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Abstract

The all-atom additive CHARMM36 protein force field is widely used in molecular modeling and 

simulations. We present its refinement, CHARMM36m (http://mackerell.umaryland.edu/

charmm_ff.shtml), with improved accuracy in generating polypeptide backbone conformational 

ensembles for intrinsically disordered peptides and proteins.

There is increasing interest in intrinsically disordered peptides and proteins (IDPs) due to 

their abundance and functional importance in eukaryotes, as well as their association with 

various human disorders ranging from cancer to neurodegenerative diseases. Rather than 

folding into a single, well-defined three-dimensional structure, an IDP fluctuates between an 

ensemble of interconverting conformational states, which allows some IDPs to interact with 

several different binding partners, thereby functioning in protein-protein interaction 

networks.1 Experimental characterization of conformational ensembles of IDPs is 

challenging; assistance from computer simulations is often needed, as the number of degrees 

of freedom of an IDP far exceed the number of available experimental observables.2 Recent 

advances in hardware and software allow molecular simulations to reach relevant timescales 

for sampling IDP conformations, but a major limiting factor lies in the accuracy of their 

underlying models, typically empirical force fields (FFs).3 Protein FFs were mostly 

developed targeting folded proteins and their accuracy in modeling IDPs needs to be 

scrutinized and improved.4-6
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In a recent benchmark study on the structural ensembles of a disordered arginine/serine (RS) 

peptide obtained with different force fields, the CHARMM36 (C36) protein FF7 was found 

to generate a high population of left-handed α-helix (αL), inconsistent with nuclear 

magnetic resonance (NMR) and small-angle X-ray scattering (SAXS) experimental 

measurements. We now present an improved C36 FF based on a refined backbone CMAP 

potential8 derived from reweighting calculation (Online Methods) and a better description of 

specific salt bridge interactions (Online Methods). We validate the modified FF, 

CHARMM36m (C36m), using a comprehensive set of 15 peptides and 20 proteins with a 

cumulative simulation time of more than 500 μs (Supplementary Table 1).

The sampling of αL helical conformations in IDP ensembles generated with the C36m FF is 

significantly reduced compared to C36, as we demonstrated for four IDPs including the RS 

peptide, the FG-nucleoporin (FG) peptide, a hen egg white lysozyme N-terminal fragment 

(HEWL19) and the N-terminal domain of HIV-1 integrase (IN) (Table 1). The average αL 

propensity of non-Gly, non-Pro residues for these four IDPs changes from 20.0% to 5.7%, 

much closer to the value of 5.1% from protein coil libraries.9 With the bias towards αL 

sampling removed, the C36m FF generates molecular dynamics (MD) ensembles that 

improve the prediction of experimental observables, for example the NMR scalar couplings 

for the central alanine residues in the HEWL19 peptide (Supplementary Table 2). The 

ensemble obtained with C36m for the RS peptide is in significantly better agreement with 

NMR data (J couplings, chemical shifts, and hydrodynamic radius) compared to the RS 

peptide ensemble obtained with C36 (Supplementary Table 3 and 4). In addition, the 

predicted SAXS profile from the C36m ensemble of the RS peptide agrees within error with 

the experimental SAXS curve (Figure 1), indicating good agreement between computed and 

measured chain dimensions.

We tested secondary structure sampling for a number of model peptides. The fraction of 

right-handed α helices in the Ac-(AAQAA)3-NH2 peptide simulated with the C36m FF 

equals 17%, which is larger than the C36 result of 13% and closer to the NMR estimate of 

~19% and ~21% at 300 K (Supplementary Fig. 1 and Supplementary Table 5). We carried 

out folding simulations of four β-hairpins (GB1, chignolin, CLN025 and Nrf2); starting 

from unfolded, fully extended conformations, native-like β-hairpin structures were sampled 

for all four peptides (Supplementary Fig. 2, 3, 4 and 5). For the GB1 β-hairpin, the MD 

ensembles generated by the C36m and C36 FFs were found to be very similar 

(Supplementary Fig. 2 and 3) and consistent with NMR estimate of the folded state 

population.10 However, the folded state populations of chignolin and CLN025 are 

significantly lower than the NMR estimates (Supplementary Table 6), indicating that the 

C36m FF may underestimate the stability of some β-hairpins.

To directly compare to previous C36 results,11 we tested C36m by simulating polyglutamine 

(polyQ) peptide, an IDP with relatively compact collapsed states due to the hydrogen 

bonding interactions between polar side chains. Similar to the C36 results, the 30-residue 

polyQ peptide (Q30) was disordered during 98% of the simulation time. On average, 7% of 

φ/ψ torsion angles were in the αL region with C36m. A broad conformational ensemble was 

sampled with the most favorable states being relatively compact (first major minimum at the 

end-to-end distance of 25 Å) (Supplementary Fig. 6). Extrapolation of fluorescence 
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resonance energy transfer (FRET) measurements of shorter polyglutamine peptides12 to a 

length of 30 residues leads to an estimate of end-to-end distance of 25 Å, which compares 

favorably with the C36m simulation results.

We also tested C36m in modeling the kinetics of protein dynamics with the disordered Ac-

C(AGQ)nW-NH2 peptides. The C-terminal tryptophan of C(AGQ)nW peptides can be 

optically excited into the triplet state, with the rate of quenching of that state due to contact 

formation with the N-terminal cysteine corresponding to the rate of loop closure.13, 14 The 

decay of triplet survival probabilities calculated from MD simulations compares favorably 

with experiments for four C(AGQ)nW peptides with n = 1-4 at 293 K (Supplementary Fig. 

7). The computed loop closure rates, and both their diffusion-limited parts and reaction-

limited parts, agree with experiments for shorter peptides (n=1-2) (Supplementary Table 

7).14 The calculated diffusionlimited rates for longer peptides (n=3-4) are higher than 

experimental estimations, indicating the simulation ensembles being too collapsed.

We also validated C36m using 15 different folded proteins. All were stable during the 1 μs 

simulation time (Supplementary Fig. 8), and the distribution of backbone φ, ψ dihedral 

angles from these simulations closely resembles the Ramachandran plot of the “top500” 

protein structures15 (Supplementary Fig. 9), indicating the high quality of the C36m FF in 

treating the backbone conformational properties of folded proteins. NMR observables of 

ubiquitin computed from microsecond MD simulations with the C36m FF correlate well 

with both the C36 results and experimental data (Supplementary Table 8-12).

We additionally performed a folding free energy calculation of villin head piece HP36 

(Supplementary Table 13 and Supplementary Fig. 10), conformational sampling of a N-

terminal fragment of HP36, HP21 (Supplementary Fig. 11-14), and MD simulations of 

designed protein GA95 and GB95 with 95% sequence identity but different folds 

(Supplementary Fig. 15). The HP21 peptide folds to the correct folded state (Supplementary 

Fig. 11), consistent with the fact that the peptide is partially folded and has a preference for 

native structure.16 The most predominant secondary structure is alpha helix (Supplementary 

Fig. 12), as expected based on NMR studies16 and a recent simulation study of this 

peptide.17 The helical state is slightly destabilized (by approximately ~ 1 kT) compared to 

the population based on the chemical shifts and secondary structure propensity 

(Supplementary Fig. 13 and Supplementary Tables 14, 15). For the HP36 protein, we find 

that C36m gives improved agreement in the folding free energy compared to C36 

(Supplementary Table 13).

Finally, we comment on the general problem of overly-compact IDP ensembles, a problem 

that is encountered with most physics-based atomistic models.5, 6, 18 While the C36m FF, 

based on the CHARMM modified TIP3P water model, leads to good agreement between 

computed and experimental chain dimensions for the RS peptide, the ensemble averaged 

radii of gyration (Rg) of IN and the Cold-shock protein from Thermotoga maritima (CspTm) 

with the C36m FF are 13.8 ± 0.2 Å and 12.8 ± 0.2 Å. These dimensions are much smaller 

than the experimental estimates of 24 Å and 15 Å19 (Supplementary Table 16), respectively, 

which are inferred from FRET measurements assuming a Gaussian chain model. An 

approach to correct for this bias is to increase the dispersion interactions between the protein 
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and water. One study applied a general scaling factor to scale up the total protein-water van 

der Waals (VdW) interactions,5 while another proposed a reparametrized water model with 

the oxygen Lennard-Jones (LJ) well depth εO increased by 50%.6 Motivated by the 

difference between the CHARMM modified and the original TIP3P water model, we 

propose here an alternative water model in which the LJ well depth parameter εH of the 

water hydrogen atoms is increased (from −0.046 kcal/mol in CHARMM TIP3P) while the 

oxygen LJ parameters and the water-water interactions are maintained. This approach 

specifically makes the dispersion part of protein-water interactions more favorable with 

minimal perturbation on the repulsive part versus the larger impact of altering the oxygen LJ 

parameters (Online Methods).

In simulations using a water model in which the εH value was set to −0.10 kcal/mol good 

agreement with the experimentally estimated Rg is obtained for CspTm, (Supplementary 

Table 16 and 17). In contrast, computed ensemble averaged <Rg>’s were found to be larger 

than the experimental value for the RS peptide and smaller than the experimental value for 

the IN protein (Supplementary Fig. 16 and Supplementary Table 16). These results suggest 

that no universal εH can be found to be applicable to all IDP systems and that IDP specific 

water models may be of utility; further studies are required to address this issue.

Online Methods

The origin of left-handed α helices in the C36 protein FF

Left-handed helices are very rare in peptides and proteins due to the steric clash between 

amino acid side-chains and the bulkier CO groups than the NH group in the case of 

common, right-handed helices. Though present in both models (Supplementary Fig. 17), 

such steric effect is weaker in the C36 FF compared to the C22/CMAP FF, because of the 

inclusion of refined Lennard-Jones (LJ) parameters for aliphatic carbon atoms in the C36 FF 

that give improved condensed phase properties of alkanes.21 Specifically, the van der Waals 

(vdW) radius of alanine Cβ atoms changed from 2.06 Å in C22/CMAP to 2.04 Å in C36, for 

the Cβ atoms in Ile, Thr and Val from 2.275 Å to 2.0 Å, and for the Cβ atoms in the 

remaining non-Gly, non-Pro amino acids from 2.175 Å to 2.01 Å. Notably, these changes 

also represent improved treatment in the FF of intramolecular interactions, as the CMAP 

corrections to the original C22 FF contains large negative values in the αL region to take into 

account that the steric clash disfavoring αL was overestimated due to the larger vdW radii. 

As improved LJ parameters were adopted in the C36 FF, a decrease in the contribution of the 

CMAP correction that favors αL was needed. However, as the original C36 CMAP 

(Supplementary Fig. 17) has the same CMAP potential in the αL region as C22/CMAP, 

oversampling of the αL region occurs, requiring the present additional refinement and 

subsequent validation of the model.

Optimization of the CMAP potential

Central to any optimization problem is its target function. While left-handed α-helices are 

very rare, there is little qualitative experimental information on the probability or the average 

length of left-handed helices, or how often an amino acid populates the αL conformation. 

Protein coil libraries22, 23 estimate an average αL propensity of 6.4% for all amino acids and 
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5.1% for non-Gly, non-Pro residues. It is anticipated that αL propensity in different IDPs 

will depend on their primary sequence,24, 25 and arguments on the amount of αL sampled in 

specific peptides dates back to earlier days of molecular mechanics force fields.26-28 As 

experimental target data on the correct amount of αL population is lacking, we instead 

attempted to answer a related and more general question: what is the minimal perturbation 

of the current CMAP potential energy, E, that reduces αL sampling to an approximate target 

value? This corresponds to minimizing the following target function:

(1)

, where P represents the probability of conformations in a structural ensemble containing a 

left-handed α-helix (αL probability), w is an adjustable weighting factor, and RMSCMAP is 

the root mean square difference between the two CMAPs:

(2)

, where m=n=24 are the two dimensions of the tabulated CMAP potentials.

Reweighting has emerged as a powerful tool in force field parametrization.29-31 Given a 

well-converged conformational ensemble generated by a force field parameter set λ, the 

ensemble average of a certain property A under a new force field parameter set λ+Δλ is 

given by

(3)

, where Eλ and Eλ+Δλ are the potential energies with FF parameters λ and λ+Δλ for each 

sampled conformation, and β is the reciprocal of the thermodynamic temperature. In the 

context of left-handed helices, αL probability P associated with a certain CMAP 

modification can be computed as

(4)

, where n is the number of frames, hi is a binary that equals 1 if the i-th conformation 

contains a left helix and 0 if not, and  is the potential energy change associated 

with the CMAP modification at the i-th conformation. The reweighted αL probability was 

determined based on , as this was the only energy term adjusted in the FF that 

directly impacts backbone conformational sampling, which allows efficient evaluation of the 

target function.
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A Monte Carlo simulated annealing (MCSA) simulation is combined with the reweighting 

equation (Eq. 4) to derive the optimized CMAP potential for the target function 

(Supplementary Fig. 18). 105 MCSA steps were carried out with a starting MCSA 

temperature of 10 K, and random CMAP revisions between −0.01 kcal/mol and 0.01 

kcal/mol were added to individual grid points in a broadly defined αL region 

(Supplementary Fig. 18) in each MC step. The full set of φ, ψ values of the FG peptide from 

the MD ensemble generated with the C36 FF at 298K32 was used as the input data, and 

MCSA optimizations were run with different weighting factor w (Supplementary Table 18). 

Smaller w values lead to more pronounced reduction of αL probability, indicating w 
balances between the amount of αL and the magnitude of the CMAP modification. The 

predicted αL probability reduced to 1.1% with w=2kT, and further decreases of w brings 

little improvement in αL reduction (Supplementary Table 18). The CMAP resulting from a 

105 step MCSA run with w=2kT is determined to be used as the CMAP for non-Gly and 

non-Pro residues in the C36m FF. The revision to the original C36 CMAP is localized to the 

αL region around φ, ψ =60°, 45° and much smaller than with the full region allowed to 

optimize as indicated by the black lines in Supplementary Fig. 18. The final number of 

parameters (ie. CMAP grid points) being modified is much less than the number of 

parameters allowed to freely change during fitting, which is a good indication that 

overfitting has been avoided. The penalty term (RMSCMAP) in the optimization target 

function helps maintain minimal revision to the CMAP potential while maximally reducing 

the αL probability.

Improved modeling of the guanidinium and carboxylate salt bridge

Another refinement in the C36m FF concerns improved description of salt bridge 

interactions involving guanidinium and carboxylate functional groups with a pair-specific 

non-bonded LJ parameter (NBFIX term in CHARMM) between the guanidinium nitrogen in 

arginine and the carboxylate oxygen in glutamate, aspartate as well as the C terminus. This 

salt bridge interaction was found to be too favorable in the CHARMM protein force fields as 

indicated by the overestimation of the equilibrium association constant of a guanidinium-

acetate solution ,33, 34 as well as the underestimation of its osmotic pressure (personal 

communication, Benoit Roux). The added NBFIX term increases the Rmin from the 3.55 Å 

based on the Lorentz-Berthelot rule to a larger value of 3.637 Å (Shen and Roux, personal 

communication), which we subsequently showed to improve the agreement with the 

experimental osmotic pressure of guanidinium acetate solutions (Supplementary Figure 19). 

We noted that the NBFIX approach employed here differs from Piana et al’s work27 where 

the CHARMM22 charges of the Arg, Asp and Glu side chains were reduced in magnitude, 

with both approaches leading to weaker and more realistic salt-bridge interactions. The 

NBFIX term makes sure only the specific interaction between Arg and Asp/Glu is modified, 

while the interaction of these residues with other amino acids, water, or ions are kept the 

same as in the C36 FF. Again, our aim is to improve the C36 FF with minimal changes in the 

model.

Molecular dynamics simulations

The C36m FF was validated using a variety of systems including peptides, IDPs, unfolded 

states of proteins, and globular proteins. The CHARMM-modified TIP3P model35 was used 
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in all simulations, unless noted. All the systems studied here are in high dilution such that 

the systems did not test the force fields with respect to aggregation. A summary of the 

validation simulations is given in the Supplementary Table 1, and detailed information of 

setup and analysis for each simulation system is given in the Supplementary Note. Briefly, 

temperature replica exchange (T-REX) simulations were carried out with GROMACS36 for 

the RS peptide (0.63 μs * 34 replica), the GB1 hairpin (0.8 μs * 32 replica), the Nrf2 hairpin 

(1 μs * 28 replica), Chignolin (6 μs * 29 replica) and CLN025 (6 μs * 29 replica). 

Hamiltonian replica exchange (HREX) simulation was carried out with CHARMM37 for 

polyQ using the end-to-end distance as the biasing reaction coordinate. Harmonic umbrella 

potentials with a force constant of 0.2 kcal/mol/Å2 were applied to target end-to-end 

distances ranging from 5 to 75 Å spaced at 5 Å intervals. Similar H-REX protocol using 

distance as the biasing reaction coordinate was applied to study the folding free energy of 

HP21. Conformations were also sampled using single, long MD trajectories with 

OpenMM,38 including 5 μs simulations for the HEWL19 peptide, IN and CspTm, 10 μs 

simulations for the (AGQ)n peptides, and 16 μs simulations for (AAQAA)3. A 1.2 μs 

simulation of ubiquitin was carried out with NAMD to compare with previous results using 

the C36 FF.39 Alternative water models were tested with the RS peptide using T-REX 

simulations (0.63 μs * 34 replica) and with IN and CspTm using 5 μs MD simulations.

Analysis of MD trajectories was carried out using GROMACS36 or CHARMM.37 A left-

handed α-helix is defined as having at least three consecutive residues with φ, ψ~falling in 

the αL region (30°<φ<100° and 7°<ψ< 67°, Supplementary Fig. 20). The αL probability is 

computed as the fraction of the ensemble containing left α-helix as in Ref.32 We also 

compute the αL fraction as the probability for residues to be in a left-handed α-helix, and 

the αL propensity as the probability for residues’ φ, ψ to be in the αL region, as additional 

measurement of α-left helix sampling.

Statistics

Observables were computed as the ensemble average of ~104 to 106 frames in MD 

trajectories. Unless noted, uncertainties were estimated with block analysis by partitioning 

MD trajectories into five blocks (n = 5).

Sampling extended states of IDPs with alternative water model

A promising way to obtain larger <Rg> is to introduce stronger dispersion interactions 

between the protein and water. We first test the approach suggested by Best et al40 which 

employs a general scaling factor for the VdW interaction between protein and water. A 

scaling factor of 1.05 is tested with the C36m FF, and it is confirmed that scaling up protein-

water VdW interaction leads to more extended conformational states for the RS peptide, the 

IN proteins and the CspTm proteins (Supplementary Fig. 16 and Supplementary Table 16).

We propose an alternative water model with specific modification of water hydrogen LJ 

parameters. This is inspired by the difference in conformational sampling with the 

CHARMM modified TIP3P model and with the original TIP3P model. The CHARMM 

modified TIP3P contains additional LJ parameters on the hydrogen atoms (εH~= −0.046 

kcal/mol and Rmin/2 = 0.2245 Å), so it has more favorable dispersion interactions which 
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stabilize extended conformations leading to less structured conformational ensembles as 

compared to the original TIP3P water model.32, 41 By further increasing the εH value while 

maintaining the LJ parameters of the water oxygen atom and resetting the water-water 

interaction to be same as the CHARMM modified TIP3P water with NBFIX terms, one can 

specifically make the dispersion part of the VdW interactions between protein and water 

more favorable while not perturbing the water properties. The advantage of altering the εH 

value is due to the LJ potential containing both repulsion (r−12) and dispersion (r−6) terms. 

Therefore, alteration of the water oxygen atom LJ parameters will affect its effective size 

based on the repulsive term such that, for example, the change would alter the balance 

between the attractive and repulsive interactions of water-protein interactions. In contrast, 

the water hydrogen atom has a very small LJ radius so that its repulsive wall remains inside 

the repulsive wall of the oxygen atom in such a way that its LJ term only contributes 

favorable dispersion interactions. Thus, by only modifying the hydrogen LJ εH parameter, 

we ensure minimal perturbation of the Hamiltonian, i.e. only the dispersion interaction of 

the protein with water in the simulation systems is changed. As our goal in the present study 

was to verify that such an approach would lead to improved sampling of IDPs we 

approximately doubled the εH value from −0.046 to −0.1 kcal/mol.

Code availability

The computer code used to perform optimization of the CMAP potentials via reweighting is 

deposited at https://github.com/jing-huang/CMAPoptimizer.

Data Availability

The C36m FF is available along with the remainder of the CHARMM force fields at http://

mackerell.umaryland.edu/charmm_ff.shtml. More specifically, the parameter file 

(par_all36_prot_mod.prm) is provided in the toppar_c36_jul16.tgz file. The C36m FF is also 

included in the CHARMM program (version c41 and onward). In addition, the FF may be 

used in a number of open source molecular simulation programs including NAMD, 

GROMACS and OpenMM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
SAXS profiles of the RS peptide. Ensemble-averaged scattering curves from the C36 

simulation (blue) and the C36m simulation (red) are plotted, with the experimental curve4 

shown with error in gray. The nonweighted error function χ2 as defined in Ref. 20 was 0.63 

using C36, and 0.12 using C36m. The error bars represent the standard deviation computed 

by dividing the conformational ensembles in two, and computing the average SAXS profile 

for each half separately. For the C36m ensemble, the error bars are smaller than the line 

width.
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Table 1

αL conformational sampling in four IDP systems in MD simulations with the C36 and the C36m FFs. The αL 

probability is computed as the fraction of the ensemble containing left-handed α-helix, and the αL propensity 

as the probability for non-Gly, non-Pro residues to sample the αL region. The maximum length of the αL 

helices observed in the simulations is also listed.

system simulation αL probability αL propensity max. αL length

FG peptide C36 32% ± 6% 22% ± 2% 14 aa

C36m 1.1% ± 0.3% 6.2% ± 0.2% 5 aa

RS peptide C36 80% ± 2% 41% ± 1% 17 aa

C36m 1.8% ± 0.5% 5.5% ± 0.2% 5 aa

IN C36 64% ± 18% 14% ± 2% 7 aa

C36m 3% ± 2% 5.6% ± 0.5% 4 aa

HEWL19
peptide

C36 11% ± 7% 12% ± 2% 8 aa

C36m 0.5% ± 0.4% 6.1% ± 0.7% 3 aa
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