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Abstract

We present novoBreak, a novel genome-wide local assembly algorithm that discovers somatic and 

germline structural variation breakpoints in whole genome sequencing data. In the ICGC-TCGA 

DREAM 8.5 Somatic Mutation Calling Challenge and real cancer genome data analysis, 

novoBreak consistently outperformed existing algorithms due largely to more effective utilization 

of reads spanning breakpoints. NovoBreak also demonstrated great sensitivity in identifying short 

INDELs. The source code is available at http://sourceforge.net/projects/novobreak/.
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Somatic structural variations (SVs) are major driving forces of tumor development and 

progression. Sporadic and recurrent chromosomal aberrations have been observed in most 

cancer types1. Many are desirable therapeutic targets.

The advent of high-throughput next generation sequencing (NGS) technologies has made it 

possible to perform genome-wide detection of SVs at base pair resolution. As a result, 

unprecedented landscapes of SVs have been unveiled in various cancer genomes2. However, 

computational approaches3 for detecting SVs from NGS data are limited in sensitivity and 

comprehensiveness4.

One approach is to align short paired-end reads to a reference genome and identify signals in 

discordant read pairs5, read depths6, split reads7, or their combinations8. Another approach 

is through targeted local assembly of aligned and partially aligned reads in candidate SV 

regions discovered a priori9. These approaches depend heavily on the accuracy of read 

alignments, which is often limited for reads spanning breakpoints or substantially different 

from the reference. In comparison, whole genome assembly approaches10 are less biased. 

However, assembling a whole genome is computationally intensive11 and results are often 

affected by repeats, polyploidy, read length and sequencing coverage.

We developed a novel method, novoBreak, which obtains genome-wide local (glocal) 

assembly of breakpoints from clusters of reads sharing a set of k-mers (contiguous 

nucleotide sequences of length k) uniquely present in a subject genome (e.g., a tumor 

genome) but not in the reference genome or any control data (e.g., a matched normal 

genome) (Fig. 1 and Online Methods). When applied to somatic breakpoint detection from 

matched tumor and normal tissue data, novoBreak first constructs a hash table from the 

tumor reads, containing all the k-mers, their host reads and frequencies in the set (Online 
Methods and Supplementary Note 1). Next, it filters out k-mers representing reference 

alleles or sequencing errors, and retains those representing variants or novel sequences not 

present in the reference genome. It then queries the normal reads and further classifies the k-

mers into 1) germline k-mers, those present in both the tumor and the normal genome, and 

2) somatic k-mers, those present in the tumor but not the normal genome. Then, novoBreak 

identifies clusters of read pairs spanning each somatic breakpoint, and assembles each 

cluster of reads into contigs (Online Methods and Supplementary Note 2). By comparing 

the resulting high-quality contigs with the reference, novoBreak identifies breakpoints and 

associated SVs. Finally, novoBreak quantifies the amount of the supporting evidences at 

each breakpoint and outputs a final report.

We examined the performance of novoBreak in the ICGC-TCGA DREAM 8.5 Somatic 

Mutation Calling Challenge (https://www.synapse.org/#!Synapse:syn312572), which aimed 

to identify the best algorithms for detecting somatic mutations in NGS data12. In each of the 

synthetic sub-challenges, a high coverage (60–80×) whole genome sequencing (WGS) bam 

file produced from a cell line or a patient tissue was divided into two parts (30–40× each). 

One part was treated as the normal data and the other as the tumor data containing mutations 

spiked-in by BAMSurgeon13. A series of in silico sub-challenges (IS) were implemented 

with increasing numbers, types of variants and cellular complexity. In total, 204 submissions 

were made by 27 teams that developed the most widely used SV detection tools such as 
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Breakdancer5, Delly8, Pindel7, and Manta (https://github.com/StructuralVariants/manta). 

NovoBreak consistently achieved the best balanced accuracy (sensitivity and precision) in 

IS2, IS3 and IS4 (Supplementary Table 1). Almost all the top performing tools achieved 

high precision (>0.98) after stringent filtering. NovoBreak excelled in higher sensitivity, 

which was particularly evident when insertions were introduced in IS2 and IS3.

IS3 was probably the most difficult because it not only contained SNVs and four types of 

SVs: deletions, duplications, inversions and insertions (mobile elements), but also INDELs 

(insertions and deletions shorter than 100 bp). It also contained subclones at respective 

cellular fractions of 50%, 33%, and 20%. NovoBreak achieved the highest balanced 

accuracy of 0.892 (sensitivity: 0.801 and precision: 0.984) due mainly to its higher 

sensitivity in detecting insertions (Fig. 2a). It discovered 100 (4.3%) and 120 (5.1%) more 

insertions in the ground truth than DELLY and Manta, respectively. Compared to alignment-

based approaches, novoBreak more effectively utilized reads spanning insertion breakpoints 

(Supplementary Fig. 1). Further analysis of the SVs missed by DELLY and Manta indicates 

that novoBreak performs better in low coverage regions with few discordantly paired or split 

reads (Supplementary Note 3). Breakpoints identified by novoBreak also had the highest 

precision: 98.9% are within −2bp to 2bp relative to the ground truth (Fig. 2b).

Detection of INDELs, particularly insertions, is challenging because of difficulties in 

achieving accurate short-read alignment. NovoBreak ranked 2nd and 1st in IS3 and IS4, 

respectively (Supplementary Table 2). IS4 was particularly difficult for INDELs and SNVs 

due to three times more simulated events than in the previous challenges, including sub-

clonal events at relatively low allelic frequencies (15%). Encouragingly, novoBreak achieved 

a balanced INDEL detection accuracy of 0.857 (sensitivity: 0.788 and precision: 0.926), 

close to the best SNV detection accuracy on the leaderboard. After comparison with the 

ground truth, we found that novoBreak discovered a higher fraction of INDELs in almost 

every size range than GATK-HaplotypeCaller14 (balanced accuracy: 0.364, sensitivity: 0.499 

and precision: 0.229) and Strelka15 (balanced accuracy: 0.626, sensitivity: 0.601 and 

precision: 0.650) under the default parameters and filters (Fig. 2c). GATK-HaplotypeCaller 

had significantly lower sensitivity in detecting 1, 2, and 3 bp INDELs, due likely to 

limitations of aligning short-reads and stringent filtering. In contrast, Strelka demonstrated 

reduced sensitivity as INDEL size increased. It did not report any insertion longer than 25 

bp.

We compared novoBreak with BreakDancer5 (v1.1.2), DELLY8 (v0.6.3) and Fermi16 (v1.1-

r751-beta) using the WGS data from COLO-829, a melanoma tumor cell line17. Fermi is a 

string-graph-based whole genome assembler that retains contigs containing SNPs, INDELs 

and SVs. Because Fermi does not come with a ready-to-use tool to call SV breakpoints, we 

used the SV-calling steps of novoBreak to evaluate its assembly results. These data were 

previously analyzed by a read pair approach17 and CREST18. In total, 48 SV breakpoints 

have been previously validated via polymerase chain reaction (PCR) and Sanger sequencing 

(Supplementary Table 3). We used these 48 breakpoints as ground truth to benchmark these 

tools. Under default parameters, BreakDancer identified 37 true positives (TPs), with a total 

of 14,340 predicted; DELLY, 34 TPs, with 1,113 predicted; and Fermi, 40 TPs, with 16,849 

predicted. A large fraction of SVs reported by these tools were likely germline, instead of 
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false SVs. In contrast, novoBreak identified 44 TPs with 78 breakpoints predicted (Fig. 2d 

and Supplementary Table 4). Of the 4 missing TPs, two were missed by all the tools and 2 

could be recovered by novoBreak at less stringent settings. We designed PCR primers 

around the 34 novel breakpoints and validated 9 (Supplementary Table 5). The remaining 

ones were not necessarily false calls and could be attributed to deficiency in validation 

experiments or evolution of the cultured cell line. Indeed, 19 (57.6%) of the 34 calls were 

also predicted by at least one other tool. These results demonstrated novoBreak’s high 

sensitivity and specificity in analyzing real tumor data under default settings. Users can 

adjust the filtering parameters to obtain different sensitivity and specificity tradeoff in 

different applications.

To further evaluate the sensitivity of novoBreak on cancer patient data, we analyzed the 

WGS data of a patient with low-grade glioma (Supplementary Note 4) and those of 22 

invasive breast carcinoma samples in The Cancer Genome Atlas (TCGA). This set of TCGA 

samples was analyzed previously by INTEGRATE19, which integrates matched whole 

genome and whole transcriptome sequencing (WTS) data to discover gene fusions. Overall, 

novoBreak identified 1,628 deletions, 1,724 duplications, 2,335 inversions and 1,982 

translocations, equivalent to 349 SVs per sample (Supplementary Table 6 and 7). It 

identified 104 (86.7%) of the 120 known high-confidence gene fusions19 (Supplementary 

Table 8). The true sensitivity was probably higher because 19% of the known SVs were 

likely false positives19. In addition, they were identified using both WGS and WTS data; 

whereas novoBreak only examined the WGS data.

We present a new algorithm, novoBreak, for detecting structural variation breakpoints in 

subject genomes. The most significant improvement of novoBreak compared to other 

approaches is the k-mer identification, filtering and classification strategy, which 

substantially narrows down the number of putative SV breakpoints and focuses 

computational power on the most informative portion of the data. By clustering and 

performing local assembly around breakpoints, novoBreak takes full advantage of unmapped 

reads and/or partially mapped reads. The scoring and filtering strategy of novoBreak 

provides high precision in the final results. The k-mer targeted assembly framework 

exemplified by novoBreak will facilitate comprehensive, sensitive, efficient, and accurate 

identification of novel sequence alterations in genomic, exomic and transcriptomic 

sequencing data. A caveat of novoBreak is that it misses SV breakpoints in repetitive 

sequences longer than 2k-1 bp. Further versions of novoBreak with increased k will alleviate 

this limitation. The source code of novoBreak (Supplementary Software) is freely available 

for academic use at http://sourceforge.net/projects/novobreak/.

Online Methods

The novoBreak pipeline

novoBreak is developed to comprehensively discover exact chromosomal breakpoints 

introduced by structural variations in genomes or transcriptomes. It is based on 1) a genome-

wide classification and filtering strategy, which identifies specific nucleotide signatures 

(novo k-mers) and 2) a local assembly approach, which constructs breakpoint sequences 

from reads containing the novo k-mers. The workflow of novoBreak consists of the 
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following steps (Figure 1): (1) novoBreak begins with an indexing and filtering procedure to 

obtain “novo k-mers” and associated short reads, described in the section “indexing and 

filtering k-mers”. (2) Paired-end reads containing the same set of novo k-mers are clustered 

together. Each cluster contains read pairs covering the same breakpoint. An assembly 

algorithm is then applied to each cluster to construct a breakpoint spanning sequence. The 

clustering and local assembly step is described later in the section “Clustering and local 

assembly algorithm”. (3) After short reads are assembled in each cluster, the resulting 

contigs are aligned to the reference using BWA-MEM20 (Supplementary Note 2) with ‘-M’ 

option to obtain secondary alignments. The alignment results are parsed to infer breakpoints 

and the associated SVs. For short SVs, such as INDELs, novoBreak directly parse the 

Compact Idiosyncratic Gapped Alignment Report (CIGAR) strings of the aligned contigs. 

For large SVs, novoBreak will consider both the primary and the secondary alignments of 

each contig. In current implementation, novoBreak predicts deletions, insertions, inversions, 

duplications and translocations at base pair resolution. (4) To achieve a high precision, 

novoBreak employs a scoring and filtering module, as described in the section “scoring 

method”.

Indexing and filtering k-mers

Given a sequence S of length L, a k-mer is a length k (k < L) substring of sequence S. We 

notice that if a read R contains a breakpoint of a structural change with respect to the 

reference or the normal genome of a cancer patient, there are at most k-1 k-mers (k < |R|) 

covering the breakpoint. The default k is 31 (Supplementary Note 1) in novoBreak. We 

define these k-mers as “novo k-mers” because they contain novel sequence information 

specific to the subject. In a tumor-normal paired cancer genome sequencing study, the novo 

k-mers contain the somatic breakpoints that specifically exist in the tumor but not in the 

paired normal sample. The first critical step of novoBreak is to obtain the novo k-mers. An 

effective approach is to implement a hash table that first indexes and loads all the k-mers in 

all the reads in the tumor sample into the memory, and then eliminate k-mers that are present 

in the reference or the normal genome. The remaining high frequency k-mers should contain 

genuine somatic breakpoints, including SNVs, small indels and large SVs. This approach is 

computationally feasible for whole exome or whole transcriptome analysis. But for high 

coverage whole genome analysis, the memory cost is extremely high (usually a few hundred 

gigabytes) due mainly to the presence of sequencing errors. A critical component of 

novoBreak is to reduce memory consumption. For whole genome sequencing data, instead 

of indexing the sequenced reads, novoBreak starts from hashing all the k-mers in the 

reference genome. Then, it adopts a two-pass approach to calculate novo k-mers in the 

sequenced genomes. The first pass is to scan every reads and mark the status (presence/

absence) of each constituent k-mer in the reference genome using the pre-constructed hash 

table. In the process, novoBreak automatically trims off error prone ends in low quality reads 

(Supplementary Note 1). novoBreak uses a bit array data structure to mark a read. If a k-mer 

in a read is in the hash table, it will be marked as 1 (otherwise 0) in the corresponding bit in 

the bit array. When all the reads are processed, the hash table for the reference k-mers is 

released. Next, novoBreak goes through the reads containing at least one 0 bit to obtain the 

minimal occurrence of the non-reference k-mers. novoBreak adopts Bloom filter21, a 

probabilistic data structure that tests whether a given element is in a set. A Bloom filter is a 
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bit array of m bits, initialized to be 0. k different hash functions are applied to an element 

and map the element to k different positions in the array. To add an element, these k 
positions will be set to 1. To test whether an element is in the set, each of the k positions will 

be examined. If there is a 0 at any of the k positions, the element is definitely not in the set. 

If all the k positions are 1, then either the element is in the set or the positions were 

coincidently set to 1 by other elements. Such false positive (FP) errors could happen because 

different elements could be coincidently hashed to same positions in the bit array. 

Fortunately, the chance of having an error is very small, less than , where n is 

the total number of elements, m is the size of the bit array of the Bloom filter and k is the 

number of hash functions. Note these rare FP errors do not hurt sensitivity and have 

negligible possibility of introducing false positive breakpoints, due to the subsequent read 

clustering, assembly, alignment and variant calling steps. We expand the above standard 

Bloom filter from one bit to two or more (default to 3 bits in novoBreak) to count if a k-mer 

has occurred more than a minimal number of times (default 3 in novoBreak) (Supplementary 

Note 1) in the dataset. Thus, k-mers introduced by sequencing errors will be automatically 

disregarded and the remaining are novo k-mers from the variant alleles. For somatic 

analysis, novoBreak will further scan the normal control reads using a hash table and counts 

the occurrence of these k-mers in the normal reads. Based on these counts, candidate 

somatic k-mers (i.e., k-mers only present in the tumor but not the normal sample) can be 

identified, with the effect of cross-contamination between the samples being accounted for. 

Finally, novoBreak loads read pairs containing the candidate somatic k-mers and 

automatically removes duplicated read pairs that have identical sequences in both reads.

Clustering and local assembly

With novo k-mers and the associated read pairs identified, a straightforward method is to 

assemble all the read pairs directly. However, the cost of assembly is still very high due to a 

large number of reads. In addition, presence of alternative alleles, repeats and sequencing 

errors can easily cause misassemblies. Note that, as shown in (Supplementary Fig. 2), at 

each breakpoint, there are k-1 novo k-mers with many reads covering it. Reads covering the 

same breakpoint share a subset of the k-1 novo k-mers. Based on this pair-wise relationship 

between k-mers and reads, we can find the set of read pairs covering a breakpoint using a 

union-find algorithm 22, which identifies all the connected components in an undirected 

graph consisting of reads and k-mers (as nodes) and their connections (as edges). To avoid 

having large clusters with many reads due to repeats or sequencing errors, novoBreak trims 

the connected components based on read and k-mer statistics. For the purpose of detecting 

SVs, the computational cost is further reduced by directly reading from bam files and 

correcting base errors based on high quality aligned reads.

After clustering, it is relatively easy to locally assemble the read pairs in each cluster, since 

the number of read pairs is small and they originate from the same locus of an allele. Almost 

every modern assembler can be applied for such a task. novoBreak pipeline uses SSAKE23 

(Supplementary Note 2) to assemble read pairs into contigs. The setting of SSAKE in 

novoBreak is “-p 1 -k 2 -n 1 -m 16 -x 3 -w 1 -z 30 -o 1”.
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SSAKE can generate multiple contigs from each cluster. Each contig is aligned by BWA-

MEM and analyzed independently. After all the candidate breakpoints are generated, 

novoBreak merges them and creates a unique set of SVs.

Somatic SV Scoring methods

novoBreak scores and ranks each predicted breakpoint based on assembly and mapping 

results. At a given locus, novoBreak calculates a statistical quality score

where D = {DI,R} comprises of the counts of read pairs supporting the reference allele (R = 

r) and those supporting the variant alelle (R = v) from the tumor (I = t) and the normal (I = 

n) data, respectively; G = 0,1,2 indicates whether the locus has a reference (no SV in either 

tumor or normal), somatic (SV only in tumor) or germline (SV in both tumor and normal) 

status.

We can compute the likelihood of the data, given the status of a locus. For example, 

likelihood of the somatic status G = 1 can be estimated as:

Because the variant allele fraction in the tumor is unknown, novoBreak uses a beta-binomial 

distribution to estimate the likelihood of the observed read counts. For example, the number 

of read pairs supporting a breakpoint in the tumor sample is

where αI,G and βI,G indicate the parameters used for the combinations among I ∈ {t, n} and 

G ∈ {0,1,2}. For the somatic status G = 1, novoBreak initializes αn,1 = 1, βn,1 = 10 and αt,1 

= 1, βt,1 = 1 to reflect the concept that SV signal in the normal sample is largely due to 

noise. For the germline status G = 2, novoBreak uses a uniform distribution αn,2 = βn,2 = 

αt,2 = βt,2 = 1. For the reference status G = 0, αn,0 = αt,0 = 10 and βn,0 = βt,0 = 1 were used. 

D′ represents the total number of read pairs at the locus with non-zero chances of spanning 

the breakpoint.

Minor empirical adjustment of these scores and parameters was applied to account for 

variations introduced by assembly quality, mapping quality, tissue purity, sampling bias, and 

SV size and type.
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Indel analysis

Indels detection on the IS4 data was performed by novoBreak, GATK-HaplotypeCaller and 

Strelka as follows.

novoBreak—novoBreak (v1.03) was run under the parameters ‘-k31 -m2’. All the 

assembled contigs and unassembled short read pairs containing the novo k-mers were 

mapped to the reference using BWA-MEM20. The alignment results were sorted and the 

coordinates of indels were adjusted using SortSam of Picard (v1.107) (http://

broadinstitute.github.io/picard/) and LeftAlignIndels of GATK14, 24, 25 (v2.8-1), respectively. 

The CIGAR strings of the alignment results were parsed to generate an indel list (in 

VCFv4.1 format). Indels were further filtered using Database of Single Nucleotide 

Polymorphisms dbSNP (Build ID: 138, Available from: http://www.ncbi.nlm.nih.gov/SNP/) 

and low complexity regions identified with the mdust program (http://

compbio.dfci.harvard.edu/tgi/). Finally, only indels with allele fraction greater than 1% were 

selected.

GATK-HaplotypeCaller—GATK v2.8-1 was run on the same data. First, tumor and 

normal bam files were realigned using IndelRealigner and left-aligned using 

LeftAlignIndels. HaplotypeCaller was run on tumor and normal bam files with the 

parameters ‘--genotyping_mode DISCOVERY-stand_emit_conf 10-stand_call_conf 30′, 

respectively. Then, SelectVariants of GATK was run with parameter ‘-selectType INDEL’ to 

generate an indel VCF file for the tumor and the normal. Indels from the tumor and the 

normal samples were further filtered using VariantFiltration with parameters ‘--

filterExpression “QD < 2.0 || FS > 200.0 || ReadPosRankSum < −20.0”’. Finally, only indels 

in the tumor VCF file but not in the normal VCF file with “PASS” labels were evaluated as 

somatic indels.

Strelka—Strelka15 (v1.0.14) was also tested on the dataset. Files and directories were 

generated and configured according to the documentation (https://sites.google.com/site/

strelkasomaticvariantcaller/). Strelka was run with the default parameters. Since the number 

of somatic indels with the FILTER field “PASS” was too few, we also selected “QSI_ref” 

field for evaluation.

Experimental Validation

The COLO-829 and COLO-829BL cell lines were purchased from the American Type 

Culture Collection (ATCC). Primers for genomic PCR were designed using Primer3 (http://

biotools.umassmed.edu/bioapps/primer3_www.cgi). The COLO-829 and COLO-829BL 

cells were cultured in RPMI 1640(Sigma) supplemented with 10% FBS and 1% penicillin 

and streptomycin. Genomic DNA was extracted from COLO-829 and COLO-829BL cells 

using genome DNA kit (Invitrogen) and the PCR was performed using GoTaq DNA 

Polymerase (Promega). Thermal cycling conditions were one cycles of 95 °C for 2 min, 

followed by 30 cycles of 95 °C for 30 s, 65°C for 30 s and 72 °C 1 min, followed by a final 

extension step of 72 °C for 10 min. PCR products were electrophoresed on 1% agarose gels 

with ethidium bromide, visualized using UV light illumination.
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Data

ICGC-TCGA DREAM Challenge data13 [SRA:SRP042948] was downloaded from https://

www.synapse.org/#!Synapse:syn2280639 with public token (in silico 1, 2 and 3) or approval 

access with private token from ICGC (in silico 4).

The whole genome sequencing data17 [EGAD00000000055] of the immortal melanoma 

cancer cell line COLO-829 and lymphoblastoid cell line derived from the same patient 

COLO-829BL was requested from the European Genome-phenome Archive.

The TCGA breast cancer WGS data were obtained through dbGAP [accession number 

phs000178.v7.p6].

The low grade glioma sample (SJLGG039) is available at European Genome-phenome 

Archive under accession EGAS00001000255.

System requirements and software availability

novoBreak is written in C and Perl. The source code is freely available at https://

sourceforge.net/projects/novobreak/?source=updater. For a 40X 2×101bp whole genome 

tumor and normal pairs, novoBreak needs a main memory less than 40GB and a running 

time less than ~6 hours with 10 CPU cores.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The workflow of novoBreak algorithm
(a) Short paired-end tumor reads (pairs of grey and black bars connected by dashed lines) 

are dissected into constituent k-mers. Indexed k-mers are compared against the reference 

sequence and normal reads. Only somatic novo k-mers (red bars) unique in the tumor 

genome are kept, while germline (green bar) and reference k-mers (grey bars) are filtered 

out. (b) The cluster of reads spanning a breakpoint i are found in conjunction with a set of 

shared novo k-mers. A long contig (grey bar) containing a unique breakpoint sequence in the 

middle (highlighted in red) is assembled from the cluster of reads. (c) This assembled contig 

is aligned (dashed line) against the reference sequence to infer exact breakpoint and 

associated SV. (d) Each SV breakpoint is scored, ranked and output in a standard variant call 

format (VCF) file.
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Figure 2. novoBreak performance
in the IS3 data. (a) Precision and recall comparison among 3 top-performing tools: 

novoBreak (green), DELLY (blue) and Manta (red). Star indicates the best scoring results of 

each tool. (b) Comparison of breakpoint precision among the 3 tools. X-axis is the offset (in 

base pair) between the true and predicted breakpoint coordinates. Y-axis is the fraction of 

predicted breakpoints at each of the offset values. (c) INDEL detection sensitivity of GATK-

Haplotypecaller, Strelka and novoBreak in the IS4 data. (d) Summary of SV breakpoints 

detected in COLO-829 data by novoBreak, BreakDancer, DELLY and Fermi.
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