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Key points

� The effects of short-term (ST; 10 days) and long-term (LT; 30 days) intermittent hypoxia (IH)
on blood pressure (BP), breathing and carotid body (CB) chemosensory reflex were examined
in adult rats.

� ST- and LT-IH treated rats exhibited hypertension, irregular breathing with apnoea and
augmented the CB chemosensory reflex, with all these responses becoming normalized during
recovery from ST- but not from LT-IH.

� The persistent cardiorespiratory responses to LT-IH were associated with elevated reactive
oxygen species (ROS) levels in the CB and adrenal medulla, which were a result of DNA
methylation-dependent suppression of genes encoding anti-oxidant enzymes (AOEs).

� Treating rats with decitabine either during LT-IH or during recovery from LT-IH pre-
vented DNA methylation of AOE genes, normalized the expression of AOE genes and ROS
levels, reversed the heightened CB chemosensory reflex and hypertension, and also stabilized
breathing.

Abstract Rodents exposed to chronic intermittent hypoxia (IH), simulating blood O2 saturation
profiles during obstructive sleep apnoea (OSA), have been shown to exhibit a heightened carotid
body (CB) chemosensory reflex and hypertension. CB chemosensory reflex activation also results
in unstable breathing with apnoeas. However, the effect of chronic IH on breathing is not known.
In the present study, we examined the effects of chronic IH on breathing along with blood pressure
(BP) and assessed whether the autonomic responses are normalized after recovery from chronic
IH. Studies were performed on adult, male, Sprague–Dawley rats exposed to either short-term (ST;
10 days) or long-term (LT, 30 days) IH. Rats exposed to either ST- or LT-IH exhibited hypertension,
irregular breathing with apnoeas, an augmented CB chemosensory reflex as indicated by elevated
CB neural activity and plasma catecholamine levels, and elevated reactive oxygen species (ROS)
levels in the CB and adrenal medulla (AM). All these effects were normalized after recovery from
ST-IH but not from LT-IH. Analysis of the molecular mechanisms underlying the persistent effects
of LT-IH revealed increased DNA methylation of genes encoding anti-oxidant enzymes (AOEs).
Treatment with decitabine, a DNA methylation inhibitor, either during LT-IH or during recovery
from LT-IH, prevented DNA methylation, normalized the expression of AOE genes, ROS levels,
CB chemosensory reflex and BP, and also stabilized breathing. These results suggest that persistent
cardiorespiratory abnormalities caused by LT-IH are mediated by epigenetic re-programming of
the redox state in the CB chemosensory reflex pathway.
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Introduction

Obstructive sleep apnoea (OSA) is a prevalent respiratory
disease affecting an estimated 10% of the population
(Punjabi, 2008; Peppard et al. 2013). OSA is characterized
by periodic obstruction of the upper airway during sleep,
resulting in a cessation of air flow leading to inter-
mittent hypoxia (IH). Population-based studies report
an increased incidence of hypertension in OSA patients
with strong correlation between the severity of apnoea
and hypertension (Young et al. 1997; Lavie et al. 2000;
Nieto et al. 2000; Peppard et al. 2000). Rodents exposed
to IH, simulating the blood O2 saturation profiles
during OSA, exhibit hypertension (Fletcher, 1995; Kumar
et al. 2006; Peng et al. 2006; Troncoso Brindeiro et al.
2007). Studies in humans and rodents suggest that
an exaggerated carotid body (CB) chemosensory reflex
contributes to IH-induced hypertension (Prabhakar et al.
2015). Disrupting the chemosensory reflex, either by
ablating the CB (afferent pathway) or by sectioning the
sympathetic nerves innervating the adrenal medulla (AM;
efferent pathway), prevents IH-induced hypertension in
adult rats (Fletcher et al. 1992; Peng et al. 2014). Emerging
evidence suggests that reactive oxygen species (ROS)
signalling is a major cellular mechanism contributing
to IH-induced activation of the CB chemosensory reflex
(Prabhakar et al. 2015).

In addition to causing hypertension, activation of the
CB chemosensory reflex by IH has been proposed to
contribute to progression of OSA by inducing unstable
breathing with greater incidence of apnoeas (Prabhakar,
2001). Such a possibility was partly supported by a finding
that adult rats exposed to IH in the neonatal period
exhibit increased incidence of apnoeas, and this effect
was attributed to an enhanced CB chemosensory reflex
(Nanduri et al. 2012). It remains unknown whether IH
also leads to irregular breathing with apnoea in adult
rodents. Therefore, one objective of the present study is to
determine the effects of IH on breathing.

An unresolved question is whether IH-induced changes
in BP and breathing triggered by the CB chemo-
sensory reflex are reversed during recovery from IH.
Understanding post-IH recovery is important because

continuous positive airway pressure (CPAP), which is
a major treatment option that improves oxygenation
and thereby prevents IH, is not effective with respect to
normalizing BP and breathing in a subset of OSA patients
(Thomas et al. 2004; Mulgrew et al. 2010; Dudenbostel
& Calhoun, 2012; Eckert et al. 2013). It is possible
that untreated OSA of long-term duration may lead
to CPAP-resistant hypertension and residual apnoeas.
Consequently, the second objective of the present study
was to test the hypothesis that prolonged IH exposure
leads to an irreversible CB chemosensory reflex resulting
in hypertension, as well as breathing instability that persist
during the recovery from long-term IH. We tested this
possibility by examining the recovery of BP, breathing and
CB chemosensory reflex responses in adult rats exposed
to short-term (10 days) and long-term (30 days) IH.

Methods

Experimental protocols were approved by the Institutional
Animal Care and Use Committee of the University of
Chicago. Experiments were performed on adult, male
Sprague–Dawley rats weighing between 200 and 300 g.
Rats were killed with an overdose of anaesthesia (urethane
3 g/kg; I.P.) at the termination of the experiment.

Exposure to IH

Adult male Sprague–Dawley rats were exposed to IH
between 09.00 h and 17.00 h, either for 10 days (ST-IH)
or 30 days (LT-IH), as described previously (Peng et al.
2003; Peng et al. 2014). Following either ST-IH or LT-IH,
rats were allowed to recover in room air for either 10 or
30 days, respectively. Control experiments were performed
on age-matched rats exposed to alternating cycles of
room air instead of hypoxia. Experiments were performed
on freely mobile rats fed ad libitum. All measurements
were performed within 1 day after IH exposures and
after completion of the recovery period. Decitabine was
administered by I.P. injection at a dose of 1 mg kg–1 every
other day either during the last 20 days of LT-IH or during
the room air recovery from LT-IH.
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Table 1. Sequence of primers

Gene Sequence Gene Bank number

18S For: CGC CGC TAG AGG TGA AAT TC NR 046237.1
Rev: CGA ACC TCC GAC TTT CGT TCT

Sod-1 For: GCG GTG AAC CAG TTG TGG TG NM 017050.1
Rev: GCT GGA CCG CCA TGT TTC TT

Sod-2 For: AGG AGA GTT GCT GGA GGC TA NM 017051.2
Rev: AGC GGA ATA AGG CCT GTT GTT

Catalase For: CGA CCG AGG GAT TCC AGA TG NM 012520.2
Rev: CCT GCC TCT TCA ACA GGC AA

Txnrd2 For: TCG TGT CCA ACT GCA GGA CAG NM 022584.2
Rev: CAC TTG TGA TTC CGT GTT CCA GG

Prdx4 For: CCT CGA AGA CAA GGA GGA CTG G NM 053512.2
Rev: GTG TCT CAT CCA CTG ATC TAC CCA

Gpx2 For: CCT CAA GTA TGT CCG CCC TG NM 183403.2
Rev:CTG CAT AAG GGT AGG GCA GC

Dnmt1 For: TGG TGT CTG TGA GGT CTG TCA NM 053354.3
Rev: GCC AAG TTA GGA CAC CTC CTC

Dnmt3a For: CAC AGA AGC ATA TCC AGG AG NM 001003958.1
Rev: GGC GGT AGA ACT CAA AGA AG

Dnmt3b For: GGA GTT CAG TAG GAC AGC AA NM 001003959.1
Rev: AGA TCC TTT CGA GCT CAG TG

Measurement of BP and breathing

BP was measured in conscious rats between 09.00 h and
11.00 h by tail-cuff method using a non-invasive BP system
(IITC Life Science Inc., Woodland Hills, CA, USA) as
described previously (Peng et al. 2006). Ventilation was
monitored by whole-body plethysmography in unsedated
rats (Peng et al. 2011; Nanduri et al. 2012). Base-
line ventilation was recorded for 3 h when the rats
were breathing room air. All recordings were made at a
mean ± SD ambient temperature of 25 ± 1°C.

Measurement of plasma norepinephrine

Arterial blood samples were collected from urethane
anaesthetized rats (1.2 g/kg; I.P.) in heparinized vials
(heparin, 30 IU ml–1; n = 8). Plasma was separated and
norepinephrine (NE) was extracted with cis-diol-specific
affinity gel, acetylated and quantitated by competitive
enzyme-linked immunoassay kit (Labor-Diagnostika,
Nord Gmbh & Co. KG, Nordhorn, Germany).

Measurement of CB sensory nerve activity

Sensory nerve activity of the CB was recorded in
anaesthetized rats as described previously (Peng et al.
2003). Briefly, the carotid sinus nerve was transected
where it joins the glossopharyngeal nerve, treated with
collagenase, and several nerve bundles were isolated.
Action potentials from one of the nerve bundles were
recorded using a monopolar platinum–iridium wire
electrode with a reference electrode placed in a nearby
neck muscle. In general, two or three action potentials

of varying size and amplitude were seen in a given
nerve bundle. CB activity was identified by the prompt
increase in sensory discharge in response to 30 s of
asphyxia and prompt decrease in response to 100% O2.
Reducing the pressure in the carotid sinus by occluding
the common carotid artery for 10 s caused either no
change or an increase in sinus nerve activity, but never
a decrease, indicating that the sensory nerve activity
originated from the CB but not from baroreceptors. For
analysis of sensory nerve activity, action potentials of
the same height, duration and shape (i.e. single unit)
were selected using Spike Histogram software (Labchart
7 Pro; ADInstruments, Sydney, Australia). Arterial blood
samples were collected for measurement of O2 and CO2

partial pressures, as well as pH (ABL-5; Radiometer,
Copenhagen, Denmark).

Reverse transcription (RT) and quantitative real-time
PCR (qPCR) assay

Anti-oxidant enzyme (AOE) gene expression in the
CB and AM was analysed by qPCR assay using SYBR
GreenER (Invitrogen, Carlsbad, CA, USA) as described
previously (Nanduri et al. 2012). Briefly, RNA was
extracted from the CB (two CBs from a single rat) and
AM (one AM from a single rat) using Trizol (Thermo
Scientific, Waltham, MA, USA) and reverse-transcribed
using SuperScript III (Thermo Fisher). Relative mRNA
quantification, expressed as fold change (F), was calculated
using the formula F = 2−��CT where �CT is the
difference between the threshold cycles of the given target
cDNA and 18S rRNA, and �(�CT) is the difference
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between the �CT values under normoxia and IH. PCR
specificity was confirmed by omitting the template and
by performing a standard melting curve analysis. The
nucleotide sequences of primers used for qPCR are given in
Table 1.

DNA methylation assay

Genomic DNA was isolated from the AM and DNA
methylation status of AOE genes were analysed using
Epitect Methyl II custom PCR array (Qiagen Inc., Valencia,
CA, USA) as described previously (Nanduri et al. 2012).
Briefly, methylation-sensitive and insensitive restriction
enzymes were used to selectively digest unmethylated or
methylated DNA, respectively. The relative amount of
DNA remaining after each digestion was quantified by

real-time qPCR using primers that flanked CpG islands
near the target promoter region. Gene methylation status
expressed as percentage of cytosine methylated represents
the fraction of input genomic DNA containing two or
more methylated CpG sites in the targeted region of a
gene. Methylation status of the Sod2 gene (encoding super-
oxide dismutase 2) was analysed in the AM by bisulphite
sequencing. Genomic DNA was isolated and incubated
with 40% sodium bisulphite in 10 mM hydroquinone for
18 h at 55°C, which converted non-methylated cytosine to
uracil. The primers chosen based on the region of interest
(–2 to +1 kb from the transcription start site) were used to
amplify the bisulphite-treated DNA segments, which were
purified and sequenced. The ratio of signal C/(C + T) was
used for quantification of methylation at individual CpG
sites.
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Figure 1. Reversal of BP, breathing, CB sensory nerve activity and plasma NE responses to ST-IH
A and B, mean BP (MBP) (A) and breathing (B) in control (C), ST-IH exposed (ST-IH) and ST-IH exposed rats after
room air recovery for 10 days (Recovery). Arrowheads in (B) represent the incidence of spontaneous apnoeas.
C, top: analysis of irregular breathing by Poincarè plots of BBi (x-axis) vs. BBi+1 (y-axis) for 500 breaths analysed
in control (C), ST-IH exposed and ST-IH rats after room air recovery for 10 days (Recovery). Bottom: quantitation
of SD1, representing the SD of data points from the ascending 45º line, and SD2, representing the SD of data
points from the line orthogonal to SD1 shown at the top. D–F, number of apnoeas per hour (D), CB sensory nerve
activity (impulses per second, imp s–1) (E) and plasma norepinephrine (NE) levels (F) in control (C), ST-IH exposed
and ST-IH rats after room air recovery for 10 days (Recovery). Arterial PaO2 , PaCO2 and pH values during room air
breathing are shown for each group of rats in (E). Data are the mean ± SEM from eight rats for each treatment.
∗P < 0.01. ns, not significant compared to normoxic control rats (C).
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Measurement of malondialdehyde (MDA) levels,
aconitase, Sod2 and DNA methyltransferase (Dnmt)
activities

The CB and AM were homogenized in 10 volumes
of 20 mM phosphate buffer (pH 7.4) at 4°C and
centrifuged at 500 g for 10 min at 4°C. MDA levels
were analysed in the supernatant as described previously
(Peng et al. 2006) and are reported as nmol MDA (mg
protein)–1. Mitochondrial and cytosolic fractions were
isolated from the AM by differential centrifugation.
Aconitase enzyme activity was measured by monitoring
the increase in absorbance at 340 nm associated with
the formation of NADPH during the conversion of iso-
citrate to α-ketoglutarate. The rate of NADPH production
is proportional to aconitase activity and is expressed as

nmol isocitrate min–1 (mg protein)–1 (Khan et al. 2011).
Sod2 activity in the mitochondrial fractions was measured
by SOD assay kit-WST (Dojondo Molecular Technologies
Inc., Rockville, MD, USA). Protein concentrations were
determined and the data were normalized to mg protein.
Dnmt activity was analysed using a commercially available
kit (Active Motif, Carlsbad, CA, USA).

Immunoblot assay

Tissue lysates were fractionated by 6% polyacrylamide-
SDS gel electrophoresis and immunoblot assays were
performed with antibodies against Sod2 (dilution 1:3000;
Millipore, Billerica, MA, USA), Dnmt1 (dilution 1:2000;
Novus Biologicals, Littleton, CO, USA), Dnmt3a and
Dnmt3b (dilution 1:2000; Cell Signaling Technology,
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Figure 2. LT-IH induces persistent changes in BP, breathing, CB sensory nerve activity and plasma NE
levels
A and B, Mean BP (MBP) (A) and breathing (B) in control (C), LT-IH exposed and LT-IH exposed rats after room air
recovery for 30 days (Recovery). Arrowheads in (B) represent spontaneous apnoeas. C, top: analysis of irregular
breathing by Poincarè plots of BBi (x-axis) vs. BBi+1 (y-axis) for 500 breaths analysed in control (C), LT-IH exposed
and LT-IH rats after recovery in room air for 30 days (Recovery). Bottom: quantitation of SD1, representing the SD
of data points from the ascending 45º line, and SD2, representing the SD of data points from the line orthogonal to
SD1 shown at the top. D–F, number of apnoeas per hour (D), CB sensory nerve activity (impulses/second; imp s–1)
(E) and plasma norepinephrine (NE) levels (F) in control (C), LT-IH exposed and LT-IH rats after recovery in room air
for 30 days. Arterial PaO2 , PaCO2 and pH values during room air breathing are shown for each group of rats in (E).
Data are the mean ± SEM from eight rats for each treatment. ∗P < 0.01 compared to normoxic control rats (C).
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Beverly, MA, USA), TATA binding protein (dilution
1:2000; Abcam, Cambridge, MA, USA), and tubulin
(dilution 1:3000; Sigma-Aldrich, St Louis, MO, USA).

Statistical analysis

Data are expressed as the mean ± SEM. Statistical analysis
was performed by ANOVA and, for the analysis of
normalized data, the Wilcoxon–Mann–Whitney test was
used. P < 0.05 was considered statistically significant.

Results

Effect of ST-IH on BP, breathing and CB chemosensory
reflex normalize during room air recovery

Adult rats were exposed to alternating cycles of 5% O2 for
15 s and 5 min of room air, 9 episodes h–1 and 8 h day–1 for
10 days (ST-IH). This IH paradigm was shown to reduce
arterial blood O2 saturation from 97% to �80% with each

episode of hypoxia (Peng et al. 2014), which is similar to
the O2 desaturation observed in OSA patients (Young et al.
1993).

Rats exposed to ST-IH exhibited elevated mean BP
and displayed irregular breathing with apnoeas (cessation
of breathing for �3 breaths duration; Fig. 1A and
B). Irregular breathing was quantified by analysing the
breath-to-breath (BB) interval (BBi) vs. the subsequent
interval (BBi+1) for 500 breaths and presented as Poincarè
plots (Fig. 1C, top). Analysis of the SD of BB inter-
vals showed that SD1 (representing the y-axis) and
SD2 (representing the x-axis) were significantly greater
after ST-IH compared to pre-IH controls (Fig. 1C,
bottom). ST-IH-exposed rats showed increased incidence
of apnoeas compared to pre-IH controls (Fig. 1D).
Recovery in room air for 10 days completely normalized
BP and restored stable breathing (Fig. 1A–D).

To assess the effects of ST-IH on the CB chemosensory
reflex, baseline CB sensory nerve activity (afferent limb of
the reflex) and plasma NE levels, an index of sympathetic
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Figure 3. ROS levels in the CB and AM of ST-IH and LT-IH exposed rats
MDA levels and aconitase enzyme activity were monitored as indices of ROS generation. A and B, MDA levels in
CB and AM (A) and aconitase activity in mitochondrial and cytosolic fractions of AM (B) from control (C), ST-IH
and ST-IH exposed rats after recovery in room air for 10 days (Recovery). C and D, MDA levels in CB and AM (C)
and aconitase activity in mitochondrial and cytosolic fractions of AM (D) from control (C), LT-IH and LT-IH exposed
rats after recovery in room air for 30 days (Recovery). Data represent the mean ± SEM from five independent
experiments for each treatment (CB and AM tissues were pooled from two rats for each experiment). ∗P < 0.01.
ns, not significant compared to normoxic control rats (C).
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activation (efferent limb of the reflex), were monitored.
During room air breathing, arterial blood PO2, PCO2 and
pH of ST-IH-exposed rats being comparable with control
rats (Fig. 1E). CB sensory nerve activity and plasma NE
levels were elevated in rats exposed to ST-IH and these
effects returned to baseline values following room air
recovery (Fig. 1E and F).

Effects of LT-IH on BP, breathing and CB
chemosensory reflex persist during room air recovery

To examine the effects of LT-IH, rats were exposed to IH
for 30 days followed by 30 days of recovery in room air.
LT-IH resulted in elevated BP and irregular breathing with
apnoeas (Fig. 2A–D). CB sensory nerve activity and plasma
NE levels were elevated in LT-IH treated rats despite
arterial blood PO2, PCO2 and pH being comparable with
control rats (Fig. 2E and F). The effects of LT-IH on

BP, breathing, CB sensory activity and plasma NE levels
persisted during 30 days of recovery in room air (Fig. 2).

These results demonstrate that, unlike ST-IH, LT-IH
leads to irreversible changes in BP and breathing and these
effects are associated with persistent activation of the CB
chemosensory reflex.

LT-IH leads to persistent elevation of ROS levels
in the CB chemosensory reflex pathway

Previous studies suggest that ROS signalling is central
to IH-induced activation of the CB chemosensory reflex
(Prabhakar et al. 2006). We examined the effects of
ST- and LT-IH on ROS levels in the CB chemosensory
reflex pathway. ROS levels were monitored in the
CB (afferent limb of the chemosensory reflex) and
AM, a major end-organ of the sympathetic nervous
system (efferent limb of the chemosensory reflex). Two
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Figure 4. AOE gene expression in ST-IH and LT-IH treated rats after recovery in room air
A and B, qPCR analysis of mRNAs encoding superoxide dismutase 1 and 2 (Sod1, Sod2), catalase (Cat), thioredoxin
reductase (Txnrd2), peroxiredoxin 4 (Prdx4) and glutathione peroxidase 2 (Gpx2) in the CB (A) and AM (B) of
control (C) and ST-IH exposed rats after recovery in room air for 10 days (ST-IH Recovery). C and D, qPCR analysis
of Sod1, Sod2, Cat, Txnrd2, Prdx4 and Gpx2 mRNAs in the CB (C) and AM (D) of control (C) and LT-IH exposed
rats after recovery in room air for 30 days (LT-IH Recovery). AOE gene expressions was normalized to 18S rRNA
and expressed as the relative change from normoxic controls (C). Data are the mean ± SEM from five independent
experiments for each treatment. ∗P < 0.01. ns, not significant compared to controls (C).
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approaches were employed to determine ROS levels:
one by monitoring MDA levels, which represent the
oxidized lipids (Ramanathan et al. 2005) and the other
by measuring the aconitase enzyme activity, a robust
in vivo biochemical marker of ROS in the cytosolic
and mitochondrial compartments (Gardner et al. 1995).
MDA levels were determined in the CB and AM,
whereas aconitase activity was determined in in the AM
only, because isolating the cytosolic and mitochondrial
fractions was not feasible in the CB as a result of the limited
availability of the tissue (wet weight of CB is �60 μg).

MDA levels were elevated the CB and AM, and aconitase
activity decreased in the cytosolic and mitochondrial
fractions in the AM of ST-IH exposed rats. These effects
were reversed following room air recovery (Fig. 3A
and B). LT-IH also increased ROS levels, as measured by
MDA levels in the CB and AM and aconitase activity in
the AM (Fig. 3C and D), although ROS levels remained
elevated after room air recovery for 30 days (Fig. 3C
and D).

LT-IH leads to persistent down-regulation of AOE
gene expression

The mechanism(s) underlying the persistent elevation of
ROS levels in the CB and AM during recovery from LT-IH
were examined. We previously reported that reduced
expression of AOEs contributes in part to the IH-induced
increase in ROS levels in the CB and AM (Nanduri et al.
2009). Therefore, we determined AOE gene expression
in the CB and AM of ST-IH and LT-IH exposed rats
after 10 and 30 days of recovery in room air, respectively.
The AOE genes analysed were: superoxide dismutase 1
and 2 (Sod1, Sod2), catalase (Cat), thioredoxin reductase
2 (Txnrd2), peroxiredoxin 4 (Prdx4) and glutathione
peroxidase 2 (Gpx2). The AOE mRNA levels in both CB
and AM of ST-IH exposed rats after 10 days of recovery
were almost the same as controls (Fig. 4A and B). By
contrast, all six AOE genes were significantly reduced
in CBs of LT-IH exposed rats after 30 days of recovery,
whereas AM showed reduced expression of Sod1, Sod 2,
Txnrd2 and Prdx4 compared to controls (Fig. 4C and D).

CpG region 1

Transcription start site

(6 CpG sites)

unmethylated

50% methylated

75% methylated(25 CpG sites)

C

LT-IH Recovery

1 2

5
3 4

C

CpG region 4

A

%
 m

e
th

y
la

te
d
 C

*

*
*

*

0%

2%

4%

6%

8%

10%

12%

ns

nsC
LT-IH Recovery

0%

2%

4%

6%

8%

%
 m

e
th

y
la

te
d
 C

B
C
ST-IH Recovery ns

ns

ns

ns

nsns

Sod-1 Sod-2 Cat Txnrd2 Prdx4 Gpx2 Sod-1 Sod-2 Cat Txnrd2 Prdx4 Gpx2

Figure 5. LT-IH induces DNA methylation of AOE genes
A and B, DNA methylation status of AOE genes in the AM of control rats (C) and ST-IH rats after recovery in room
air for 10 days (ST-IH Recovery) and LT-IH rats after recovery in room air for 30 days (LT-IH Recovery). Data are
expressed as percentage of methylated cytosines (methylated C). C, top: schematic presentation of the Sod2 locus
showing CpG sites and PCR amplicons (1–5) used for the bisulphite analysis. Bent arrow indicates transcription
start site. The percentage of each cytosine methylation was calculated from the formula C/C + T, where C and
T represent the peak heights of cytidine and thymidine, respectively. Bottom: methylation status of CpG sites in
regions 1 and 4 are shown in the AM of control (C) and LT-IH rats after recovery in room air for 30 days (LT-IH
Recovery). Data are shown as the mean ± SEM from three independent experiments in each group. ∗P < 0.01.
ns, not significant compared to normoxic control rats (C).
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LT-IH induces increased DNA methylation of AOE
genes

Epigenetic regulation by DNA methylation leads to a
long-lasting suppression of gene expression (Miranda &
Jones, 2007). We investigated whether increased DNA
methylation accounts for persistent down-regulation of
AOE gene expression by LT-IH. DNA methylation was
analysed in AM tissues of ST-IH and LT-IH exposed rats
after 10 and 30 days of room air recovery, respectively.
ST-IH exposed rats exhibited no changes in DNA
methylation of AOE genes after 10 days of recovery
(Fig. 5A). By contrast, LT-IH rats showed increased DNA
methylation of Sod1, Sod2, Txnrd2 and Prdx4 (but not of
Cat and Gpx2) after 30 days of room air recovery (Fig. 5B).
These results suggest that LT-IH but not ST-IH leads to
increased DNA methylation of AOE genes.

DNA methylation occurs at cytosine residues located
immediately 5′ to a guanine residue, which are known as
CpG dinucleotides and when found as clusters are referred
to as CpG islands (Illingworth & Bird, 2009). We aimed to
identify specific CpG dinucleotides that were methylated
in response to LT-IH using the Sod2 as a representative
AOE gene. Bisulphite sequencing analysis was performed
using primers that spanned from –2 to +1 kb relative to the
transcription start site of the Sod2 gene (Fig. 5C, top). Only
a single CpG dinucleotide in the CpG region 4 at +157 bp,

out of the 25 CpG sites, was found to be methylated in
AM samples of LT-IH treated rats after 30 days of room air
recovery (Fig. 5C, bottom). Six CpG sites in CpG region 1
were constitutively methylated and LT-IH had no further
effect (Fig. 5C, bottom).

LT-IH increases Dnmt activity

DNA methylation is catalysed by Dnmt, which include
Dnmt1, Dnmt3a and Dnmt3b (Bird, 2002). To further
establish the effects of LT-IH on DNA methylation, Dnmt
enzyme activity, mRNA and protein levels of Dnmt 1, 3a
and 3b were determined in the AM samples of rats after
30 days of recovery from LT-IH. Dnmt enzyme activity
(but not Dnmt mRNA levels) was elevated after recovery
from LT-IH (Fig. 6A and B). The increased enzyme activity
was associated with increased Dnmt1 and Dnmt3b (but
not Dnmt3a) protein levels (Fig. 6C and D).

Decitabine treatment prevents LT-IH-induced DNA
methylation

We next investigated whether treating rats with decitabine,
an inhibitor of DNA methylation (Yoo & Jones, 2006),
either during LT-IH or during recovery from LT-IH, pre-
vents DNA methylation of AOE genes. Rats were treated
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not significant compared to normoxic control rats
(C).
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with decitabine (1 mg kg–1) via an I.P. route every alternate
day during 10–30 days of IH exposure, as well as during
30 days of recovery from LT-IH (Fig. 7, top). The choice
of decitabine dose and frequency was based on pre-
liminary studies, which showed that doses higher than
1 mg kg–1 or the administration of 1 mg kg decitabine–1

every day caused hair loss and impaired mobility of the
rats. Decitabine treatment, either during LT-IH or during
LT-IH recovery, prevented DNA methylation of AOE genes
(Fig. 7, bottom).

Decitabine treatment during LT-IH recovery restores
AOE gene expression, ROS levels and normalizes
cardiorespiratory functions

We next examined the effects of decitabine treatment
during LT-IH recovery on AOE gene expression in
the CB and AM. Decitabine treatment prevented the
down-regulation of AOE gene expression in the CB and
AM, and restored Sod2 protein, enzyme activity and
normalized ROS levels in the AM (Fig. 8). Remarkably,
decitabine treatment also normalized the CB sensory
activity, plasma NE levels, BP and breathing to pre-IH
levels (Fig. 9).

Discussion

The major findings of the present study are: (i) IH, in
addition to causing hypertension, as reported previously
(Nieto et al. 2000; Peng et al. 2006; Peng et al. 2014),
also leads to irregular breathing with a high incidence of
spontaneous apnoeas, and these effects were associated
with a heightened CB chemosensory reflex; (ii) The
adverse effects of ST-IH on BP, breathing and CB chemo-
sensory reflex are reversible, whereas those caused by
LT-IH are irreversible upon room air recovery; and (iii)
the persistent effects of LT-IH on BP, breathing and CB
chemosensory reflex are partly the result of a long-lasting
suppression of AOE genes by DNA methylation, resulting
in persistent elevation of ROS levels in the CB chemo-
sensory reflex pathway (Fig. 10).

Two earlier studies that examined the effects of IH
on breathing did not identify any abnormalities in
anaesthetized preparations (Peng & Prabhakar, 2004;
Rey et al. 2004), suggesting that anaesthesia masked
the effects of IH on breathing stability. The increased
incidence of apnoeas was associated with elevated CB
sensory nerve activity and plasma NE levels, indicating
an enhanced CB chemosensory reflex. We attribute the
IH-induced abnormal breathing to an augmented CB
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genes with decitabine
A and B, rats were treated with either vehicle or
decitabine during 10–30 days of exposure to LT-IH (A) or
from days 30–60 during the period of recovery from
LT-IH in room air (B). DNA methylations of Sod1, Sod2,
Cat, Txnrd2, Prdx4 and Gpx2 (AOE) genes were analysed
in the AM and presented as percentage of normoxic
control rats treated with decitabine (dotted line). Data
are the mean ± SEM from three independent
experiments in each group. ∗P < 0.01. ns, not
significant compared to normoxic control rats (C).
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chemosensory reflex, which is known to cause breathing
instability with apnoea (Cherniack & Longobardo, 2006;
Dempsey et al. 2012; Marcus et al. 2014). Apnoea can
arise either as a result of a defective respiratory rhythm
generation by the central nervous system (central apnoea)
or obstruction of the upper airway (obstructive apnoea).
Whether the IH-induced apnoeas are of central origin or of
an obstructive phenotype remains to be determined. In the
present study, we employed an IH paradigm that produces
blood O2 saturation profiles similar to those encountered
in sleep apnoea patients. Various paradigms of IH have
been employed in other studies (Prabhakar et al. 2015).
It remains to be investigated whether paradigms of IH,
other than that employed in the present study, also lead to
irregular breathing with apnoea. Nonetheless, these results
demonstrate that activation of the CB chemosensory reflex
by IH, in addition to causing hypertension, also results in
irregular breathing with apnoea.

An important finding of the present study concerns
the reversibility of cardiorespiratory responses during
recovery from IH. Although the cardiorespiratory
responses to ST-IH were completely reversible, those
evoked by LT-IH persisted during the 30 day recovery
period. The CB chemosensory reflex, which is a major
contributor to autonomic responses to IH (Prabhakar et al.
2015), completely reversed after terminating ST-IH but
persisted after recovery from LT-IH. These findings suggest
that persistent augmentation of the CB chemosensory
reflex contributes to the irreversible cardiorespiratory
changes caused by LT-IH.

How might LT-IH lead to irreversible increase in the CB
chemosensory reflex? Previous studies suggest that ROS
signalling is central to IH-induced activation of the CB
chemosensory reflex (Peng & Prabhakar, 2003; Prabhakar
et al. 2006). IH increases ROS levels in glomus cells, the
primary O2 sensing cells of the CB (Makarenko et al.
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2016), nucleus tractus solitarious and rostral ventrolateral
medulla, the two major brainstem areas associated with
processing of sensory information from the CB, and, in
AM, a major end organ of the sympathetic nervous system
(Kumar et al. 2006; Souvannakitti et al. 2009; Peng et al.

2014). ROS in turn activates the CB and AM chromaffin
cells via activating neurotransmitter mechanisms, as well
as ion channels (Prabhakar et al. 2015). We previously
reported that insufficient transcriptional activation of
AOEs by the hypoxia-inducible factor-2 contributes in
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Figure 9. Decitabine treatment during recovery from LT-IH normalizes CB sensory nerve activity, plasma
NE levels, BP and breathing
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part to IH-induced increase in ROS levels (Nanduri et al.
2009). Normalization of the CB chemosensory reflex
during recovery from ST-IH was reflected by a return
of ROS levels and also AOE gene expression to control
levels. By contrast, failure of the recovery of CB chemo-
sensory reflex from LT-IH was associated with a persistent
increase in ROS levels and down-regulation of AOE gene
expression in the CB and AM. These findings indicate that
mechanism(s) other than transcriptional factor-mediated
regulation contribute to the persistent suppression of AOE
genes and elevated ROS levels by LT-IH, which, in turn,
lead to long-lasting activation of the CB chemosensory
reflex.

What mechanism(s) might contribute to persistent
suppression of AOE genes by LT-IH? Epigenetic changes
involving DNA methylation lead to long-term suppression
of gene expression (Bird & Wolffe, 1999; Miranda &
Jones, 2007). DNA methylation is a time-dependent
process. Previous studies have shown that de novo DNA
methylation does not contribute to the silencing of gene
expression during the initial stages of a given stimulus
(Gautsch & Wilson, 1983; Pannell et al. 2000); instead,
it is initiated during prolonged perturbations leading
to long-lasting suppression of gene expression (Niwa
et al. 1983). Consistent with these studies, ST-IH-induced
down-regulation of AOE genes was reversible, with no
increase in DNA methylation during the room air recovery.
On the other hand, there is evidence to demonstrate that
DNA methylation contributes to persistent suppression of
AOE genes by LT-IH. First, down-regulation of AOE genes
was associated with increased DNA methylation. Second,
using the Sod2 as a representative AOE gene, we identified
a single CpG dinucleotide near the transcription initiation
site as a target of LT-IH-induced DNA methylation.
Third, LT-IH increased Dnmt enzyme activity, which is an
essential prerequisite for DNA methylation, and this effect
was associated with increased Dnmt1 and Dnmt3b protein
levels. Fourth, decitabine treatment either during LT-IH or
during recovery from LT-IH prevented DNA methylation
of AOE genes. Fifth, decitabine treatment during recovery
from LT-IH normalized AOE gene expression and ROS
levels, which were associated with normalization of the
CB chemosensory reflex and cardiorespiratory functions.
Although DNA methylation was assessed only in the
AM, similar changes probably also occur in the CB
because both these organs exhibit similar responses to IH.
However, further studies are needed to determine whether
genes other than AOEs are also targets of LT-IH-induced
DNA methylation and whether LT-IH induces DNA
methylation in tissues other than CB and AM.

How might LT-IH activate Dnmts and the ensuing DNA
methylation? Previous studies indicate that ROS can either
directly activate DNA methylation (Wu & Ni, 2015) or
indirectly through affecting the protein stability of Dnmts
(Lin & Wang, 2014). It may be that ROS generated during

LT-IH trigger de novo methylation by activating Dnmts,
resulting in persistent down-regulation of AOE genes,
which in turn leads to irreversible increase in ROS levels
(i.e. a positive feedforward mechanism). However, detailed
investigations are needed to assess such a possibility, and
these are beyond the scope of the present study.

Emerging evidence suggests that DNA methylation
mediates adult-onset diseases as a result of perturbations
in the neonatal period (Santos & Dean, 2004; Anway
et al. 2005; Ho et al. 2006; Dolinoy et al. 2007; Feinberg,
2007). A previous study showed that rats exposed to
IH in the neonatal period, simulating apnoea of pre-
maturity, exhibit DNA hypermethylation of the Sod2 gene,
and the resulting persistent oxidative stress contributes
to hypertension in adulthood (Nanduri et al. 2012).
The present study demonstrates that de novo DNA
methylation can also occur in adult life in response to
prolonged IH. These findings demonstrate a hitherto
uncharacterized role for DNA hypermethylation in
evoking the cardiorespiratory abnormalities elicited by
long-term environmental perturbations in adults.
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Translational perspective

Although CPAP, the current treatment of choice for OSA, improves oxygenation, it is not effective with
respect to normalizing BP and restoring stable breathing in a subset of OSA patients (Mulgrew et al.
2010; Dudenbostel & Calhoun, 2012). The mechanisms underlying the ineffectiveness of CPAP in these
patients are not known. Because the paradigm of IH employed in the present study produces blood O2

saturation profiles similar to that seen during OSA, our findings might be of relevance to our under-
standing of CPAP-resistant cardiorespiratory abnormalities in OSA patients. We speculate that CPAP
resistance may be a consequence of LT-IH associated with chronically undiagnosed and untreated
OSA, leading to persistent CB chemosensory reflex activation through epigenetic programing of the
redox state. In this scenario, the administration of DNA hypomethylating drugs, which are currently
used for cancer therapy, might correct the altered redox state in the CB chemosensory reflex pathway
and thereby correct cardiorespiratory abnormalities in CPAP-resistant OSA patients.
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