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Abstract

Hydroxyphthioceranoic (HPA) and phthioceranoic (PA) acids are polymethylated long chain fatty
acids with and without a hydroxyl group attached to the carbon next to the terminal methyl-
branched carbon distal to the carboxylic end of the long-chain fatty acid, respectively. They are the
major components of the sulfolipids found in the cell wall of Mycobacterium tuberculosis (M.
tuberculosis) strain H37Rv. In this report, | describe CID linear ion-trap MS"™ mass spectrometric
approaches combined with charge-reverse derivatization strategy toward characterization of these
complex lipids which were released from sulfolipids by alkaline hydrolysis and sequentially
derivatized to the N-(4-aminomethylphenyl) pyridinium (AMPP) derivatives. This method affords
complete characterization of HPA and PA, including the location of the hydroxyl group and the
multiple methyl side chains. The study also led to the notion that the hydroxyphthioceranoic acid
in sulfolipid consists of 2 (for hCy,4) to 12 (for hCs,) methyl branches, and among them
2,4,6,8,10,12,14,16-Octamethyl-17-hydroxydotriacontanoic acid (hC,q) is the most prominent,
while phthioceranoic acids are the minor constituents. These results confirm our previous findings
that sulfolipid 11, a family of homologous 2-stearoyl(palmitoyl)-3,6,6 -
tris(hydroxyphthioceranoy1)-trehalose 2”-sulfates is the predominant species, and sulfolipid I, a
family of homologous 2-stearoyl(palmitoyl)-3-phthioceranoyl-6,6-bis(hydroxyphthioceranoy1)-
trehalose 2”-sulfates is the minor species in the cell wall of M. tuberculosis.
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Introduction

The family of sulfated acyl trehaloses defined as sulfolipids (SLs) were characterized by
Goren and coworkers in their early studies on M. tuberculosis H37Rv [1-4]. The principal
SLs were thought to be sulfolipid-I (SL-1), which is a homologous mixture of 2,3,6,6 -
tetraacyl-a,a.’-D-trehalose-2”-sulfate consisting of a pair of hydroxyphthioceranoic acid
(HPA) located at 6, and 6”-position, and a nonhydroxylated phthioceranoic acids (PA) and a
saturated fatty acid (16:0 or 18:0) located at the 3- and 2-position of the trehalose skeleton,
respectively (Scheme 1). In addition to the major SL-I, minor species that were termed as
SL-11 (2-palmitoyl/stearoyl-3,6,6" -tris-hydroxyphthioceranyl-2”-sulfate), SL-1" (2-
palmitoyl/stearoyl-3,6-bis-phthioceranyl-6’-hydroxyphthioceranyl-2’-sulfate) and SL-11"
(2-palmitoyl/stearoyl-4,6,6"-tris-hydroxyphthioceranyl-2”-sulfate) were also reported [1-4].
However, recent studies with mass spectrometry including high resolution ESI linear ion-
trap MS" and MALDI-TOF [5, 6] confirmed that the principal sulfolipid family is sulfolipid
I1, rather than sulfolipid I reported by Goren.

Both hydroxyphthioceranoic and phthioceranoic acids in sulfolipids are multiple methyl-
branched long chain fatty acids. The traditional methods to define the structure require
NMR, IR and GC/MS analysis, following alkaline solvolyses of the purified sulfolipid to the
free acids, which were then derivatized to methyl esters [3]. Rhoades et a/ applied multiple
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stage mass spectrometric approach to locate the hydroxyl side chain of the
hydroxyphthioceranoic acids, which were detected as [M — H] ™ ions formed by skimmer
CAD on the intact sulfolipids. However, the location of the methyl side chains along the
hydroxyphthioceranoic and phthioceranoic acids could not be assigned [5].

Towards sensitive quantitation and characterization of long chain fatty acid by ESI tandem
quadrupole mass spectrometry, conversion of the free fatty acid to the N-(4-
aminomethylphenyl) pyridinium (AMPP) derivative and detected as M* ions was first
described by Bollinger et a/, followed by several groups [7-10]. This charge-reversed
strategy also has been successfully applied to locate the methyl side chain of iso- and
anteiso-long chain fatty acids in Listeria monocytogen cells [11]. In this report, similar
charge-reversed strategy was used to convert HPA and PA to their AMPP derivatives. This is
followed by ESI LIT MS" analysis of the derivatives to locate the hydroxyl and methyl side
chains for unambiguous structural assignment of these complex long-chain fatty acids.

Materials and Methods

Materials

AMP+ Mass Spectrometry Kit (50 test) containing AMPP derivatizing reagent, n-butanol
(HOBt), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), acetonitrile/DMF,
solution, was purchased from Cayman Chemical Co. (Ann Harbor, MI). All other solvents
(spectroscopic grade) and chemicals (ACS grade) were obtained from Sigma Chemical Co.
(St. Louis, MO).

Sample preparation

M. tuberculosis strain H37Rv were grown and sulfolipids were extracted and isolated as
previously described [5]. To the dry sulfolipid extract (200ug), 500 uL methanol and 500 pL
tetrabutylammonium hydroxide (40 wt% solution in water) were added. The solution was
heated at 75°C for 2 h, cooled to room temperature, and 2 mL water and 2 mL hexane were
added, vortexed for 1 min, and centrifuged at 1200 x g for 2 min. The top layer containing
hydroxyphthioceranoic and phthioceranoic acids was transferred to a centrifuge tube, dried
under a stream of nitrogen, and AMPP derivative was made with the AMP+ Mass
Spectrometry Kit, according to the manufacturer’s instruction. Briefly, the dried sample was
resuspended in 20 pL ice-cold acetonitrile/DMF (4:1, v/v), and 20 pL of ice-cold 1 M EDCI
(3-(dimethylamino)propyl)ethyl carbodiimide hydrochloride) in water was added. The vial
was briefly mixed on a vortex mixer and placed on ice. To the vial, 10 pl of 5 mM A-
hydroxybenzotriazole (HOAL) solution and 30 pl solution of 15 mM AMPP (in distilled
acetonitrile) were added, mixed and heated at 65°C for 30 min. After cooling to room
temperature, 1 ml water and 1 ml n-butanol were added. The final solution was vortexed for
1 min, centrifuged at 1200 x g for 3 min and the organic layer was transferred to another
vial.

Mass spectrometry

Both high-resolution (R=100,000 at /7/z400) HCD and low-energy CID tandem mass
spectrometric experiments were conducted on a Thermo Scientific (San Jose, CA) LTQ
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Orbitrap Velos mass spectrometer (MS) with Xcalibur operating system. Samples in
methanol were infused (1.5 pL/min; ~ 1 pmol/uL) to the ESI source, where the skimmer was
set at ground potential, the electrospray needle was set at 4.0 kV, and temperature of the
heated capillary was 300°C. The automatic gain control of the ion trap was set to 5x10%,
with a maximum injection time of 100 ms. Helium was used as the buffer and collision gas
at a pressure of 1x1073 mbar (0.75 mTorr). The MS" experiments were carried out with an
optimized relative collision energy ranging from 55-70% and with an activation q value at
0.25, and the activation time at 10 ms to leave a minimal residual abundance of precursor ion
(around 20%). For HCD experiments, the collision energy was set at 60—-70% and mass
scanned from /7/z 100 to the upper m/z value that covers the M* ions. The mass selection
window for the precursor ions was set at 1 Da wide to admit the monoisotopic ion to the ion-
trap for collision-induced dissociation (CID) for unit resolution detection in the ion-trap or
high resolution accurate mass detection in the Orbitrap mass analyzer. Mass spectra were
accumulated in the profile mode, typically for 3-10 min for MS" spectra (n=2,3,4). MALDI-
TOF spectrum of the same AMPP derivative of the hydroxyphthioceranoic and
phthioceranoic acids was also obtained by an Applied Biosystem Voyager DE-STR
instrument using a-cyano 4-hydroxycinnamic acid as matrix.

Nomenclature

To facilitate data interpretation, the following abbreviations as previously described were
adopted [5, 12]. The abbreviation of the nonhydroxylated multiple methyl-branched
phthioceranoic acids, for example, the 2,4,6,8,10,12,14,16-Octamethyl-dotriacontanoic acid
is designated as C4g-acid to reflect the fact that the structure represents a saturated Cyq fatty
acid with multiple methyl branches. For hydroxydotriacontanoic acids, e.g.,
2,4,6,8,10,12,14,16-Octamethyl-17-hydroxydotriacontanoic acid is designated as hCyqg-acid
to reflect the fact that the compound is a saturated Cyq fatty acid with multiple methyl side
chains and one hydroxyl group attached at C-17. Therefore, the principal SL-I1 species (the
position of the substituents on the trehalose backbone is adopted from the definition by
Goren [13], which is a 2-stearoyl-3,6,6"-tris-2,4,6,8,10,12,14,16-Octamethyl-17-
hydroxydotriacontanoyl-a.,a.”-D-trehalose-2"-sulfate) is designated as (18:0, hCyg, hCyg
hCy40)-SL, signifying that the compound consists of one stearoyl and three
2,4,6,8,10,12,14,16-Octamethyl-17-hydroxydotriacontanoyl groups located at 2-, 3-, 6-and
6’-position of the trehalose backbone, respectively; while SL-1 molecule such as 2-
palmitoyl-3-2,4,6,8,10-Pentamethyl-pentaeicosanoyl-6.6"-bis-2,4,6,8,10,12,14,16-
Octamethyl-17-hydroxydotriacontanoyl-a.,a.’-D-trehalose-2” -sulfate is designated as (16:0,
C30, hCyp, hCyqp)-SL.

Results and Discussion
Mass spectrometry of HPA and PA and their AMPP derivatives

The full scan mass spectra of the released HPA and PA after hydrolysis are shown in Figure
1, in which Panel A represents the [M — H]™ ions of the free acids and Panel b represent the
[M] ions of corresponding AMPP derivative of the acids (Panel b) obtained by ESI. The
profile of the MALDI-TOF spectrum of the acid-AMPP derivative (Panel ¢) is similar to that
shown in Panel b, demonstrating the utility of fatty acid-AMPP derivative for sensitive and
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fast analysis by MALDI-TOF mass spectrometry. High resolution mass measurements on
the [M — H]" ions (Table 1) indicate that two ion series were formed. The principal ion
series belong to the hydroxyphthioceranoic acid family consisting of homologous ions from
m/z 383 (hCyy) to m/z 775 (hCsp), with 2-12 methyl branches and a hydroxy! group
attached to the carbon next to the C15, C16, or C17 alkyl chain terminal; while the minor
ion series ranged from m/z 381 (Cy5) to m/z 675 (Cyg) belong to the phthioceranoic acid
family with no hydroxyl group (Table 1). High resolution mass measurements on the M*
ions of the corresponding AMPP derivatives (with a terminal CsHgN*-CgH4-CHoNH-
substituent) confirm the findings (Table 1). These results are consistent with the recent
reports that sulfolipid I, which consists of three hydroxyphthioceranoyl substituents is the
predominate sulfolipid family found in M. tuberculosis H37Rv, while sulfolipid | that
possesses one phthioceranoyl and two hydroxyphthioceranoyl substituents is the minor
species[5, 6], a reversal to the earlier findings by Goren [1-3]. The CID and HCD LIT MS"
mass spectrometric approaches toward complete structural characterization of these
hydrophthioceranoic and phthioceranoic acids as AMPP derivatives are described below.

Characterization of hydroxyphthioceranoic acid-AMPP derivatives

Both CID LIT MS" and the unique HCD MS? feature of an Orbitrap were employed in these
structural studies. As shown in Figure 2a, the HCD MS? spectrum of the M* ion of m/z 775
contained prominent ions at /7/z 169 and 183, together with /m/z 211 that are characteristic
ions for the fatty acid-AMPP derivatives [7-9]. The spectrum also contained the ion series of
m/z 239, 281, 323, 365, 407, 449, 491, and 533 arising from cleavages of the CH(CHs3)-CH,
bonds, together with the ion series of 253, 295, 337, 379, 421, 463, and 505 arising from
cleavage of CH,-CH(CHps) bonds along the acid-AMPP chain via charge-remote
fragmentation processes, indicating the presence of the multiple methyl groups at 2, 4, 6, 8,
10, 12, 14, 16 of the fatty acid chain (Figure 2a, inset).

In addition to the above ions locating the methyl groups, ions at /m/z 563 arising from
cleavage of CH(OH)-C45H3; bond are also present. This ion is 30 Da (CH,0) heavier than
the ion of m/z533 that possesses the terminal methyl side chain, indicating that the hydroxyl
side chain is attached to C-17 (Scheme 2a). These results point to the structure of
2,4,6,8,10,12,14,16-Octamethyl-17-hydroxydotriacontanoic acid (hC,q), consistent with that
reported by Goren [1-4]. In contrast, the CID MS? spectrum of the ion of /7/2 775 (Figure
2b) is dominated by the ion of m/z 757 arising from loss of H,O, together with the ion series
that locate the methyl side chains at 2, 4, 6, 8, 10, 12, 14, 16, as well as the hydroxyl group
at C-17 as seen in Figure 2a.

Further dissociation of the ion of m/z757 (775 — 757; Figure 2c) gave rise to the ion series
of m/z281, 323, 365, 407, 449, and 491 indicating the presence of the methyl side chains at
2,4,6,8,10, 12, and 14; however, the ions at /2533 and 563, previously observed in
Figure 2a and 2b are absent. The results indicate that the /7/z 757 ion arising from a water
loss, likely involves the participation of the hydrogen located at C-16 to form a 2, 4, 6, 8, 10,
12, 14-heptamethyl dotriacont-16-enoic acid (C4g:1). The support of this proposed structure
is recognized by the presence of the ion of m/z559 (Figure 2c), arising from cleavage of the
allylic bond distal from the cationic pyridinium charge site, via charge remote fragmentation
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with y-H rearrangement as shown in Scheme 2b. Similar fragmentation process arising from
cleavage of the allylic bond proximal to the charge site also results in the formation of the
prominent 1-alkene ion at /m/z 491, which undergoes further CRF with y-H shift to yield the
prominent ion of m/z421 via loss of a CH3CH=CHCH,CHps residue (Scheme 2b) [14, 15].

A distonic ion at /m/z 240 and an abundant ion at /m/z 253 were observed in the spectra
shown in Figure 2a, 2b, and 2c. The former ion is most likely deriving from homolytic
cleavage of the C2-C3 bond, while the latter ion may arise from cleavage of C3-C4 bond to
form a stable 2-methyl prop-2-enamide cation (Scheme 2a). The assignments of these ions
are consistent with the observation of the analogous distonic ion of /7/z226 and the prop-2-
enamide cation at /7/z 239 in the MS?2 spectra of the palmitate-AMPP derivative released
from the 2-palmitoyl substituent of HPA and PA (supplemental material, Figure s1), and of
iso- and anteiso fatty acid-AMPP derivatives previously reported [11], and were confirmed
by high resolution mass measurements (Table s1, supplemental material). Notably, this
distonic ion of m/z226 was not previously reported in the similar product-ion spectra
obtained with a tandem quadrupole instrument [7]. The observation of //z 240, analogous to
m/z 226, also point to the notion that a methyl group is attached to C2, consistent with the
assigned structure of 2,4,6,8,10,12,14,16-Octamethyl-17-hydroxydotriacontanoic acid.

Two pronounced ions at 772619 and 549 in the series (Panel 2a and 2b) are worth
mentioning. Elemental compositions derived from high resolution mass measurement
indicate that ions at /7/2619.5195 (calculated C4qHg70,N5; 619.5197 Da) and 549.4409
(calculated C3gH5702N2:549.4415 Da) retain the two oxygen atoms (Table s1) of the
precursor ion of m/z775. MS3 on the ion of m/z619 (775 — 619; supplemental material
Figure s2) yielded the similar ion series of m/z253, 295, 337, 379, 421, 463, and 505 that
define the location of the multiple methyl chains, together with ions at /7/2561, 577 from
losses of C3HgO and C3Hg residues (supported by HR mass measurement; data not shown)
(Scheme s1), respectively. The results point to the notion that the ion may contain a terminal
cyclic tetrahydropyran ring, which is likely formed by cyclization and cleavage of a C11H24
moiety (see the inset scheme in Figure s2 for fragmentation). Similar fragmentation process
may also result in the formation of the ion of 549 by loss of a C1gH34 residue. This structural
information may be an indication of the location of the hydroxyl side chain; however, more
studies are required to confirm this finding.

The HCD MS2 spectrum of the ion of /7/z 789 (Figure 3a) and the CID MS2 spectrum of the
ion of /m/z 789 (Figure 3b) and its subsequent MS3 spectrum of m/z 771 (Figure 3c) all
contained the identical ion series of m/2239, 281, 323, 365, 407, 449, 491, and 533, as well
as of m/z253, 295, 337, 379, 421, 463, and 505 as seen earlier (Figure 2), defining the
methyl side chains at 2, 4, 6, 8, 10, 12, 14, 16; while ions at /m/z 563 indicate the presence of
the hydroxyl group at C-17. These structural information led to the assignment of
2,4,6,8,10,12,14,16-Octamethyl-17-hydroxytritriacontanoic acid (hC41) in which a terminal
C1l6-alkyl chain is attached to the distal (OH)CH-terminal. A series of the homologous ions
consisting of a terminal C16-alkyl chain with various methyl side chains were observed at
m/z579, 621, 663, 705, 747, 789, 831, and 873 (Table 1). The structures of this minor ion
series had not been previously reported by Goren [3].
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Assignments of the compounds possessing various methyl side chains are exemplified by the
HCD MS?2 spectrum of the ion of /7/2817 (Figure 4a), which comprises ions at /7/z 239,
281, 323, 365, 407, 449, 491, 533 and 575, along with the ion at m/z605. The results
indicate the presence of the methyl side chains at 2, 4, 6, 8, 10, 12, 14, 16, 18 and the
hydroxyl group at C-19, corresponding to 2,4,6,8,10,12,14,16,18-nonamethyl-19-
hydroxytetratriacontanoic acid (inset). This structural assignment is further supported by the
CID MS? spectrum of m/z817 (Figure 4b), and the MS?2 spectrum of the ion of 7/ 799
(817 — 799; Figure 4c), arising from loss of water. The spectrum contained the ion series of
m/z 239, 281, 323, 365, 407, 449, 491, and 533, and of /2253, 295, 337, 379, 421, 463,
505, and 547 along with the ion of m/z601 and 533 from allylic cleavages with -y-H shift,
analogous to those seen in Figure 2c.

Characterization of phthioceranoic acid-AMPP derivatives

HCD and low energy CID tandem mass spectrometry toward characterization of AMPP
derivative of phthioceranoic acid family was exemplified by the ion species at m/z 759,
which gave rise to the HCD MS? spectrum (Figure 5a) with feature ions of m/z 169, 183,
and 211 along with the ion series of m/z253, 295, 337, 379, 421, 463, and 505, and of m/z
239/240, 281, 323, 365, 407, 449, 491 and 533 that locate the multiple methyl side chains at
2,4,6,8,10,12, 14, 16 of the fatty acid backbone (Scheme 3). The spectrum also contained
ions at m/z547, 561, 575, 589, 603, 617, 631, 645, 659, ..., etc (Figure 5a, subset), arising
from CRF cleavage of the C-C bonds of the n-alkyl terminal, indicating the attachment of a
terminal n-hexaoctanyl (n-C16) residue. The above information gives assignment of
2,4,6,8,10,12,14,16-Octamethyl-dotriacontanoic acid structure (Cy4qg). Similar ions were also
observed in the CID MS? spectrum of the ion of 7/ 759 (Figure 5b and inset), however, the
spectrum is dominated by the ion of /2714, which is absent in Figure 5a. High resolution
mass measurement of the ion (measured m/z. 714.7506 Da) failed to match an interpretable
elemental composition, indicating that the ion may be artificial and the source of this artifact
is unclear. Nevertheless, the results readily located the multiple methyl side chains and gave
assignment of the C-40 phthioceranoic acid structure.

Similarly, the HCD mass spectrum of m/z675 (Figure 5c¢) contained the ion series of m/z
239/240, 281, 323, 365, 407 and 449, and of m/z 253, 295, 337, 379, and 421 that locate the
methyl groups at 2, 4, 6, 8, 10, and 12; together with ions at 7/z463, 477, 505, 519, 533,
547, ... etc, that arise from cleavages of the terminal n-alkyl C-C bond. The results led to
assignment of 2,4,6,8,10,12-hexamethyl-octaeicosanoic acid (Cs4), possessing a terminal n-
C16 residue. The HCD mass spectra of /2633 (Figure 5d) and of 661 (Figure 5¢) all
contained the ion series of m/2239/240, 281, 323, 365, and 407, along with the ions of 253,
295, 337, and 379 indicating the presence of the methyl side chains at 2, 4, 6, 8, and 10.
These ions together with the ions of m/z421, 435, 449, 463, 477, 491, 505, 519, 533, and
etc, arising from CRF cleavages of the terminal n-alkyl chain, point to the notion that the
former spectrum (Figure 5d) represents a 2,4,6,8,10-pentamethyl-hexaeicosanoic acid (C3z1);
while the latter represents a 2,4,6,8,10-pentamethyl-octaeicosanoic acid structure (Csg),in
which the n-alkyl terminal is C2 longer (i.e., n-C18 chain).
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Conclusions

Both the CID MS" and HCD tandem mass spectra of the AMPP derivatives of HPA and PA
obtained with an Orbitrap provide structural information for complete characterization of
their structures. Fragment ions arising from classical charge-remote fragmentations readily
recognize the multiple methyl side chains and the hydroxyl groups. Although the sensitivity
of the AMPP derivative of the hydroxyphthioceranoic and phthioceranoic acids was not
evaluated in this study, a significant improvement in the detection by mass spectrometry was
observed, as compared to that seen as the [M — H] ™ ions in the previous studies [5]. Thus,
characterization of the minor species becomes feasible, and the structures including the
minor phthioceranoic acid family and the low abundance ions such as 2,4,6,8,10,12,14,16-
Octamethyl-17-hydroxytritriacontanoic acid in the hydroxyphthioceranoic acid family can
be determined. This latter species contains a terminal C16-alkyl chain and was not reported
previously [1-3]. The observation of near equal abundances of palmitic and stearic acids in
the hydrolysate (data not shown) is also consistent with the notion that sulfolipids consist of
2-palmitoyl/stearoyl substituent.

Supplementary Material
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Abbreviations

ESI-MS electrospray ionization-MS

HRMS high resolution mass spectrometry

LIT linear ion-trap

HCD higher energy collision induced dissociation
HPA hydroxyphthioceranoic acid

PA and phthioceranoic acid

AMPP N-(4-aminomethylphenyl) pyridinium
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Figure 1.

The full scan ESI mass spectrum of the hydroxyphthioceranoic and phthioceranoic acids
released from alkaline hydrolysis of sulfolipids seen as the [M — H]™ ions in the negative-ion
mode (a), as the [M]* ions of the AMPP derivative in positive-ion mode (b), and (c) the
MALDI-TOF spectrum of the same AMPP derivative.
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Figure 2.

The MS2 spectra of the [M] ion of the AMPP derivative of /7/z 775 obtained with higher
collision energy (HCD) (a), with low energy CID (b), and its MS3 spectrum of the ion of m/z

757 (775 — 757) (c).
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Figure 3.

The MS? spectra of the [M]* ion of the AMPP derivative of /7/z 789 obtained with HCD (a),
with CID (b), and the sequential MS3 spectrum of m/z771 (789 — 771) (c).
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Figure4.

The MS2 spectra of the ion of /7/z817 obtained with HCD (a), with low energy CAD (b),
and its MS3 spectrum of the ion of 7/2799 (817 — 799) (c).

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2017 April 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Hsu

Page 14
100 183 100 d 183
365
R 337
2 533
[}
e 253
169
& 50
2 505 504 379407
P 169 589
£ o] s’
kS of 648, 769.7 | 1? 491
2 M 373“7 350 400 450 500
500 540 580 620 sao 700 740 239, S 421 > S 633.6
211 ° 2 323363?7949.5 211 21281 56 o i :
o 1 ‘ [295) | ¥ 74849153356 158650831 , L) 12.95 l337 5879407435 463491
100 150 200 250 300 350 400 450 500 550 600 650 700 750 966756 300 250 300 350 400 450 500 550 600 650
100 b 714 100. 183
b
>
=
@ 505
c
[}
€ 50 50
= 169
%) 253 561 589 617 253
= 575|603 631, 659
2 645
&
& 500 530 560 590 620 650 680
] 37%07421449
32 365 759.8 239, 421449 477505
40 281 055335 211 281 /36! 661.6
oi23819 23'205] 56158917531 ) 1295 ps 337940 7435463491
250 300 350 400 450 500 550 500 650 700 750 800 100 150 360 250 360 350 460 450 500 550 606 650 700
m/z
100 183
&
=
[2]
169
g 50 -
5!
= 675.7
[
2
©
[}
14
281 63491519547
Jos 33783 a0, 4
198 l [l 1379 244947 7505533567 o617
9667186 200 250 300 350 400 450 500 550 600 650 700
m/z
Figure5.

The MS2 spectra of the ion of /7/z 759 obtained with HCD (a), with low energy CAD (b),
and the HCD MS? spectra of the ions of /2675 (c), 633 (d) and of /2661 (e).
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