed. Expansion of matrix trace 

expressions or inverse operations in these equations is not required for use in fitting 

procedures, as illustrated in Supplemental Material III (Eqs. S16–S23).

The above procedure based on the matrix determinant lemma can be extended to even longer 

N-site linear chains; however, the resulting second order expressions are increasingly 

complex and little insight is gained over the first-order expression of Eq. 10. The theoretical 

approach presented for determining a second-order approximation for R1ρ from a reduced 3 

× 3 matrix yields convenient results only for linear chains. The triangular three-site 

exchange mechanism and the four-site kite mechanism (Figure 4) have exchange matrices 

that do not permit factorization to a useful form for application of the matrix determinant 

lemma. The four-site star mechanism (Figure 4) has an exchange matrix with a simple 

factorization, but commutation properties of the matrices (Lj − λ) prevent needed 

simplifications as obtained for linear chains.

A combination of first- and second-order R1ρ approximations for linear schemes can be used 

to approximate R1ρ for non-linear schemes. This approximation is obtained by the 

Woodbury decomposition of the inverse of the matrix L + K and can in principle be obtained 

for (almost) any kinetic scheme. However, the accuracy of the Woodbury approximation 

depends on the particular decomposition of the kinetic scheme and on the relative 

contributions of the various components that contribute to Rex. The best Woodbury 

approximation is obtained if the slowest exchange processes are not included in the linear 
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fragment; the accuracy of the Woodbury approximation is comparably high also for 

unskewed populations.

In conclusion, a remarkably simple first-order analytic approximation to the R1ρ relaxation 

rate constant is obtained from the trace of the inverse of the Bloch-McConnell evolution 

matrix for N-site chemical exchange with arbitrary topology. For linear chains, second-order 

approximations of higher accuracy also are derived by application of the matrix determinant 

lemma. Second-order solutions for linear schemes can be used in many circumstances to 

increase the accuracy of expressions for R1ρ in related non-linear kinetic schemes. The 

present results extend existing results for two-state chemical exchange to complex kinetic 

schemes and will be powerful in interpretation of numerous spin-locking NMR experiments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Analytical expressions for the R1ρ relaxation rate for arbitrary kinetic 

schemes

• Expressions for R1ρ with increased accuracy for linear N-site kinetic 

schemes

• Examples for linear, triangular three-site, kite- and star-like kinetic 

mechanisms
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Figure 1. 
Approximations to the Rex contribution to R1ρ for two-site chemical exchange. (Solid) 

Numerical calculation of Rex = −λ/sin2θ from the least negative real eigenvalue of the 6 × 6 

evolution matrix, (dashed) calculation from the second-order approximation from Eqs. 25 

and 29, (dotted) calculation from the average magnetization approximation from Eq. 30, 

(dashed-dotted) calculation from the first-order approximation from Eq. 11, which is 

equivalent to Eq. 19. The inset exemplifies regions in which the results of the calculations 

differ. (a) Exchange rate, kex = k12+k21, dependence of the Rex contribution to R1ρ. 

Parameters used for the calculation were pA = 0.5, pB = 0.5, ω1 = 1000 s−1, ΩB − ΩA = 1000 

s−1, and Ω = 1000 s−1. (b) Offset dependence of the Rex contribution to R1ρ. Parameters used 

for the calculations were pA = 0.5, pB = 0.5, ω1 = 1000 s−1, ΩB − ΩA = 1000 s−1, and kex = 

k12 + k21 = 1000 s−1.
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Figure 2. 
Approximations of R1ρ for two-site chemical exchange. (a) (Solid) Numerical calculation of 

the least negative real eigenvalue of the 6 × 6 evolution matrix, (dashed) calculation from the 

first-order (in) approximation, based on L + K + R (Eq. 8); (dotted) calculation from the 

first-order (in) approximation, based on L + K + R, and truncated to first order in R (Eq. 

10), as also previously provided by Trott and Palmer [10] and Baldwin and Kay [11]; 

(dashed-dotted) calculation from the first-order approximation, based on L + K (Eq. 14). 

Parameters used for the calculations were R1 = 1.5 s−1, R2 = 11 s−1, pA = 0.5, pB = 0.5, ω1 = 

1000 s−1, ΩB − ΩA = 1000 s−1, and kex = k12 + k21 = 1000 s−1. (b) (solid) Numerical 

calculation of the least negative real eigenvalue of the 6 × 6 evolution matrix; (dashed) 

calculation from the second-order approximation from Eqs. 14, 25 and 29; (dotted) 

calculation from the first-order (in) approximation, based on L + K + R (Eq. 8); (dashed-

dotted) calculation from the first-order approximation, based on L + K (Eq. 14). Parameters 

used for the calculations were R1 = 1.5 s−1, R2 = 11 s−1, pA = 0.5, pB = 0.5, ω1 = 500 s−1, 

ΩB − ΩA = 2400 s−1, and kex = k12 + k21 = 250 s−1.
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Figure 3. 
Offset dependence of the Rex contribution to R1ρ for linear three-site exchange for varying 

major populations in the weak field limit (pA = 0.94, pA = 0.85, pA = 0.7 and pA = 0.52, as 

indicated). (Solid) Numerical calculation of Rex = −λ/sin2 θ from the least negative real 

eigenvalue of the 9 × 9 evolution matrix, (dashed) calculation from the first-order 

approximation from Eq. 11, and (dotted) calculation from the second-order approximation 

from Eqs. 29 and 40. The inset exemplifies a region in which the results of the calculations 

differ. To center the graph, parameters were chosen so that δA = ΔΩ. Parameters used for the 

calculations were pB = 2(1− pA)/3, pC = (1−pA)/3, k12+k21 = 50 s−1, k13 +k31 = 100 s−1, ω1 

= 50 s−1, ΩB − ΩA = 200 s−1, and ΩC − ΩA = −400 s−1.
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Figure 4. 
Approximations of the Rex contribution to R1ρ for 4-state chemical exchange schemes. 

Three different kinetic situations (illustrations at the top of the columns) have been analyzed, 

star-like four-state scheme (left column), kite-like four-state scheme (middle column), linear 

four-state scheme (right column). The calculations have been performed at the different 

irradiating fields, ω1 = 50 s−1 (top row), ω1 = 500 s−1 (middle row), ω1 = 1250 s−1 (bottom 

row). (Solid) Numerical calculation of Rex = −λ/sin2θ from the least negative real 

eigenvalue of the 12 × 12 evolution matrix, (dashed) calculation from the first order 

approximation from Eq. 11, (dotted, linear scheme) calculation from the second-order 

approximation from Eqs. 29 and 40, (dotted, kite scheme) calculation from the Woodbury 

approximation from Eq. 50. The insets exemplify regions in which the results of the 

calculations differ. To center the graph, parameters were chosen so that δA = ΔΩ. Parameters 

used for all calculations were pA = 0.95, pB = 0.05, pC = 0.025, pD = 0.005, k12+k21 = 140 
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s−1, k13+k31 = 350 s−1, ΩB − ΩA = −850 s−1, ΩC − ΩA = 2550 s−1, and ΩD − ΩA = −4250 s−1. 

Additional parameters used depending on exchange scheme: k34+k43 = 700 s−1 and k14+k41 

= 350 s−1.
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Figure 5. 
The Woodbury approximation of the Rex contribution to R1ρ in the triangular three-state 

chemical exchange situation depends on how the linear fragment for the approximation is 

chosen. (Solid) Numerical solution of Rex = −λ/sin2θ from the least negative real eigenvalue 

of the 9 × 9 evolution matrix, (dashed) first-order approximation (Eq. 11) and (dotted) 

Woodbury approximation (Eq. 50). To center the graph, parameters were chosen so that δA = 

ΔΩ. Parameters used for all calculations were pA = 0.9, pB = 0.05, pC = 0.05, k12 +k21 = 500 

s−1, k13+k31 = 50 s−1, k23+k32 = 20 s−1, ω1= 350 s−1, ΩB − ΩA = 4250 s−1, and ΩC − ΩA = 
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−4250 s−1. The kinetic scheme is shown in each panel (black: linear fragment; grey: non-

linear fragment). Linear fragments are (top) A-B-C, (middle) A-C-B, (bottom) C-A-B. The 

Woodbury approximation fits best when the slowest exchange process is chosen as the 

nonlinear fragment.
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