
A Metric and Workflow for Quality Control in the Analysis of 
Heterogeneity in Phenotypic Profiles and Screens

Albert Gougha,b, Tongying Shuna, D. Lansing Taylora,b, and Mark Schurdaka,b

aUniversity of Pittsburgh Drug Discovery Institute, 3501 Fifth Avenue, Pittsburgh, PA, USA

bDept. of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Avenue, 
Pittsburgh, PA USA

Abstract

Heterogeneity is well recognized as a common property of cellular systems that impacts 

biomedical research and the development of therapeutics and diagnostics. Several studies have 

shown that analysis of heterogeneity: gives insight into mechanisms of action of perturbagens; can 

be used to predict optimal combination therapies; and to quantify heterogeneity in tumors where 

heterogeneity is believed to be associated with adaptation and resistance. Cytometry methods 

including high content screening (HCS), high throughput microscopy, flow cytometry, mass spec 

imaging and digital pathology capture cell level data for populations of cells. However it is often 

assumed that the population response is normally distributed and therefore that the average 

adequately describes the results. A deeper understanding of the results of the measurements and 

more effective comparison of perturbagen effects requires analysis that takes into account the 

distribution of the measurements, i.e. the heterogeneity. However, the reproducibility of 

heterogeneous data collected on different days, and in different plates/slides has not previously 

been evaluated. Here we show that conventional assay quality metrics alone are not adequate for 

quality control of the heterogeneity in the data. To address this need, we demonstrate the use of the 

Kolmogorov-Smirnov statistic as a metric for monitoring the reproducibility of heterogeneity in an 

SAR screen, describe a workflow for quality control in heterogeneity analysis. One major 

challenge in high throughput biology is the evaluation and interpretation of heterogeneity in 

thousands of samples, such as compounds in a cell-based screen. In this study we also demonstrate 

that three heterogeneity indices previously reported, capture the shapes of the distributions and 

provide a means to filter and browse big data sets of cellular distributions in order to compare and 

identify distributions of interest. These metrics and methods are presented as a workflow for 

analysis of heterogeneity in large scale biology projects.
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1 Introduction

Heterogeneity is a property of cellular systems that implies the presence of cell-to-cell 

variability with respect to one or more measurable traits (phenotypes) at the molecular-

cellular level. Because heterogeneity is a property of the population of cells, it can be 

complex and therefore difficult to characterize as a single parameter. Large scale biology 

projects typically span many days or even months, and non-biological variation in 

heterogeneity over the course of a study could mask the true biological heterogeneity, 

suggesting the need for quality control. The details of the distributions of a trait can be 

visualized as a histogram of the cell population, but visualization of the large numbers of 

histograms generated in high throughput phenotypic screens is not practical without 

appropriate informatics tools, and qualitative comparisons are not sufficient for quality 

control. In this chapter we present a simple metric for quality control of heterogeneity, and 

an approach to evaluating heterogeneity in large-scale biology and drug discovery programs 

consisting of measurements on thousands to millions of samples, which can be applied to 

High Content Screening, High Throughput Microscopy, flow cytometry, digital pathology or 

any method that generates large datasets of cells [1-6].

1.1 Implications of cellular heterogeneity in biomedical research, drug discovery and 
diagnostics

It is now well established that cellular heterogeneity is an intrinsic feature observed in cell 

systems, even when composed of isogenic populations of cells. Cell-to-cell variability is not 

simply the result of intrinsic noise in molecular networks; rather it is often the result of 

deterministic regulatory molecular mechanisms that remain largely uncharacterized [7-9]. 

There is growing evidence that some heterogeneity is related to physiological and 

evolutionary adaptations to new challenges [10, 11]. A recent study suggests that 

heterogeneity can be decomposed into different groups of biomarkers that are consistent 

with known signaling pathways, implying a mechanistic basis for the cell-to-cell variation 

[12]. It has also been shown that patterns of signaling heterogeneity can distinguish cellular 

populations with different drug sensitivities [13, 14]. It has been proposed that combination 

therapies can be devised through computational analysis of heterogeneity [15]. Furthermore, 

the association between cellular heterogeneity and adaptation [10] suggests that ignoring the 

heterogeneity in the cellular response may lead to the selection of compounds to which cells 

will rapidly adapt, leading to a loss of efficacy in drug development programs. Thus, it is 

important to incorporate heterogeneity analysis in large scale screens in drug discovery, and 

phenotypic profiles in basic biomedical research, where the goal is to relate a cellular 

phenotype with some condition, such as a disease state, compound effect, protein 

knockdown, or other sample state or treatment.

Pluripotent stem cells are a platform with tremendous potential for development of patient 

specific disease models, for modeling biological development, and for regenerative 

medicine. However, stem cells exhibit heterogeneity on several levels: in the functional 

capacity to differentiate; in mRNA expression profiles; and in epigenetic and genetic state 

[16]. Studies of differentiating cells have found that heterogeneity reflects the presence of an 

evolving mixture of phenotypically distinct subpopulations, consistent with a hypothesis that 
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differentiating cells transit through multiple robust and discrete phenotypic states [17-19]. 

Improved understanding and manipulation of the differentiation of stem cells will require 

tools to reliably characterize and monitor the evolution of the distributions of these 

subpopulations and their associated phenotypes.

In typical cell-based phenotypic assays, compound activity is characterized by the well 

average value of a feature or a combination of features, but the cell level data is usually 

ignored in order to achieve higher throughput. Metrics have been developed to address assay 

variability for large scale screens/profiles including signal-to-background and Z’-factor for 

inter-plate and inter-day variability [20-22]. However, these metrics do not address the 

biological heterogeneity present in individual cell populations. Therefore, new tools and 

criteria are required for analyzing and comparing biological heterogeneity in large scale 

screens/profiles, and for sorting and identifying perturbagens with potentially interesting or 

novel effects on the distribution of cell response among a large number of patterns of 

cellular activity. Measuring heterogeneity is particularly important when applying 

quantitative systems pharmacology (QSP) to drug discovery programs. A key tenet of our 

implementation of QSP is the need to have the phenotypic assays that reflect the 

heterogeneity in patients as determined by a range of “omics” profiles.

1.2 Challenges in the Analysis and Interpretation of Heterogeneity in High Content 
Phenotypic Screens/Profiles

There are several challenges to large scale analysis of heterogeneity and the comparison of 

heterogeneity between samples, assay runs, and laboratories. These challenges include: 1) 

large size and complexity of the cell level data in high content screens/profiles; 2) lack of a 

standard approach to quality control in measuring heterogeneity; 3) lack of standards for the 

characterization of the assay and detection system contributions to the measured 

heterogeneity; and 4) lack of adequate tools to quickly quantify, compare, review and 

interpret heterogeneous responses.

In large scale analysis of biological activity taking the average of a population is a quick way 

to reduce the data to a size that can be more easily managed, filtered and interpreted, but 

neglects the information contained in the distribution of cellular responses. The complexity 

of the cell distributions and the lack of a standard analytical approach for interpreting 

heterogeneity remains a barrier to incorporating such analyses into a project, despite 

evidence that investigation of heterogeneity leads to new insights into the underlying cellular 

functions [23, 24]. Analyzing all the cellular data in a compound screen, RNAi screen, 

genome-wide mutagenesis [25] or other large biology project is a “big data” problem that 

has not been adequately addressed. For a screen of 100,000 compounds and 1,000 cells/well 

there will be 100 million data points for each feature (potentially 4-20 or many more) 

measured in the screen. Similarly, an SAR of ~240 compounds with 10 concentrations, 

triplicate wells, duplicate runs and ≥ 1,000 cells/well, such as the data set evaluated in this 

chapter, can easily amount to well over 10 million cells. Data that is well organized in a 

database may be easily extracted by query, but efficiently analyzing 30-500 million or more 

data points acquired over several months for patterns in population distributions at least 
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requires some thought and planning, and tools for manipulating and comparing distributions. 

In this chapter we present an approach to that process.

A second challenge in the heterogeneity analysis is quality control. The standardization of 

quality control in high throughput screening through the use of the Z’-factor [22, 26], or the 

strictly standardized mean difference [27], has enabled comparison of assay performance 

over a wide range of assay types, routine monitoring of assay performance during a screen, 

and a statistical basis for understanding the impact of assay variability on the selection of 

hits from a screen. For dose-response assays, the V-factor, a generalization of the Z-factor, 

provides a robust QC measure that takes into account the complete dose-response, rather 

than just the maximum and minimum response [21, 28]. To be able to compare cellular 

heterogeneity in order to interpret the biological meaning, standards and quality control are 

needed to ensure reproducibility. Present assay development guidelines for high content 

phenotypic screens address metrics for assay variability [20, 21], but do not address the 

reproducibility of the distributions within the wells. The normalization of well average data 

to on plate controls adequately corrects for plate-to-plate variability at the well level but is 

not typically applied to the cell level data. It is important to emphasize that in typical use, 

good Z’-factors do not necessarily indicate that the cellular distributions (i.e. heterogeneity) 

within the wells are consistent from plate-to-plate, as we demonstrate here.

A third challenge in heterogeneity analysis is the lack of reference standards for calibration 

or characterization of most high content methods and in particular phenotypic methods. For 

example, in HCS spatial or temporal variation of illumination intensity or detection 

sensitivity can contribute “detection system variation” to the measured values. While 

approaches to detection system calibration and characterization have been published [14, 

29-31], so far standards such as those routinely used in flow cytometry [32] have not been 

widely adopted in imaging. Typically in screening, each plate will be normalized to the 

control wells [20, 21]. This approach compensates for the average signal level on each plate; 

however, to compare distributions from plate-to-plate also requires normalization of the cell 

level data between plates. Optimally, attention to protocols during assay development, 

validation and screening/profiling can minimize the variation from plate-to-plate. Here we 

demonstrate that normalization can be an effective means to compensate for plate-to-plate 

variation in the range of intensities, but not necessarily the variation in the shape of the 

distributions. Although there are many published reports of heterogeneity in cellular 

systems, the measurements have been made using different methods and each laboratory has 

taken a different approach to characterizing the heterogeneity [3, 14, 33-35]. As a result, 

there are no established metrics for heterogeneity. The methods developed and presented 

here are based on analysis of the distributions of the cellular features and should therefore, 

be generally applicable to any measurement which captures the cell-to-cell variation in a 

parameter(s). In this chapter we suggest a workflow for quality control of the heterogeneity 

in phenotypic assays and metrics for monitoring heterogeneity from plate-to-plate.

A final challenge is to quickly quantify, compare, review and interpret large numbers 

samples which exhibit varying heterogeneity in cellular responses. One approach has been to 

segment the population into discrete subpopulations using Gaussian mixture models or k-

means clustering which effectively reduce the scale of the data [12, 36]. This approach can 
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be effective when discrete subpopulations can be identified, but may not be effective in large 

scale projects where the changes in heterogeneity may be more subtle, or the heterogeneity 

may be more complex. An alternative approach is to characterize the heterogeneity using 

shape parameters [14, 34]. This approach makes no assumptions about the shape of the 

distribution, or the number of subpopulations, but does not provide the detailed 

segmentation of the cell population. Here we demonstrate the use of a general set of 

heterogeneity indices, in combination with an informatics tool in a workflow that organizes 

large numbers of distributions to compare and identify subsets of interest. This approach 

enables analysis of heterogeneity on a large scale, and could also be used to identify 

distributions that would benefit from more detailed segmentation analysis.

2 Material and methods

2.1 Sample preparation

Reagents and Cells—Formaldehyde (37%), Triton X-100, and Tween 20 were purchased 

from Sigma-Aldrich (St. Louis, MO). Recombinant human interleukin-6 (IL-6) was 

purchased from R & D Systems, Inc. (Minneapolis, MN). Mouse monoclonal anti-pSTAT3-

Y705 (Cat# 612357) primary antibodies were purchased from Becton Dickenson 

Biosciences (San Diego, CA). The secondary goat anti mouse-IgG conjugated with Alexa 

Fluor 488 (Cat# A11001) was purchased from Life Technologies (Grand Island, NY). 

Hoechst 33342 was purchased from Invitrogen (Eugene, OR). Black, clear bottom, 384 well 

HCS Assay Plates (Cat# 781091) were purchased from Greiner Bio-One (Monroe, NC). 

Cal33 human head and neck squamous cell carcinoma (HNSCC) cells [37, 38] were kindly 

provided by Dr. Gerard Milano (University of Nice, Nice, France). The cell line was 

maintained in Dulbecco’s modified Eagle’s medium (DMEM, Life Technologies) 

supplemented with 10% fetal bovine serum (Gemini Bio-Products, West Sacramento, CA), 

100 U/ml penicillin and 100 mg/ml streptomycin (HyClone, Logan, UT). Cells were 

maintained in humidified incubators at 37°C with 5% CO2.

Compound Dilutions—Compounds were tested as 10-point, 3-fold serial dilutions over a 

range from 50 μM-2.5nM (except as noted), in triplicate on the plate, and in duplicate runs. 

Master compound dilutions were prepared from 10 mM stock concentrations (except as 

noted for specific compounds) in DMSO in 384 well plates by serial dilution into 100% 

DMSO on the Bravo liquid handling platform (Velocity11, Menlo Park, CA). Replicate 

daughter plates containing 2 μL of the serially diluted compounds were prepared using a 

384-well transfer on the Bravo. Aluminum adhesive plate seals were applied and plates were 

stored at −20°C. Each assay plate included 32 negative (+IL-6) and 32 positive (−IL-6) 

control wells which were used to calculate the Z’-factor and for normalization.

Assay Plate Processing—Cal33 cells were seeded in 384-well plates using a MultiDrop 

(Thermo Scientific) to dispense 2000 cells in 40 μL/well to reach 50% confluence on the day 

of fixation. The cells were incubated at 37°C for 24 hours, then the medium was replaced 

with serum free medium and the cells were incubated for another 24 hours. To establish the 

optimal IL-6 concentration, STAT3 phosphorylation was induced by IL-6 in a 2-fold serial 

dilution for 10 final concentrations descending from 100 ng/mL. For inhibition of STAT3 
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phosphorylation, compound daughter plates were withdrawn from storage, thawed in a 37°C 

dry oven, centrifuged for 1–2 min at 50 × g, and the plate seals were removed. Intermediate 

dilution plates were generated using a Matrix pipette to transfer 38 mL of serum free 

medium (SFM) into the wells of the daughter plates. The diluted compounds were mixed by 

repeated aspirate-dispense cycles on the Bravo, and then 5 μL of diluted compound was 

transferred into the assay plates. After 3 hours of compound incubation at 37°C, 5 μL of a 

10x stock solution of IL-6 was added using the Bravo for a final concentration of 50 ng/mL, 

and the plates were spun at 50 × g for 1 minute then incubated for 14 minutes. The plates 

were fixed by the addition of 50 μL of 7.4% paraformaldehyde (37°C) containing 4 μg/mL 

Hoechst 33342 in PBS using the Elx405 plate washer dispenser (BioTek, Winooski, VT). 

After 30 min at room temperature (RT), the fixed cells were washed twice with 80 μL PBS. 

PBS was aspirated, and the fixed cells were permeabilized by the addition of 50 μL of 95% 

ice-cold methanol. After 30 min on ice, the 95%methanol was removed from the assay 

plates and the cell monolayers were washed twice with Tween 20 blocking buffer, and then 

incubated for 30 min at RT in blocking buffer. 24.5 μL of a 1:100 dilution of mouse anti-

pSTAT3-Y705 primary antibody was added using a Matrix pipette and incubated for 1 h at 

RT in the dark. After washing twice with blocking buffer on the plate washer, the plates 

were incubated 15 min. at RT, the buffer was aspirated and 24.5 μL of a 1:1000 dilution of 

the secondary antibody added with a Matrix pipette and incubated for 1 h at RT in the dark. 

The plates were then washed twice with 80 μL PBS, sealed with foil and stored at 4°C.

2.2 High Content Screening

Images were collected on the ImageXpress Ultra (IXU) (Molecular Devices LLC, 

Sunnyvale, CA) a point-scanning confocal HCS platform. The IXU was used to sequentially 

acquire two fluorescence channels, Hoechst (Ch1) and Alexa 488 (Ch2), for 2 fields per well 

using a 20x (0.45-NA) ELWD objective. The Hoechst channel was excited using the 405nm 

laser at 10% power with emission at 447±60nm, and the Alexa488 channel used the 488nm 

laser at 10% power with emission at 514±17nm. Pixels were binned by 2 with 2000 scan 

lines collected over an area 800x800um. Image analysis was carried out using the 

Translocation Enhanced (TE) application in the MetaExpress software (Molecular Devices 

LLC, Sunnyvale, CA) as follows. The nuclear compartment was identified in Ch1 with a 

threshold intensity of 1500 above background and an area of 20-1000μm2 with auto 

separation of touching compartments (the nuclear mask). Analysis of the distributions of 

nuclear intensities on all of the plates in this data set showed that although there was some 

variation in the range of intensities from plate-to-plate the vast majority of nuclei on all the 

plates had average intensities that were well above the threshold used to segment the images, 

resulting in consistent nuclear regions. The nuclear mask was eroded 1μm to avoid edge 

effects and to create the Inner region mask in Ch2. The activation of STAT3 in each cell was 

measured as the Mean Inner IntensityCh2 (MII) of the Alexa 488 label within the Inner 

region mask in Ch2. For each well the average STAT3 activity was calculated as the average 

of the MII for all the cells in the well. All the calculated cell and well features were 

automatically stored in the MDCStore (Molecular Devices, Sunnyvale, CA) SQL-Server 

(Microsoft, Redmond, WA) database. For the analyses presented here, the data were 

extracted directly into Spotfire (TIBCO, Boston, MA) using SQL queries.
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2.3 Quality Control

2.3.1 Assay Quality Control—On each plate, columns 1,2,23 and 24 were used for a 

total of 32 negative and 32 positive control wells, split equally in each column. The assay 

parameter for the negative and positive control wells, MII, was used to calculate the Z’-

factor [22] and the signal-to-background (S/B = Mean[Well Average MII(negative control)]/

Mean[Well Average MII(positive control)]) for each plate. During the screen plates with a 

Z’<0.3, or S/B<5 were rejected. There were 117 plates (384 well) that passed the QC for the 

screen, with a Z’≥ 0.3, and a S/B≥5.

2.3.2 Heterogeneity Quality Control

Normalization: We normalized the cell level data in each well to a common median to 

minimize the variation in the cellular distributions across the 117 plates in this data set that 

is related to sample preparation, image acquisition and/or algorithm performance. We 

maintained a nominal assay scale by normalizing to a reference distribution. We selected 8 

plates to use as a virtual ‘validation’ plate set and pooled the cell level data from the negative 

control wells to establish the reference distribution and the normalization value. The median 

of the reference distribution was used for normalization of the plates. Since the positive 

control in this assay was no stimulation with IL-6, resulting in essentially no pSTAT3 signal 

above background, single point normalization to the median in the reference distribution 

from the validation plates was used as follows:

(1)

where MII ( ) is the measured value of cell i on plate p, Median(MII (ref)) is the 

median MII of the reference distribution, and Median( ) is the median value of 

the pooled cells in the negative control wells on plate p.

Quality Control Metric: To measure the plate-to-plate reproducibility of the heterogeneity 

in the cellular responses, we compared the cellular distributions in the negative control wells 

on all plates to reference distributions from the selected ‘validation’ plates using the Matlab 

function ‘kstest2()’ to calculate the Kolmogorov-Smirnov (KS) statistic as a quality control 

metric (QC-KS):

(2)

where  is the cumulative distribution function of the distribution of the MII in a 

negative control well w on plate p and CDFref is the cumulative distribution function for the 

reference distribution. The use of the KS statistic as a very general assay parameter is well 

known in HCS [39-44], but here we use it for quality control. To establish a QC-KS 

threshold we used the median(QC-KS) + 3*K*MAD for the pooled control wells on all the 

plates in this data set, where MAD is the median absolute deviation of the QC-KS value for 
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the plates and K = σ/MAD for a normal distribution (1.4286). To gain insight into the 

variation in the distributions we evaluated 5 additional metrics for potential correlation with 

the pass/fail scoring of the plates, Cell Count, %Active, and three previously published 

heterogeneity indices (HIs), the quadratic entropy (QE), non-normality (nNRM) and percent 

outliers (%OL) [14]. Cell count was provided by the imaging algorithm as a nuclear count in 

Ch1, and %Active was calculated as the percent of cells with MII > 3 standard deviations 

above the MII of the positive control in Ch2 on the same plate.

2.4 Indices of Heterogeneity

2.4.1 Selection of the Heterogeneity Indices—A primary goal in the quantitation of 

heterogeneity was to select indices that reflect properties of the distribution that could be 

related to the underlying biology. The selected indices reflect: 1) the overall diversity in the 

cell population, QE; 2) the presence of subpopulations, nNRM; and 3) the number of outlier 

cells, %OL. We selected the quadratic entropy (QE) as a measure of cellular diversity that 

incorporates information not only on the number of different phenotypes, but also the 

magnitude of the differences between phenotypes [46, 47]. The QE has been shown to be 

useful in quantitation of the cellular diversity in cancer tissue sections for diagnostic 

applications [34].

To identify the presence of subpopulations (macro-heterogeneity as defined by Huang [7]) 

we adopted a measure of Normality. The nNRM index uses the KS statistic as a measure of 

the difference between the test distribution and a Normal distribution with the same mean 

and standard deviation. As a result, the nNRM value is 0 for a Normal distribution and 

increases with increasing deviation from a Normal distribution, as would be expected for 

subpopulations with distinct phenotypes. Examples of macro-heterogeneity include the 

distinct states of progenitor vs. differentiated cells, the phases of the cell cycle and the time 

dependent changes in the intracellular distribution of proteins such as transcription factors.

The %OL indicates the presence of outlier cells that respond distinctly from the majority, 

which is expected to be important in the development of therapeutics, where a small number 

of resistant sub-clones may exist prior to treatment, and potentially result in high rates of 

relapse [49]. The %OL index is based on the standard statistical definition of outliers used in 

box plots.

2.4.2 Calculation of Heterogeneity Indices—The three HIs were defined previously, 

as were the methods used for calculation [14]. The three HIs are defined by the following 

equations:

(3)

(4)
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(5)

In equation (3) dij is a distance matrix that linearly weights the product of the subpopulation 

probabilities, pi and pj, by the magnitude of the intensity difference. In equation (4) CDFwell 

is the cumulative distribution in a test well, and CDFnorm is the cumulative distribution 

function for a normal distribution with the same mean and variance as the cells in the test 

well. In equation (5) Count(LIF:UIF) is the count of cells in the range from the lower inner 

fence to the upper inner fence, as defined for a standard box plot, and N is the total number 

of cells in the distribution. The HIs were calculated using a Matlab script.

2.5 Measuring the performance of the HIs

To evaluate the performance of the HIs in distinguishing distributions, two classifiers were 

developed to predict 8 target distributions using only the HIs as inputs. The 8 target 

distributions were constructed by hierarchical clustering of the distributions from 19 plates 

with standard compounds. The distributions were binned into 30 equal intensity ranges and 

then clustered using the Matlab function clusterdata. The minimum similarity threshold was 

adjusted to give the 8 distributions with the highest similarity. The Random Forest (RF) and 

Binary Decision Tree (BTree) models were constructed using the R[50] package rattle [51]. 

The input data had 585 observations and the parameters for the Random Forest model were 

Number of Trees=500, Number of Variables (at each split)=1 and for the BTree model were 

Min Split=20, Min Bucket=7, Max Depth=30 and Complexity=0.01, which resulted in a tree 

with 8 nodes and a depth of 5.

2.6 Visualization of distributions

The cellular distributions in Figures 1, 2, 4 and 5 are presented as histo-box plots as 

previously discussed [14]. The histo-box plots were generated in Spotfire (TIBCO, Boston, 

MA) by overlaying the histogram of intensity (vertical axis) on a conventional box plot, a 

standard feature in the boxplot graphic in Spotfire.

2.7 Informatics tool for reviewing and comparing heterogeneity in large scale screens/
profiles

The browser shown in Figure 8 was developed as a dashboard in Spotfire that combines 

visualizations of the cell level data along with the well level data. The views are linked so 

that the data selected in one view is also selected in all other views. The browser is available 

for non-commercial use from the authors as a Spotfire file with example data.

3 Results and Discussion

3.1 The need for quality control for heterogeneity analysis in screens/profiles

It is important in heterogeneity analysis to clearly distinguish between detection system or 

assay variability and biological heterogeneity. In imaging based systems, such as HCS, 

spatial variation of illumination intensity or detection sensitivity (or both), often seen as 

Gough et al. Page 9

Methods. Author manuscript; available in PMC 2016 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reduced intensity in the corners, can contribute to apparent variation in the cell-to-cell 

measurements. Methods for correcting non-uniform illumination or detection sensitivity are 

available [52, 53], but often are not used because variation across the field, especially when 

it is stable from field-to-field, has little impact on the population average values that are 

most often used as assay readouts. However, for heterogeneity analysis it is important to 

understand the impact of the detection system on cell-to-cell variation. Comparative studies 

between imaging and flow cytometry that established the reproducibility limit for this assay 

on a wide field HCS system were previously reported (see for example Figure S3 in [14]). 

Because this was a retrospective study we were not able to correct images from the IXU 

prior to data extraction. However, because point scanning laser confocal systems like the 

IXU scan a stabilized laser light source to each pixel, in general illumination uniformity is 

less of an issue than in wide field systems. Comparison of the cell distributions from the 

control wells collected on the IXU with previously published distributions collected on 

intensity corrected images from a wide field HCS system showed that they were essentially 

the same, suggesting comparable performance for the two detection systems.

The standard metrics used for assay quality control in screening are designed to measure the 

well-to-well, plate-to-plate and day-to-day repeatability of the well level assay features (e.g. 

average or total intensity, area, etc.), but do not indicate anything about the distribution of 

cellular responses within the well. To evaluate reproducibility for the heterogeneity in the 

individual cellular responses, we used data from a high content, cell-based, phenotypic SAR 

screen of compounds that inhibit STAT3 activation by IL-6. The data set consisted of 117 

microplates (384 wells) with triplicate, 10 point, 3-fold dilutions of 261 compounds, some of 

which were run multiple times. In this screen plates with a Z’ < 0.3 or a S/B < 5 were failed 

and repeated. The concentration of IL-6 used for this screen, 50 ng/mL, was selected to 

produce a maximal activation of STAT3 without an excess of IL-6. Figure 1 shows the dose-

response of STAT3 to IL-6. The selected concentration (1C) results in significant variation in 

the activation of STAT3 that can be seen in image C, with 84% activation (1, Pie Chart C). 

The higher concentration of 100 ng/mL (1D) produced similar heterogeneity in the image 

(1D) and %Activation (1, Pie Chart D), indicating that 50 ng/mL IL-6 was sufficiently near 

the maximum value.

Evaluation of population distributions in the +IL-6 control wells on these plates indicated 

there was significant variability, independent of the Z’-factor (Figure 2). Figure 2A shows 

the raw MII of the IL-6 induced cells in the negative control wells. The distributions clearly 

vary in the range of intensities. After normalization of the intensity range to the median of 

the reference distribution (Figure 2B), the median MII is the same for all five plates but there 

are clearly some differences in the shapes of the distributions. For example, plate 734 lacks 

the peak of STAT3 activity around 20K that is obvious on plates 928, 1301 and 1302. Plate 

729 has a smaller peak at an intensity of just over 20K. There are some differences in the 

S/B measured during the course of the screen that are perhaps indicative of the differences in 

the distributions, but because the S/B>5 on all the plates, no distinction was made between 

them during the screen. We calculated the three HIs for these five plates to evaluate the 

potential impact of this variability on measurements of heterogeneity. On plate 734 the QE, 

NRM, and %OL are all much higher, indicating a broader distribution that is less normal and 

has more outliers than the other plates. Plate 729 also has a somewhat different distribution 
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when compared with plates 928, 1301 and 1302; however the differences in the HIs on this 

plate are lower, as might be expected, with only the nNRM indicating a substantial 

difference in normality. The variation in these distributions and measured HIs suggested a 

need for a QC metric to quantitate the reproducibility of the cellular distributions on the 

plates. Because the KS statistic is designed for comparing distributions, we adopted it as a 

new metric, the quality control-KS (QC-KS) that, as described below and can be easily used 

to monitor the population distributions over time in large scale biology projects.

3.2 Workflow for quality control of heterogeneity in phenotypic screens/profiles

It is clear from Figure 2, that a similar Z’-factor does not imply consistency in cell level 

distributions from plate-to-plate. It is important though to note that the high reproducibility 

of this assay, as indicated by a robust Z’-factor, suggested that good reproducibility in the 

distributions could be achieved, as was the case here. Optimally, the data acquisition would 

be controlled to minimize variation in the assay data range and allow comparison of 

biological heterogeneity across plates, and especially over long times, however, here it was 

essential to normalize the data prior to applying the quality control.

To correct for the plate-to-plate variation in the intensity range, the data from each well was 

normalized to the reference distribution using equation 1. The resulting normalized 

distributions for the +IL-6 controls on all 117 plates are shown in Figure 3. After 

normalization the median of the distributions were consistent, although there were still small 

differences in the shapes of some of the distributions. A component of those differences is in 

the relative height of the activated cells (upper peak) vs non-activated cells (lower peak). As 

previously reported, a fraction of the cells in this assay, ranging from about 7-12% of the 

cells in a well are not activated by IL-6, even though essentially all the cells were shown to 

be capable of STAT3 activation when stimulated by Oncostatin-M [14]. The variation in 

distributions remaining after normalization was evaluated quantitatively using the QC-KS.

The QC-KS statistic was selected as a quantitative QC measure of the difference between the 

distributions in the control wells on each plate and a reference distribution. To evaluate 

performance of the QC-KS metric the distributions in the negative controls on all 117 plates 

(Figure 3) were reviewed and 9 plates were identified that appeared to have “abnormal” 

distributions (Figure 3): plates 726-735 in the first row and plate 893 in the fourth row. In 

addition, a tenth plate, 888 in the fourth row, appears to have a “clipped” distribution, with 

no intensities above about 25K, but otherwise the distribution is reasonably consistent with 

the other plates. Based on this qualitative comparison, these 10 plates were labeled as failed 

and used to evaluate the QC-KS statistic. Figure 4 compares the distributions in passed 

(blue) and failed (red) plates for several metrics. For the QC-KS metric (Figure 4A) passed 

plates have a QC-KS<0.2, while failed plates generally have a QC-KS>0.25. Only plate 888 

(green), which was failed for a clipped distribution, has a QC-KS<0.2. Because cell density 

might have contributed to the difference between passed and failed plates we compared the 

distributions of cell density (Figure 4B). The distributions in cell count on passed and failed 

plates were essentially the same, suggesting that the abnormal distributions were not 

associated with a variation in cell density. Another factor that might have contributed to the 

differences in the distributions is the degree of activation by IL-6. Figure 4C shows that the 
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percent active cells was consistently lower in failed plates, except for plate 888, and one 

passed plate, number 759. Further evaluation of plate 759 found that it had a 2 fold higher 

background in the positive control, leading to a lower determination of percent active, even 

though the negative control distribution looks normal. This lower level of activation of the 

cells on the failed plates suggested that it was a contributing factor in the difference.

An important question though, was whether the differences in distribution on the failed 

plates would significantly impact the measurement of the HIs. Figures 4D, 4E and 4F show 

the histograms of the QE, nNRM and %OL for passed and failed plates. Both QE and 

nNRM show clear differences between passed and failed plates, while only some of the 

failed plates show a level of %OL that is consistent with the passed plates. These results 

suggest that comparisons of HI measurements between passed and failed plates would not be 

meaningful. Furthermore, the results suggest that the QC-KS is a useful metric to QC plates 

for heterogeneity analysis. To select a threshold QC-KS value by which to flag plates we 

used the median QC-KS value + 3*K*MAD (see materials and methods) of the QC-KS 

values for all 117 plates, which gave a threshold value of 0.19. Applying that threshold in 

Figure 2, for example, the QC-KS values for the plates show that plates 729 and 734 would 

be flagged by this criterion. In Figure 4A, all 9 plates that were failed for abnormal 

distributions would be flagged, while plate 888 which was failed for an artifact would not be 

flagged.

Figure 5 illustrates the workflow that was adopted for quality control of biological 

heterogeneity. Since this was a retrospective analysis, we did not have true validation plates 

generated during assay development, so we pooled the negative control wells from 8 plates 

prepared on 4 different days to establish the reference distributions of the negative controls. 

In new projects we use a set of validation plates to establish the reference distributions, 

along with the signal-to-background, Z’-factor and other assay variability metrics. Figure 5A 

illustrates the consistency of the distributions on those 8 plates after normalization. We 

specifically selected plates prepared on 4 different days so the variability would be similar to 

a set of validation plates prepared on different days in a de novo screening project. The 

positive and negative controls are pooled to construct the reference distributions (Figure 5B) 

and then the QC-KS values are calculated for all the individual control wells on the 

validation plates and visualized as a heat map (Figure 5C). The predominant blue color in 

the heat map indicates consistent QC-KS values, which are generally below 0.2, and 

therefore distributions that are similar to the reference distributions, as expected. There are 

several (0-5) wells on each plate where the QC-KS value is between 0.2-0.3 (blue-gray), but 

the average in each case is well below 0.2. Using the distribution of QC-KS values on the 

validation plates a pass/fail threshold of 0.2 was selected and used to score the average QC-

KS on the 117 plates in the project (Figure 5D). Nine plates were flagged by this criterion, 

and examination of the distributions on those plates (Figure 3) and the heat map of the wells 

on those plates (Figure 5E) confirmed that the distributions were not consistent with the 

other plates, so they were not used in the remaining analysis. In general, the distributions on 

the failed plates appear to show a lower level of induction of STAT3. One other plate, 

number 888, was failed due to an apparent data processing error that clipped the distribution, 

leaving a total of 107 plates for heterogeneity analysis.
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3.3 Use of the heterogeneity quality control work flow in HCS, high throughput microscopy 
and other high throughput cytometry methods

The KS statistic is a standard metric for comparing distributions and has been used in 

different ways in high throughput microscopy, flow cytometry and high content assays and 

screens. The KS statistic measured between the distribution in a sample and the distribution 

of the plate controls has been used in cytometry as a very general assay metric that avoids 

any assumption about the nature of the distribution of cellular responses [39, 44, 54]. The 

KS statistic has also been used as a normality test by comparing a sample distribution to a 

normal distribution with the same mean and standard deviation [14, 44, 48] and is used in 

the non-Normality (nNRM) heterogeneity index [14]. Here we present another application of 

the KS statistic as a QC metric (QC-KS) for measuring the plate-to-plate or day-to-day 

reproducibility of cellular distributions in HCS, high throughput microscopy and high 

throughput flow cytometry. The integration of this measure and workflow into a screening or 

profiling project would be greatly facilitated by the incorporation of KS analysis in the 

software for HCS and other cellular analysis platforms, which would allow the QC-KS value 

to be produced as a standard feature, along with Z’-factor, V-factor, S/B and other assay 

metrics. The QC-KS statistic can also be easily be calculated in most statistics and numerical 

analysis packages. While it would be useful to establish general QC limits for the QC-KS 

metric, the extent of variation in the cellular distributions and the tolerance for variability in 

the project should be established during assay development and validation, along with the 

QC-KS threshold. In this study we found that a threshold of 0.2 worked well to reject plates 

with clearly different distributions.

3.4 Application of Heterogeneity Indices to Large Scale Analysis of Heterogeneity

One of the challenges in large scale analysis of heterogeneity is sorting through large 

numbers of distributions to identify a subset of interest. On the 107 plates in this SAR 

project there are more than 20,000 compound test wells and therefore more than 20,000 

distributions to evaluate. Although the heterogeneity indices were previously shown to be 

useful in characterizing cellular distributions as heterogeneous or not, micro vs macro 

heterogeneity, and with or without outliers [14], we wanted to test whether these three 

indices captured sufficient information about the distributions to enable their use as filters to 

identify common, or unusual patterns of responses. To construct a classifier that used only 

the three heterogeneity indices to predict the shapes of the cellular distributions, we selected 

a subset of plates that contained control compounds with known STAT3 activity, to ensure 

that there were a significant fraction of active wells. Hierarchical clustering of the 837 

distributions on the standard plates was used to create 8 target distribution classes (Figure 

6A). Although the compounds on the standard plates were all active, because the plates were 

from a concentration series there were also many inactive wells. Table 1 shows the number 

of distributions that contribute to each target class, clearly indicating that 2/3 of the 

distributions were of class 1 or 2 (activated STAT3) (Figure 6A). The data were divided into 

training (535 observations) and test (302 observations) sets and used to construct 2 

classifiers, a Random Forest (RF) and a Binary Decision Tree (BTree).

Figure 6B illustrates the results of the classification of the distribution in each well on the 

standard plate using the RF classifier using only the three heterogeneity indices as inputs. As 
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can be seen by comparison of the distributions in Figures 5A & 5B, and the confusion 

matrix for the RF classifier (Table 2), the RF model does an excellent job of classifying the 

distributions. The classifier performs best on classes 4-7, having the least confusion where 

the distributions indicate various degrees of inhibition. The performance on these classes of 

intermediate inhibition, which are near the IC50s, are of significant interest, as it is these 

patterns of inhibition that are hypothesized to be associated with specific mechanisms of 

action [13, 55]. The other classes, where the distributions are more like the negative or 

positive controls, have about a 10% error rate. The relative importance of the three HIs in the 

RF classifier is shown in Table 3 and indicates that all three HIs contribute significantly to 

the majority of the classes.

Figure 6C illustrates the results of classifying the distributions using the BTree classifier. 

The BTree uses a series of binary nodes to split the distributions into classes based on a 

threshold at each node. Comparison of the distributions in Figures 5A & 5C, and the 

confusion matrix in Table 4, indicates that although the performance of the BTree is not as 

good at the RF, it still provides good classification of the distributions. The BTree also 

provides a simple set of rules for using the HI values to identify a specific class of 

distribution, for example, most of the Class 6 distributions (64%) can be found with 

QE=0.016-0.032 and nNRM≥0.055. As with the RF classifier the BTree performs best on 

classes 4-7, missing class 3 completely. It is clear from the confusion matrix in Table 4 that 

most Class 3 distributions were assigned equally to classes 1 & 2, with about 15% assigned 

to class 4. So although the BTree is not as efficient at distinguishing classes 1-3, it works 

reasonably well for the most interesting classes, 4-7.

The results of the classification indicate that the three HIs used in this study effectively 

distinguish distributions in the range where there is partial inhibition of STAT3. The 

performance of the HIs in predicting population distributions suggests that they can be used 

effectively to filter population distributions and identify distribution classes of interest in 

HCS, high throughput imaging and other cytometry projects.

3.5 Comparisons of compound heterogeneity in large data sets

A goal of this project was to develop a method to evaluate heterogeneity in large data sets. 

The data set in this study consisted of over 20,000 distributions comprised of over 30 million 

cells. Clearly some means of organizing or filtering the data is needed. Figure 7A illustrates 

one approach that we have found to be useful. The data is arranged and binned using the HIs 

in order to provide an overview of the range of distributions in the data set. In this graphical 

view, generated in Spotfire (TIBCO), the QE and nNRM indices are divided into 10 equal 

size bins over the full range of the HIs in this data set, and the histograms of the distributions 

are displayed as a 10×10 matrix with QE increasing in the horizontal direction (left to right) 

and the nNRM increasing in the vertical direction (top to bottom). Each histogram in this 

view is comprised of all the cells in all the wells in that HI bin, and the arrangement exposes 

the range of distributions in the dataset. For example, in the lower right, high QE, high 

nNRM, there is a series of bimodal distributions, which is a clear indication of differential 

compound sensitivity among subpopulations of cells. In column 2 row 4, the distribution 

highlighted in red is clearly more unimodal, although the width of the distribution suggests 
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micro-heterogeneity in that population. We expect that the individual distributions that 

comprise the highlighted distribution all have a similar shape because they are in the same 

row and column in this table so they all have a similar QE and nNRM, and this is supported 

by examination of the individual distributions. Zooming in to the underlying distributions 

(Figure 7B) confirms that they are consistent in median value, width and shape and therefore 

exhibit a similar degree of micro-heterogeneity.

The use of the HIs to arrange distributions for comparison is expected to be a valuable 

approach to the analyzing the evolution of population distributions in the differentiation of 

stem cells. Evolution of the distribution of phenotypes may not always lead to discrete 

subpopulations, therefore direct comparisons of the distribution shape using the method 

described here, coupled with a quantitative measure of the magnitude of the difference using 

the KS statistic, should be a useful approach..

3.6 Browsing for patterns of heterogeneity in compound screens

Although using the HIs to create multiscale views of heterogeneity provides a quick means 

to select and review distributions by shape, we wanted an interface that would also enable 

the selection of distributions of interest by other characteristics, such as compound ID, 

compound series, inhibition state, or the HIs, and then to view the patterns of response in 

individual concentration –response series. Figure 8 shows a view of the Heterogeneity 

Browser tool that was developed for interactive analysis and review of cellular distributions. 

All the views (Figure 8A-H) are linked so that selection of data in one view selects the same 

data in all the other views. Figure 8A is essentially the same view of the data as shown in 

Figure 7A reduced from a 10×10 matrix of distributions to 6×8. This view shows the range 

of distributions in the data set and selection of one or more distributions in this view will 

highlight the selection in all views and allow the user to zoom into the component 

distributions as shown in Figure 7B. Figure 8B is similar to Figure 8A except the 

distributions are organized by increasing %OL on the horizontal axis and increasing 

normality on the vertical axis. The view in Figure 8C enables the comparison of the 

distributions of activity over the dose-response around the IC50 value. In this view, the dose-

responses are aligned by ‘relative IC50’, with the dose closest to the IC50 (~IC50) in the 

center, the dose below (<IC50) or above (>IC50) that dose on the left or right respectively, 

and the combined distributions for doses ≥2 dilutions below (<<IC50) or above (>>IC50) the 

IC50 on the far left and right respectively. This view enables the comparison of 

heterogeneity independent of compound potency. The views in Figure 8D-G show 

histograms of the distributions of percent activity (8D), QE (8E), nNRM (8F) and %OL (8G) 

for the combined replicate wells across all the plates in the data set. These histograms show 

the range of the metrics for the data currently displayed in the browser, in this case the full 

data set, and allows selection of a range of interest. The last view in the browser is the list of 

compounds (8H). This view allows the selection of specific compound(s) for evaluation or 

comparison, as well as displaying the list of compounds selected in other views.

As an example of the use of the browser, in Figure 8D all distributions with a %Active Cells 

in the range from 45-55% were selected (highlighted in cyan). In all other views the same 

distributions and the compound names are also highlighted in cyan. Figures 7A & 7B 

Gough et al. Page 15

Methods. Author manuscript; available in PMC 2016 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indicate the wide range of distributions, from unimodal to bimodal that can be seen around 

the 50% activation. The nNRM histogram in Figure 8F shows that in the selected activation 

range the distributions are mostly non-normal. Figure 8H shows one of the compounds and 

the concentration which inhibited about 50% of the cells, compound 10491, and Figure 8C 

shows the distribution of activity for that compound around its IC50 value. The browser 

illustrated in Figure 8 enables the user to:

• Select compounds to view the distributions as a function of concentration

• Select distribution shapes to view the compounds and concentrations with 

that shape,

• Select a range of activity within a well to identify the distributions in that 

activity range,

• Select a range of heterogeneity using the heterogeneity indices to identify 

distributions with macro-heterogeneity (high QE), non-normal 

distributions (high nNRM) or unusually high number of outliers (high 

%OL).

3.7 A workflow for heterogeneity analysis

Figure 9 summarizes the workflow established for heterogeneity analysis that includes QC 

to ensure consistent distributions of activity over the course of a screen. Optimally, 

heterogeneity analysis starts early in a project, during assay development (Step 1). 

Knowledge of the phenotype distributions induced by the control compounds will inform the 

selection of the best control compound, as well as establish reference distributions for assay 

validation. To maintain reproducibility in the distributions throughout a project, the range of 

assay values in the controls must be consistent from plate-to-plate (Step 2). In HCS this can 

be accomplished by setting the acquisition parameters based on the signal and background in 

the control wells. Depending on the platform this may require controlling the intensity of the 

light source, the gain of the detector, the integration time and any averaging over time or 

pixels. Normally, assay validation will include the production of replicate all positive and all 

negative plates. The data from these plates should be used to create reference set of 

distributions by combing the replicate control wells as illustrated in Figure 5 (Step3). These 

reference distributions should be used to evaluate the reproducibility of the distributions 

from well-to-well and plate-to-plate, and relative to the reference development distributions, 

using the QC-KS statistic. The variability in the distributions on the validation plates should 

be used to establish a threshold for the QC-KS metric to be used to flag plates where the 

control distributions are outside the acceptable range. We used a threshold of the median 

+ 3*K*MAD (see details in Methods). Once the reference distributions and QC thresholds 

are established they can be routinely applied during the project (Step 4) to enable the reliable 

calculation and comparison of heterogeneity from plate-to-plate and day-to-day for the 

duration of a large scale biology project (Steps 5-6).
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4 Conclusions

4.1 Quality control for heterogeneity analysis in HCS, high throughput microscopy, flow 
cytometry and other high throughput cytometry methods

When performing heterogeneity analysis on large data sets in drug discovery and 

development or biomedical research using a range of cytometric analysis platforms, it is 

important to evaluate and to control the consistency of the biological distributions from 

plate-to-plate and over the duration of the project. We demonstrated that good Z’-factors are 

not sufficient for ensuring the distributions are reproducible, especially plate-to-plate. We 

adapted and applied the Kolmogorov-Smirnov statistic to measure the reproducibility of the 

cellular heterogeneity (QC-KS). Reference distributions should be established early in the 

project to track the performance of the assay in terms of the reproducibility of the 

distributions. Normalization of the median on each plate to the median of the reference 

distribution appeared to work well for correcting variations in the intensity range of the 

distributions. There are many possible sources for this variation in range including variation 

in reagents, assay timing, acquisition factors, instrument factors, or image analysis 

algorithms. As with other large data methods, such a DNA or protein microarrays, 

normalization is an effective approach to correcting for many of these assay variables [56]. 

Here we show that the KS statistic is an effective QC metric for quality control where the 

distribution of the data is important, as well as the population average.

4.2 Performance of the heterogeneity indices in classifying heterogeneity

The three heterogeneity indices were previously shown to be useful in categorizing 

heterogeneity [14] but here they were shown to be effective in classifying heterogeneity into 

discrete distributions defined by hierarchical clustering of the cellular distributions, based on 

histogram shape. The performance of the heterogeneity indices in predicting the shape of the 

distributions indicates that they successfully capture the important features of the 

distributions and that they can effectively be used to filter or arrange distributions for 

analysis.

4.3 Discovering patterns of heterogeneity in large data sets

The heterogeneity indices were used to create and demonstrate a hierarchical approach to 

drilling down into the distributions in a large data set. A summary of over 20,000 

distributions in a 2D matrix (Figure 7), ordered by the QE and nNRM indices, displays the 

range of distribution shapes in the data set. Drilling down into the summary data provides a 

more detailed view of the distributions with that general shape. This hierarchical approach to 

browsing the distributions allows access to a very large number of histograms, in this case 

each level represents on the order of 100 fold reduction in the number of distributions, 

giving access to nearly all the 20,000 distributions in this data set in 2 levels. Browsing 1 

million distributions would require just 3-4 levels. This visualization was incorporated into 

an interactive browser (Figure 8) to simplify selecting and filtering distributions. Using this 

browser, with a couple of clicks the user could see: the evolution of the heterogeneity for a 

compound series in an SAR; the variation in the distribution of phenotypes in a stem cell 

differentiation media series; the rank order compounds by similarity of the cell inhibition 

distribution; and many other analyses that relate phenotype distributions to cell treatments.
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4.4 Impact of heterogeneity analysis in HCS, high throughput imaging and other methods 
for high throughput cytometry

It is well established that heterogeneity is common in cellular systems, yet the majority of 

cell based assays assume a normal distribution and report an average value, or compensate 

for “outliers” by reporting the median [44]. By ignoring the cell level data and depending on 

the well level average, most studies miss the opportunity to understand the effects of 

candidate therapeutics or other perturbagens on essential subpopulations. There is a growing 

body of evidence that analysis of heterogeneity reveals novel insights into cellular functions 

and response to perturbation, of critical importance in drug discovery, research and 

development of diagnostics and stem cell differentiation and maturation [2, 9, 11, 17, 57, 

58]. Studies have shown that analysis of heterogeneity provides insights into network 

topology [59, 60] and can reveal interactions between independent networks [61]. 

Heterogeneity is also a key component of biological adaptation [10], which can lead to 

reduced or even loss of efficacy. In cancer for example, one study found that in the majority 

of cases of relapse in acute myeloid leukemia, the dominant clone at relapse was a minor 

clone found at diagnosis that was resistant to treatment and underwent further expansion to 

form the dominant clone [24].

Heterogeneity can be inherent to a population of cells [62], induced by the 

microenvironment [63], or induced by compound or reagent treatment [14, 61, 64, 65]. The 

differential sensitivity to drugs by subpopulations of cells, or cells of different types, can 

provide an indication of compound mechanism of action [2, 7-9, 12, 13, 66]1. In one study it 

was shown that cells treated with drugs of similar mechanism of action induce similar 

heterogeneity [64], while in another study, the analysis of the heterogeneity induced by a 

drug led to the development of a hypothesis of interacting networks [61]. One major 

advantage of phenotypic screens is the ability to screen many targets and pathways in situ, in 

one screen, however, in the end, little is known about the targets of the compounds. Analysis 

of heterogeneity in those assays, especially in comparison with compounds of known 

mechanism, may provide a useful starting point for identifying the targets of hits in a screen, 

or for evaluating whether activity in an SAR driven by a phenotypic assay remains on target. 

Heterogeneity can also directly indicate other compound properties that may be useful for 

prioritization. For example, the first population of cells that respond to a compound may be a 

robust indication of critical compound properties, such as the ability of the compound to 

penetrate cells and hit the target [44].

Analysis of heterogeneity early in drug development would allow drug design that addresses 

complex cellular interactions and differential drug sensitivity [10, 13] or that adopts an 

approach that uses combination therapy [14, 15]. The tools described here will facilitate the 

identification and analysis of heterogeneity in large-scale biology projects and therefore help 

drive the application of heterogeneity analysis in basic biomedical research and drug 

discovery.

1Manuscript in preparation
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QC-KS a heterogeneity quality control metric that uses the KS statistic

HI heterogeneity index

QE quadratic entropy, an HI
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Figure 1. 
Dose response characterization of the activation of STAT3 by IL-6. The graph shows the 

activation of STAT3 by two-fold serial dilutions of IL-6 starting at 100 ng/mL. A-D) Images 

of STAT3 labeling illustrate the high level of variation in STAT3 activation at concentrations 

from (A) 12.5 ng/mL to (D).100 ng/mL. Original images were all scaled to a dynamic range 

of 100-40,000, then converted to 8-bit and pseudo-colored using the color lookup table 

shown. Cells with a labeling intensity ≥ Mean(positive control) + 3 Stdev(positive control) 

are considered Activated, and the % Activated cells is shown in the pie charts.
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Figure 2. 
Standard assay quality measures are not sufficient for assessing the reproducibility of 

heterogeneity. Similar Z’-factors indicate consistent well-to-well assay reproducibility 

across plates but provide no indication of the variability of cellular response distributions. 

Even after plate-to-plate normalization there remains variation in the shapes of the 

distributions. Comparison of the cellular distributions of STAT3 activity in the IL-6+ control 

wells on five plates with essentially the same Z’-factor shows that the distributions can be 

very different from plate-to-plate. The S/B of the assay does give some indication of 

variation in the range of the data. As a result, the heterogeneity indices, QE, nNRM and 

%OL vary from plate-to-plate, with Plate 734 having the largest deviations. The QC-KS 

value provides a quantitative measure of the deviation of the distribution from the reference 

distributions established during assay validation. In this case, Plates 926 and 1302 have the 

lowest deviation (0.13) from the validation distributions.
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Figure 3. 
Normalization of the distributions for all 117 plates. The plates were normalized to the 

median of the pooled reference validation plate controls. A. Histograms of the distributions 

in the pooled IL-6+ control wells indicate that the normalization is effective in establishing a 

consistent signal range across all plates.
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Figure 4. 
Selection of a QC metric of reproducibility in heterogeneity analysis. Each pair of 

histograms (A-F) indicates the distribution of plates labeled as Fail (red) or Pass (blue). A 

single Failed plate (888) with a clipped distribution is highlighted in green for reference. A) 

The KS statistic, QC-KS, provides a clear interpretation and good discrimination between 

Pass and Fail, except for plate 888. B) Although cell count might contribute to the 

distribution of cellular response on a plate, in this case there is no significant difference in 

cell count between Passed and Failed plates. C) Differences in the percent activated cells 

also might result in variation in the distributions, and that does appear to be the case in this 

assay. D) The Failed plates have a much broader distribution as indicated by the increase in 

QE. E) The Failed plates have a less normal distribution as indicated by the increased 

nNRM. F) Some of the Failed plates have an increased number of outliers indicated by the 

increased %OL.
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Figure 5. 
Quality Control workflow for heterogeneity analysis. A. To establish and quality control 

heterogeneity in high throughput imaging projects, the distributions in the control wells are 

evaluated during validation to assess the reproducibility of the heterogeneity. B. The 

distributions from the control wells on the validation plates are pooled to establish reference 

distributions. C. Each control well on the validation plates is compared with the reference 

distribution using the KS statistic (QC-KS), results are shown here as a heatmap, to 

quantitatively assess reproducibility. D. The QC-KS statistic is used to monitor the 

distributions during a screening campaign. The solid horizontal line is the median(QC-KS), 

and the dashed lines represent the median ± 3*MAD*K, the selected QC limit. E. The 

heatmap of the control wells on all the plates shows the variation in the QC-KS values from 

well-to-well and plate-to-plate, and the 10 plates that were Failed. In a new project, the 

Failed plates would be flagged for review.
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Figure 6. 
Evaluating the performance of the Heterogeneity Indices in predicting the shape of the 

cellular distributions. A. Hierarchical clustering was used to group distributions from all the 

wells on 19 plates into 8 distinct classes. B. The distributions were then split into a training 

set and test set to construct a Random Forest classifier to predict the cluster number using 

only the 3 heterogeneity indices. C. A simpler decision tree model was also constructed to 

predict the distribution class. Although the performance was pretty good, Cluster 3 was not 

successfully separated from clusters 1, 2 and 4.
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Figure 7. 
Filtering and drilling into 22,000 distributions using the Heterogeneity Indices. A. The QE 

and KS-norm indices were binned into 10 uniformly sized bins, and then used to sort the cell 

distributions in the horizontal and vertical directions, respectively. This provides an 

overview of the general distribution shapes. Each distribution in this view is composed of all 

the cells from all the wells for which the QE and KS-norm indices fell within that bin. B. 

Selecting a single bin to zoom in to the distributions that comprise that bin, but are now 

displayed with finer resolution on the binning for more detailed review of the distributions 

within that subset of wells.

Gough et al. Page 29

Methods. Author manuscript; available in PMC 2016 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Heterogeneity Browser for High Throughput Cytometry. The filtering concept in Figure 7 

was expanded into an interactive Heterogeneity Browser in which the cellular heterogeneity 

in the wells can be identified and reviewed in a variety of ways. All data in the browser is 

linked, so that selection of data in one graph highlights the data in all other graphs. Here, the 

distributions with %Activation=45-55% have been selected in D, and are highlighted in cyan 

in all the views. A. 2D matrix of distributions with increasing QE index on the horizontal 

axis and increasing normality (decreasing nNRM) on the vertical axis. B. 2D matrix with 

increasing % OL on the horizontal axis and again decreasing nNRM on the vertical axis. C. 

The dose-response of distributions for a two compounds. The interface allows scrolling 

through all the compounds in the selection. D-G. Histograms of the percent activated cells 

and the 3 HIs for the pooled replicate wells over the whole data set. D. % activated cells. E. 

QE index. F. nNRM index. G. %OL index. H. List of all compounds highlighting one in the 

current selection.
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Figure 9. 
The recommended workflow for heterogeneity analysis in screens or large scale biology 

projects. For new projects, heterogeneity analysis should be incorporated early in the 

development of the assay. For retrospective projects, step 1 should be to evaluate the range 

of the distributions of the positive and negative controls in the whole data set, and step 2 

would be to normalize the data if necessary to establish consistent distributions from plate-

to-plate. Steps 3-6 would remain the same.
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Table 1

Distribution of target clusters for classifier development

Class from Clustering

Observations 1 2 3 4 5 6 7 8

Number 335 218 75 75 25 17 59 33

Fraction of total 0.40 0.26 0.09 0.09 0.03 0.02 0.07 0.04
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Table 2

Random Forest Confusion Matrix

Predicted

Actual 1 2 3 4 5 6 7 8

1 319 17 3 0 0 0 0 0

2 24 199 3 0 0 0 0 0

3 8 2 60 0 0 0 0 0

4 0 0 1 70 1 0 0 0

5 0 0 0 0 23 0 0 0

6 0 0 0 0 0 17 0 0

7 0 0 0 0 0 0 50 3

8 0 0 0 0 0 0 0 37
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Table 3

Variable Importance in Random Forest Classifier

Class from Clustering

HI 1 2 3 4 5 6 7 8

QE 57.11 31.86 7.93 40.33 22.79 13.81 73.29 38.39

nNRM 37.12 19.21 12.07 58.12 26.17 −0.97 8.03 43.85

%OL 31.79 49.31 6.58 5.32 20.67 13.32 41.87 17.26
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Table 4

Binary Decision Tree Confusion Matrix

Predicted

Actual 1 2 3 4 5 6 7 8

1 297 42 0 0 0 0 0 0

2 76 146 0 4 0 0 0 0

3 31 29 0 10 0 0 0 0

4 0 1 0 60 11 0 0 0

5 0 0 0 0 23 0 0 0

6 0 0 0 0 2 13 2 0

7 0 0 0 0 0 7 42 4

8 0 0 0 0 0 0 0 37
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