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Abstract

Objective—The American College of Rheumatology guidelines for the treatment of lupus 

nephritis recommend change in induction therapy when response to therapy has not occurred 

within 6 months. Response is not defined, and renal fibrosis can occur while waiting for this end 

point. Therefore, a decision support tool to better define response is needed to guide clinicians 

when starting patients on therapy. This study was undertaken to identify biomarker models with 

sufficient predictive power to develop such a tool.

Methods—Urine samples from 140 patients with biopsy-proven lupus nephritis who had not yet 

started induction therapy were analyzed for a panel of urinary biomarkers. Univariate receiver 

operating characteristic (ROC) curves were generated for each individual biomarker and compared 

to the ROC area under the curve values from machine learning models developed using random 

forest algorithms. Biomarker models of outcome developed with novel markers in addition to 

clinical markers were compared to those developed with traditional clinical markers alone.

Results—Models developed with the combined traditional and novel biomarker panels 

demonstrated clinically meaningful predictive power. Markers most predictive of response were 

chemokines, cytokines, and markers of cellular damage.

Conclusion—This is the first study to demonstrate the power of low-abundance biomarker 

panels and machine learning algorithms for predicting lupus nephritis outcomes. This is a critical 

first step in research to develop clinically meaningful decision support tools.
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Lupus nephritis is an immune complex–mediated glomerulonephritis that affects 

approximately half of all patients with systemic lupus erythematosus (SLE) (1). Currently, 

renal failure occurs in up to 50% of patients at 5 years (2). Clinicians use blood pressure, 

serum complement levels, anti–double-stranded DNA (anti-dsDNA) antibody levels, urinary 

sediment, urinary protein-to-creatinine ratio, and surrogates of renal function to monitor 

response to therapy in lupus nephritis. The American College of Rheumatology (ACR) 

guidelines for the treatment of lupus nephritis (3) recommend change in treatment if 

response to therapy has not been achieved after 6 months of induction therapy. However, 

response to therapy is not well defined. In addition, renal damage can occur within 6 months 

while waiting to define this response. Decision support tools could help define response at 

the start of induction therapy and have the potential to improve outcomes. Machine learning 

modeling can assist clinicians in defining such a response. However, even with the machine 

learning models, currently used clinical biomarkers provide only 69% accuracy for 

predicting lupus nephritis as a diagnosis (4). This lack of success may stem from the 

heterogeneity of the disease at presentation. Therefore, more reliable and less invasive 

methods of predicting outcomes are required for therapeutic decision-making and drug 

development in lupus nephritis. With such tools, induction therapy can be more 

appropriately tailored to disease severity in order to prevent renal damage or unnecessary 

drug toxicity.

Rational development of a lupus nephritis decision tool should take into account 

heterogeneity in the stages of onset and progression of lupus nephritis. Therefore, markers 

should indicate initial resident and inflammatory cell activation (cytokines), signals for 

homing to the kidney (chemokines), activation of inflammatory cell types (growth factors), 

and damage to resident cell types (5). Analysis of biomarkers in urine as a proximal fluid 

rather than serum/plasma as a systemic fluid could increase the sensitivity and specificity of 

signals for renal rather than systemic processes. We hypothesized that a targeted panel of 

urinary biomarkers reflecting the above processes, with machine learning modeling, could 

be used to develop and validate an early lupus nephritis decision support tool predictive of 

lupus nephritis outcomes that is superior to a tool created with standard clinical laboratory 

biomarkers. The long-range goal is to aid clinical decision-making in lupus nephritis to 

improve outcomes. Currently, no clinically useful tool exists to predict outcomes using 

baseline measures. This study demonstrates the feasibility of using machine learning models 

of baseline biomarker assessments to predict 1-year outcomes in lupus nephritis.

PATIENTS AND METHODS

Study protocol

The goal of this study was to develop models of lupus nephritis outcome using a novel panel 

of urinary biomarkers and machine learning algorithms. Patients with active lupus nephritis 

but without high chronicity were enrolled if there was intent to advance to induction therapy 

based on active lupus nephritis. All patients had cortical renal biopsies performed as part of 

routine care. At baseline, patients underwent a physical examination, medical history was 

obtained, and blood and urine samples were obtained for evaluation of traditional markers of 

SLE disease activity and nephritis activity (Systemic Lupus International Collaborating 
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Clinics renal activity index [6] data elements). Urine samples obtained from a subset of 

patients at the initiation of induction therapy were analyzed for a discovery panel of 

biomarkers of inflammation and damage. Predictive urinary biomarkers from that discovery 

panel were used to develop a smaller biomarker panel. Levels of markers from this smaller 

panel were then analyzed in urine samples obtained prior to induction therapy using 

univariate models and machine learning techniques with 1-year complete response as the 

end point. The machine learning models using traditional biomarkers and those including 

novel urinary biomarkers as input variables were compared to determine if the combined 

novel and traditional biomarker panel models were superior to models including only 

traditional biomarkers.

Urine collection

Urine was collected by clean catch, centrifuged to remove sediment, divided into aliquots, 

and frozen at −80°C for batch analysis. If urine was not immediately processed, it was stored 

at 0–4°C for less than 4 hours prior to centrifugation and aliquotting for freezing. No 

protease inhibitors were used because they are not necessary to maintain the stability of 

acute kidney injury markers (7).

Patient populations

All research was conducted in accordance with the Declaration of Helsinki and was 

approved by the Medical University of South Carolina (MUSC) Institutional Review Board. 

Patients were recruited from 4 different lupus nephritis populations. The MUSC Division of 

Rheumatology and Immunology Lupus Erythematosus clinical research group (MUSCLE) 

assisted in the recruitment of participants in Charleston, SC as part of a prospective cohort 

designed to study lupus nephritis outcomes. Participants were also recruited from the 

Hopkins Lupus Cohort, a well-established and rigorously described prospective outcome 

cohort begun in 1987 by Dr. Michelle Petri (8). A third patient population came from those 

in the Genentech lupus nephritis study of active class III or IV lupus nephritis entitled “A 

Study to Evaluate the Efficacy and Safety of Rituximab in Subjects With ISN/RPS Class III 

or IV lupus nephritis (Lupus Nephritis Assessment of Rituximab [LUNAR])” 

(ClinicalTrials.gov identifier: NCT00282347) (9,10). A fourth population came from 

patients participating in the Bristol-Myers Squibb trial of abatacept in lupus nephritis 

entitled “Efficacy and Safety Study of Abatacept to Treat Lupus Nephritis (Abatacept in 

Lupus Nephritis)” (ClinicalTrials.gov identifier: NCT004306 77) (10,11). The latter two 

cohorts were from randomized, controlled trials. Characteristics of these 4 cohorts are 

available from the corresponding author upon request.

Inclusion criteria

All patients met the 1997 update of the revised ACR criteria for SLE (12). All patients had 

International Society of Nephrology/Renal Pathology Society active class II, III, IV, or V 

nephritis determined by biopsy performed by the treating clinician or had newly active 

nephritis (a new increase in protein of 500 mg in a 24-hour urine test or urinary protein-to-

creatinine ratio of 0.5 in a spot urine specimen). Only patients who met these criteria within 

2 months of the baseline assessment were included. Only patients with complete input and 

output variable measures were included.
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Exclusion criteria

Patients could not have an active infection or ongoing pregnancy or serum creatinine level of 

>2.5 (an exclusion in the clinical trials to show treatment effect). The LUNAR and Bristol-

Myers Squibb trials had more rigorous exclusion criteria, as previously described (10,11).

Routine laboratory analysis of traditional biomarkers of lupus nephritis

Tests for serum C3, C4, creatinine, anti-dsDNA antibody (positive or negative per the 

individual laboratory), and 24-hour urine test for protein and urinary protein-to-creatinine 

ratio were performed by Clinical Laboratory Improvement Amendments–certified central 

laboratories at MUSC, Johns Hopkins, Covance, and Quintiles.

Determination of urinary biomarker panel

Most urinary biomarkers were determined by multiplex bead array using commercially 

available multiplex human cytokine assays and a Bioplex multiplex bead array reader from 

Bio-Rad that uses a Luminex 100 system. The system was used according to the 

manufacturer’s suggestion, with the exception that a diluent containing phosphate buffered 

saline (pH 7.4) and 0.5% bovine serum albumin was used to prepare the standards and dilute 

the urine samples 1:10 (to reduce urine matrix interference with the assay) (13,14). The 

discovery array was chosen based on the availability of analytes from the manufacturers and 

reports in the literature of biomarkers and pathogenic mediators of lupus nephritis and 

markers of renal damage. Urinary biomarkers from premixed kits (Bio-Rad) were included 

in an initial discovery array of the following analytes: eotaxin 1, granulocyte–macrophage 

colony-stimulating factor (GM-CSF), interferon-α2 (IFNα2), IFNγ, interleukin-1α 
(IL-1α), IL-1β, IL-2, IL-2 receptor α (IL-2Rα), IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, 

IL-10, IL-12 (p40), IL-13, IL-15, IL-16, IL-17, IL-19, IFN-inducible protein 10 (IP-10), 

leukemia inhibitory factor, M-CSF, monocyte chemoattractant protein 1 (MCP-1; CCL2), 

MCP-3 (CCL7), macrophage migration inhibitory factor (MIF), monokine induced by 

IFNγ, macrophage inflammatory protein 1α (MIP-1α), MIP-1β, platelet-derived growth 

factor BB (PDGF-BB), RANTES (CCL5), stem cell factor, human stem cell growth factor β, 

vascular cell adhesion molecule 1, vascular endothelial growth factor, nerve growth factor β, 

stromal cell–derived factor 1α, tumor necrosis factor, and TRAIL (apolipoprotein 2 ligand). 

Lipocalin 2 (R&D Systems), TWEAK (eBioscience), osteoprotegerin (OPG), and cystatin C 

(BioVender) were analyzed by enzyme-linked immunosorbent assay using commercially 

available kits according to the manufacturers’ protocol at a 1:100 dilution (R&D Systems). 

An N-acetyl-β-D-glucosaminidase (NAG) assay (Roche Applied Science) was performed 

according to the manufacturer’s protocol.

Receiver operating characteristic (ROC) area under the curve (AUC) analysis was performed 

on a subset of patients, with biopsy class at onset of renal disease as an outcome. To select 

markers of more aggressive disease, those predictive of proliferative disease (class III or IV) 

with ROC AUC values of >0.6 or with literature supporting their use were combined to 

develop a panel of biomarkers that were analyzed using the same methods for the entire 

combined cohort of patients. These biomarkers were eotaxin 1, GM-CSF, IFNα2, IFNγ, 

IL-1α, IL1β, IL-6, IL-8, IP-10, MCP-1, MIP-1β, PDGF-BB, lipocalin 2, TWEAK, OPG, 

cystatin C, and NAG. Initial modeling in a subset of patients indicated that there was no 
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increased discriminative power when biomarker levels were normalized to urine creatinine 

level.

Statistical analysis

All models/analyses used the novel and traditional renal biomarkers listed above, and 

induction therapy (mycophenolate mofetil, azathioprine, cyclophosphamide, abatacept, or 

rituximab) as separate input variables, and complete response as the outcome. An 

exploratory analysis included study cohort as a variable. The outcome variable was complete 

response, as defined by Wofsy et al and originally described in the LUNAR trial (15). This 

outcome was chosen among several comparative outcomes of 1-year complete response 

because it required fewer subjects to discriminate complete response among the lupus 

nephritis patients in this study who were treated with abatacept. Normal renal function was 

defined as an estimated glomerular filtration rate (GFR) of ≥90 based on the abbreviated 

Modification of Diet in Renal Disease equation (16).

Power analysis—A sample size of 140 including 37 complete responders and 103 

nonresponders provides >80% power to detect an area under the ROC curve (AUC) of 0.65 

compared to the null hypothesis of an AUC of 0.50 (equivalent to no diagnostic value) using 

a 2-sided z-test at a significance level of 0.05. This sample size also provides 80% power to 

detect a 0.14 unit difference between a statistical model with an AUC of 0.65 and another 

statistical model with an AUC of 0.79 using a 2-sided z-test at the significance level α = 

0.05.

Univariate and random forest analysis—Univariate associations between 

demographic factors, therapeutic agent usage, and all biomarkers were initially evaluated 

using simple logistic regression models. The univariate area under the ROC curve (AUC) 

with 95% Wald confidence intervals were calculated for all traditional and novel biomarkers 

from the logistic regression models. Hypothesis tests comparing the AUCs for each 

biomarker to a null value of 0.5 were conducted by comparing an intercept-only model to 

each univariate model. For multivariable classification analysis, random forest models with 

1) clinical variables only and 2) clinical variables and novel biomarkers (combined) were 

considered. Parameters in the random forest models, including the number of variables 

considered at each step of the algorithm and maximum tree size, were selected using the 

train function in the caret package in R. In order to evaluate the prediction performance of 

each model, in a separate study (17), the predictive power of random forest modeling was 

determined in separate training and test sets from these data. The test (validation) set 

performed equally as well as the training set, which is consistent with the findings of 

Breiman (18) that random forest models produce an unbiased estimate of model error. 

Because the random forest modeling did not overtrain as other modeling techniques did, the 

entire data set was used as a training set for this study. The predictive performance of all 

univariate and multivariable models was assessed using the AUC, accuracy, sensitivity, 

specificity, positive predictive value (PPV), and negative predictive value (NPV). 

Comparisons between univariate AUCs and random forest model AUCs were conducted 

using the DeLong test (19). All analyses were conducted in R version 3.1.1.
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RESULTS

Patient characteristics by outcome

For this analysis, patients were classified as complete responders or nonresponders. The 

overall percentage of complete responders was 26.4%, and the response rate was not 

different between cohorts. General characteristics of patients with different outcomes are 

represented in Table 1. All patients were receiving mycophenolate background oral therapy 

unless otherwise specified as taking cyclophosphamide or azathioprine. Therapy with a 

biologic agent was added to oral or intravenous cyclophosphamide background therapy. A 

majority of the patients were female, and both African Americans and whites were well 

represented. Given that the responder definition relies on renal function and urinary protein-

to-creatinine ratio, it is not surprising that urinary protein-to-creatinine ratio and estimated 

GFR were significantly different between groups.

Single biomarkers are poor to fair markers of complete response

To determine the extent to which individual biomarkers predict treatment response in lupus 

nephritis, AUCs were generated for all biomarkers. The following is a general guide for the 

discriminative power of a test based on ROC AUC: 0.9–1.0 is excellent, 0.8–0.9 is good, 

0.7–0.8 is fair, and 0.6–0.7 is poor (20). The test is considered a failure if the ROC AUC is 

0.5–0.6. The ROC AUC for the top 9 most discriminative clinical and novel biomarker 

variables are shown in Table 2. The AUCs for the individual clinical and urinary biomarkers 

ranged from 0.42 to 0.67 (for eotaxin and OPG, respectively). Among the traditional clinical 

markers, only estimated GFR and urinary protein-to-creatinine ratio had AUC values 

significantly greater than 0.5 (P = 0.019 and P = 0.005, respectively). Among the 18 novel 

biomarkers, IL-2Rα, OPG, and IL-8 were the only markers that had AUC values 

significantly greater than 0.5 (P = 0.034, P = 0.002, and P = 0.008, respectively).

Increased discriminative power of novel biomarkers compared to traditional biomarkers in 
random forest models

We hypothesized that random forest models using a biomarker panel would outperform 

traditional or low-abundance biomarkers in univariate models. We also hypothesized that a 

random forest model including both traditional and novel biomarkers (combined) would 

predict outcomes better than one with traditional biomarkers alone. Because random forest 

models do not overtrain in test sets as other machine learning models tend to do (18), we did 

not split the data into test and training data. Random forest models of response to treatment 

were developed using either traditional markers only or novel biomarkers in addition to 

clinical markers (combined models). The full model included 500 decision trees (results are 

available from the corresponding author upon request). In the random forest model, each of 

the 500 different decision trees makes a prediction about whether or not a subject is a 

responder.

The combined models had a greater AUC and significance than the models created with 

traditional clinical markers alone (AUC 0.79 [P < 0.001] versus AUC 0.61 [P = 0.05], 

respectively). The random forest combined model provided better discrimination of 

outcomes than the random forest model that included only traditional biomarkers (P = 
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0.002). The random forest combined model had a significantly better AUC than a majority 

of the individual biomarkers. This increased the percentage of correctly predicted complete 

responders from 27% in the traditional model to 76% in the novel model (threshold 0.3) 

(data are available from the corresponding author upon request). OPG was the only 

biomarker that did not have an AUC that was significantly lower than the random forest 

model, although there was a trend toward significance (P = 0.055). However, the OPG model 

AUC was not superior to those with traditional markers.

Predictions from a random forest model are based on the proportion of trees (threshold) in 

the model that predict a person to be a responder versus the proportion that predict a person 

to be a nonresponder. The default is to assume that if ≥50% of the trees in the forest predict 

that a person is a responder, then the person is a responder; otherwise, they are predicted to 

be a nonresponder. The AUC was chosen as the primary measure to evaluate a model’s 

discriminative power because it does not depend on the prediction threshold chosen for a 

model. Sensitivity and specificity can also provide information about a model’s 

discriminative power but can change dramatically based on the threshold probability chosen. 

Therefore, we estimated sensitivity and specificity for a range of threshold probabilities. 

Results for selected threshold probabilities for the random forest model with traditional 

markers only and for the combined model are presented in Table 3. Additionally, we 

evaluated the PPV, the NPV, and the accuracy (data are available from the corresponding 

author upon request).

Figure 1 shows the change in sensitivity and specificity for each model as the threshold 

probability increases from 0.25 to 0.5. These results indicate that decreasing the threshold 

from 50% to 25% results in large increases in sensitivity (to >80%) and a smaller decrease in 

specificity in both models. However, the random forest combined model is able to achieve 

both sensitivity and specificity of >70% when the threshold is near 30%. In comparison, the 

traditional biomarker model is less sensitive at all thresholds.

Analytes that contribute to the models in sensitivity analysis

Identifying analytes that are important in modeling outcome can be useful in generating 

hypotheses about nephritis pathogenesis. The random forest method also provides a measure 

of variable importance for all variables evaluated in a model based on the mean decrease in 

Gini Index (a measure of prediction purity) when a variable is permuted. These importance 

measures allow us to examine the relative importance of each biomarker in the prediction of 

treatment response. The variable importance plot for the random forest model fit to all of the 

data is shown in Figure 2. Five biomarkers were distinct from others in their importance in 

prediction of treatment response; these were OPG, IL-2Rα, urinary protein-to-creatinine 

ratio, IL-8, and TWEAK. MCP-1, IP-10, age, estimated GFR, C3, IL-1α, C4, cystatin C, 

and GM-CSF were another distinct set of biomarkers with a mean decrease in Gini Index of 

≥2. Of interest, race, anti-dsDNA antibodies, and induction medication were not significant 

contributors to the model.

In a clinical setting, it is ideal to have smaller numbers of biomarkers in a panel. Thus, we 

ran additional random forest models including 1) only the top 5 most important predictors, 

2) the top 13 most important predictors (selected because they had a mean decrease in Gini 
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Index of >2), and 3) the top 4 most important novel biomarkers plus all traditional clinical 

markers. We then evaluated the predictive performance of these reduced models relative to 

the full model (including all predictors) (Table 4). These “reduced” models showed 

equivalent discriminative ability relative to the “full” model and in some cases, had better 

sensitivity and specificity than the “full” model, suggesting that a more tailored model based 

on a subset of markers might provide good predictive performance.

DISCUSSION

In this study, models of complete response at 1 year using panels of biomarkers had superior 

diagnostic power over single biomarkers or over models developed using traditional clinical 

biomarkers. The combined model provided improvements in sensitivity compared to 

traditional models. This improvement provides the rationale for a future randomized 

implementation study to determine if its use in the clinical setting improves renal response 

over current standard of care.

Biomarkers in the novel panels represented multiple mechanisms of disease pathogenesis 

and cellular damage. Thus, the effectiveness of this more inclusive approach to diagnosis 

(use of biomarker panels rather than individual markers in isolation) likely reflects the 

multistaged, heterogeneous nature of lupus nephritis. The biomarkers with the greatest 

importance to the models have biologic plausibility. Both OPG and MCP-1 have been 

described as markers of renal disease activity (21). OPG is a soluble, decoy receptor to 

RANKL, thus preventing the RANK–RANKL interaction that can promote inflammation 

and bone resorption (22). Whether OPG is a marker or mediator of lupus nephritis disease 

activity is unknown, since OPG levels were higher in nonresponders. Kiani et al have 

described increased OPG levels in patients with more active lupus nephritis (21). IL-2Rα 
(CD25) is important in the regulation of immune responses, and mutation of this receptor 

predisposes to autoimmunity. Serum levels are associated with general lupus disease activity 

(23). IL-8 is a neutrophil chemoattractant stimulated by CD40 and IL-17 receptor 

engagement (24). IL-8 polymorphisms were identified in African Americans with lupus 

nephritis (25), and IL-8 was increased in lupus nephritis (26). TWEAK induced the 

production of inflammatory chemokines by mesangial and endothelial cells (27) and is a 

promising therapeutic target for lupus nephritis (28).

MCP-1 (CXCL2) acted as a chemoattractant for monocytes, memory T cells, and dendritic 

cells (29,30). MCP-1 levels were increased in the urine of patients with lupus nephritis (31), 

preceded flares, and were associated with nephritis activity (21,32). More recently, MCP-1 

within a biomarker panel has been associated with interstitial inflammation and chronicity in 

lupus nephritis (33). This latter approach is advocated by Rovin et al (34) and is similar to 

the use of a composite biomarker panel rather than a single biomarker in this study. The 

novel contribution of the present study is the use of a broader biomarker panel and machine 

learning techniques to optimize models of disease outcome. The importance of urinary 

protein-to-creatinine ratio in the model is not surprising given that the outcome is dependent 

on this measure.
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This is also the first study to use artificial intelligence or machine learning modeling to 

develop models of outcome using multiple biomarkers that can be measured using 

commercial kits. Others have used machine learning modeling to improve the diagnostic 

accuracy of traditional clinical markers over that of expert diagnosis (35). Our group used 

artificial neural network modeling of proteomic data to identify glycosylation variants of 

common proteins that were predictive of class, a finding later confirmed by others (36). 

However, a commercial assay for these glycosylation variants is not available.

This study has several potential limitations. The input variable of biopsy class was 

determined by multiple pathologists. However, the International Society of Nephrology/

Renal Pathology Society classification system has proven to have reduced interobserver 

variability (37,38) when compared to the World Health Organization classification. The 

models were created using only findings in urine samples obtained at the start of induction 

therapy. As we have previously determined with measures of systemic nitric oxide 

production (39), markers evaluated after the initiation of induction therapy were more 

indicative of outcome than baseline measures. However, models created in that study using 

change in biomarkers from baseline to 3 months did not yield superior predictive power over 

simple baseline measures. Markers in the present study were not normalized to creatinine 

level. While normalizing to creatinine level may reduce variability and improve the 

predictive power of the model, data on creatinine level were not available for all patient 

samples from the clinical trials. While the models have not been validated in an external 

cohort of patients, a separate study of the same data set, using separate training and 

validation sets, demonstrated that the random forest modeling did not over fit. Similar model 

performance to that seen in this study was observed in the validation set in the separate study 

(17).

The variation in choice of induction therapy at each site is accounted for in the models 

(induction therapy was included as a variable). However, differences in induction therapy 

could affect the outcome after baseline urine is collected for modeling and introduce bias in 

the model. Contrary to this notion, Figure 2 illustrates that biomarkers are more important in 

the model than choice of induction therapy. This study did not test why induction therapy 

was not important in the models. However, biomarkers may have contributed more to 

models because they were measured in every patient, while therapies other than 

mycophenolate mofetil monotherapy did not occur in sufficient frequency to contribute to 

the model (Table 1 and Figure 2). The same is true for the abatacept and rituximab add-on 

therapies. While there were numerical differences in the percentage of responders and 

nonresponders who were receiving each biologic agent, the study was not powered to study 

differences between therapies. Specifically, 52-week complete response outcome used in this 

study is predicted to be sufficient to detect differences in treatments with 50 or more subjects 

in each group (15).

The study cohort could similarly affect outcomes through different practice patterns or 

protocols. However, the prediction performance of the model that included study cohort was 

similar to that of the random forest model presented above. Additionally, the cohort variable 

was found to be of low importance (ranked 24th of 30 predictor variables). Cumulative 

prednisone dose could have affected outcomes but was not measured in this study. Finally, 
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the lack of full representation of patients at each of the contributing sites could introduce a 

bias. Specifically, only patients who had complete follow-up and baseline data were 

selected. It is possible that those patients who did not have complete assessments 

represented a population more at risk for treatment failure.

This study provides support for the use of commercially available assay biomarker panels to 

develop models of lupus nephritis outcome. The heterogeneity of lupus nephritis is reflected 

in the finding that panels of multiple biomarkers provided superior diagnostic power 

compared to single biomarkers. This raises the possibility of using panels such as this with 

interpretive modeling as a clinical decision tool in future studies. Prospective trials would 

need to be performed to determine if their use in aiding the choice of induction therapy 

affects outcomes.
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Figure 1. 
Effect of varying threshold on the sensitivity (Sens) and specificity (Spec) of random forest 

models of response to therapy that included traditional clinical markers alone or clinical 

markers plus novel biomarkers. Random forest models were created for the prediction of 

complete response to therapy for lupus nephritis at 1 year.
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Figure 2. 
Importance plot for individual biomarkers in the random forest model. A random forest 

model for prediction of complete response to therapy for lupus nephritis at 1 year was 

developed using standard clinical markers and clinical markers plus novel urinary 

biomarkers. The importance of each individual biomarker in the model is plotted as mean 

decrease in Gini Index (a measure of prediction purity). OPG = osteoprotegerin; IL-2Rα = 

interleukin-2 receptor α; urine prot/creat = urinary protein-to-creatinine ratio; MCP-1 = 

monocyte chemotactic protein 1; IP-10 = interferon-inducible protein 10; EGFR = estimated 
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glomerular filtration rate; CysC = cystatin C; GM-CSF = granulocyte–macrophage colony-

stimulating factor; NGAL = neutrophil gelatinase–associated lipocalin; MIP-1β = 

macrophage inflammatory protein 1β; PDGF-BB = platelet-derived growth factor BB; NAG 

= N-acetyl-β-D-glucosaminidase; IFNγ = interferon-γ; dsDNA = doublestranded DNA; 

MMF = mycophenolate mofetil.
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Table 1

Characteristics of the patients with lupus nephritis*

Variable
Nonresponders

(n = 103)
Responders

(n = 37)

White race 66 (64.1) 24 (64.9)

Azathioprine treatment 5 (4.85) 0 (0.00)

Mycophenolate treatment 95 (92.2) 37 (100.0)

Cyclophosphamide treatment 1 (0.97) 0 (0.00)

Rituximab treatment 14 (13.6) 7 (18.9)

Abatacept treatment 24 (23.3) 10 (27)

dsDNA positive 77 (74.8) 29 (78.4)

Age, mean ± SEM years 31.7 ± 1.05 29.2 ± 1.66

Class III or IV nephritis 94 (91.3) 33 (89.2)

Urinary protein-to-creatinine ratio, mean ± SEM gm/gm 3.64 ± 0.30 2.34 ± 0.40†

C3, mean ± SEM mg/dl 71.1 ± 2.82 66.5 ± 4.39

C4, mean ± SEM mg/dl 14.7 ± 0.73 13.2 ± 1.13

Estimated GFR, mean ± SEM ml/minute 92.7 ± 4.32 108.1 ± 5.19

*
Responders were patients in whom complete response had been achieved at 1 year. Except where indicated otherwise, values are the number (%).

dsDNA = double-stranded DNA; GFR = glomerular filtration rate.

†
P = 0.020 versus nonresponders.
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Table 2

Most discriminating variables for the prediction of treatment response in univariate analysis*

Variable ROC AUC (95% CI) P

Age 0.58 (0.47–0.69) 0.156

Urinary protein-to-creatinine ratio 0.65 (0.55–0.76) 0.005

Serum C4 0.57 (0.46–0.66) 0.202

Estimated GFR 0.62 (0.52–0.72) 0.019

OPG 0.67 (0.57–0.78) 0.002

IFNα2 0.58 (0.47–0.69) 0.150

IL-2Rα 0.63 (0.51–0.75) 0.034

IL-8 0.64 (0.54–0.75) 0.008

IP-10 0.58 (0.47–0.69) 0.149

*
ROC AUC = receiver operating characteristic area under the curve; 95% CI = 95% confidence interval; GFR = glomerular filtration rate; OPG = 

osteoprotegerin; IFNα2 = interferon α2; IL-2Rα = interleukin-2 receptor α; IP-10 = interferon-inducible protein
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Table 3

Sensitivity and specificity at different thresholds for random forest models with traditional clinical markers 

only and with both traditional and novel markers*

Threshold

Model t = 0.3 t = 0.4 t = 0.5

Traditional markers only

  Sensitivity (95% CI) 0.32 (0.24–0.40) 0.14 (0.08–0.20) 0.05 (0.01–0.09)

  Specificity (95% CI) 0.82 (0.76–0.88) 0.90 (0.85–0.95) 0.94 (0.90–0.98)

Traditional and novel markers

  Sensitivity (95% CI) 0.76 (0.69–0.83) 0.49 (0.41–0.57) 0.24 (0.17–0.31)

  Specificity (95% CI) 0.73 (0.66–0.80) 0.86 (0.80–0.92) 0.98 (0.96–1.00)

*
The threshold is the proportion of trees in the random forest model that classify response to therapy required to predict that a person is a 

responder.

95% CI = 95% confidence interval.
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Table 4

Performance of random forest models using different subsets of variables*

Threshold

Model t = 0.3 t = 0.4 t = 0.5

Full model (30 variables) 0.79 (0.70–0.88) 0.24 (0.17–0.31) 0.98 (0.96–1.00)

5 most important predictors 0.77 (0.70–0.84) 0.43 (0.35–0.51) 0.92 (0.87–0.96)

13 most important predictors 0.80 (0.73–0.87) 0.35 (0.27–0.43) 0.95 (0.91–0.99)

Clinical variables plus 4 most
  important biomarkers

0.79 (0.72–0.86) 0.51 (0.43–0.59) 0.91 (0.86–0.96)

*
Values are the receiver operating characteristic area under the curve (95% confidence interval). The threshold for prediction when calculating the 

sensitivities and specificities was set at the default value of ≥50%.
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