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ABSTRACT

Inductive machine learning, and in particular extraction of association rules from data, has been successfully

used in multiple application domains, such as market basket analysis, disease prognosis, fraud detection, and

protein sequencing. The appeal of rule extraction techniques stems from their ability to handle intricate prob-

lems yet produce models based on rules that can be comprehended by humans, and are therefore more trans-

parent. Human comprehension is a factor that may improve adoption and use of data-driven decision support

systems clinically via face validity. In this work, we explore whether we can reliably and informatively forecast

cardiorespiratory instability (CRI) in step-down unit (SDU) patients utilizing data from continuous monitoring of

physiologic vital sign (VS) measurements. We use a temporal association rule extraction technique in conjunc-

tion with a rule fusion protocol to learn how to forecast CRI in continuously monitored patients. We detail our

approach and present and discuss encouraging empirical results obtained using continuous multivariate VS

data from the bedside monitors of 297 SDU patients spanning 29 346 hours (3.35 patient-years) of observation.

We present example rules that have been learned from data to illustrate potential benefits of comprehensibility

of the extracted models, and we analyze the empirical utility of each VS as a potential leading indicator of an im-

pending CRI event.
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INTRODUCTION

Step-down units (SDUs) are hospital wards that admit patients with

disease severity requiring increased monitoring and care beyond

what is routinely provided in standard hospital wards, yet not re-

quiring active organ support, as is the case in intensive care units.

Patients admitted to SDUs are presumed to have a significant poten-

tial for complications manifested by physiologic instability.

Accordingly, cardiorespiratory instability (CRI) is frequent in SDU

patients and routinely requires acute interventions and, at times,

transfers to higher levels of care. Enhanced ability to identify pa-

tients with impending CRI prior to its overt manifestation could

benefit SDU patients by allowing earlier interventions with less in-

tensive treatment and fewer potential complications. Situationally

aware clinicians could potentially prevent such sentinel CRI events

from improving these patients’ processes of care and outcomes.

Several early warning scoring and integrated monitoring systems

have been recently developed.1–5 For example, we previously re-

ported the ability of such a system to detect CRI an average of 9

minutes before a sentinel event.5 However, such systems suffer from

3 major weaknesses: (1) the integrated indices convey a measure of

the present risk without considering the likely future trajectory of

risk, (2) the scores represent mortality risk and not instability in
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advance of mortality, and (3) the derivation of the present status is

quantified in terms of a single numeric score with limited or no in-

formation about the specific factors contributing to that score. Such

“black-box” approaches are unappealing to clinicians. Indeed, a sys-

tem that could provide both a reliable forecast of future instability

and some comprehension of the reasons on which the forecast is

based might lead to better system acceptance due to increased trans-

parency. We present a rule-based, data-driven approach to develop

a reliable CRI forecasting system that constructs models comprehen-

sible to clinicians, providing an interpretable explanation through

the rules on which the early warnings of potential future CRI events

are generated.

MATERIALS AND METHODS

Clinical dataset
Our dataset includes 297 SDU admissions, registered over 8 weeks,

totaling 29 346 hours of multivariate physiologic monitoring data.

Patients had undergone continuous noninvasive measurement of

common vital signs (VSs): heart rate (HR), respiratory rate (RR),

and blood capillary oxygen saturation (SpO2), and intermittent non-

invasive measurements of blood pressure (BP). These VSs are sam-

pled every 20 seconds, except for BP, which is sampled at a

minimum every 2 hours. CRI events are first identified based on

clinically accepted thresholds defining instability,6 forming the

ground-truth set for the events to forecast, and then annotated by a

committee of expert physicians through a previously described and

validated protocol,7 detailed below:

1. Identify all periods in patient data where at least 1 of the fol-

lowing CRI threshold limit criteria is exceeded for >80% of

the last 3 minutes:

2. HR <40 or >140 beats per minute

3. RR <8 or >36 breaths per minute

4. SpO2 <85%

5. Systolic BP <80 or >200 mmHg

6. Diastolic BP >110 mmHg

7. Each identified event is then separately adjudicated by 2 expert

physicians who annotate it as real or artifact based on their

prior clinical expertise in clinically viewing real event and arti-

factual monitoring signatures. Additionally, the physicians

quantify the confidence of their determination (using an integer

score between 0 and 3). Physicians are blinded to their paired

physician’s scores.

8. If the 2 physicians agree and indicate a sufficient confidence

(�2), the analyzed event is labeled accordingly.

9. If the 2 physicians disagree, or indicate lack of confidence (<2),

the case is escalated to a third independent reviewer. If there is

still disagreement or low confidence, the event is reviewed and

discussed at a 4-member committee meeting.

10. If the committee cannot agree on the event, it is considered too

uncertain for model training and set apart.

11. All artifacts are excluded from training data.

12. All non-excluded events are considered as real CRI episodes.

Of the 297 patients, 43% exhibited at least 1 real CRI event during

their SDU stay. Once patients exhibit CRI, they have a substantially

increased propensity for CRI reoccurrence.8 Our analysis focused on

forecasting the initial CRI, because we presumed reactive treatment

to the initial CRI event could obfuscate prediction rules for subse-

quent CRI events. The cumulative time span of the resulting censored

dataset decreased to 1.43 patient-years and included 130 initial CRI

events.

Data preparation
Raw VS data records contained 5 channels of measurement: HR,

RR, SpO2, systolic BP (SysBP), diastolic BP (DiaBP), and mean BP

(MeanBP) reported at 1/20 Hz. We processed each resulting time se-

ries to convert them into features that would be suitable for use with

our temporal rule-learning algorithm.

We first extracted scalar features. These included multiple statis-

tical characteristics of VS time series observed at various time scales,

plus various measures of signal quality. An example of a scalar fea-

ture is a “moving average of the HR over the last 5 minutes” (eg, its

value at 11:37 a.m. for a particular patient on a specific day of an

SDU stay reflects the mean value of the patient’s HR observed be-

tween 11:32 a.m. and 11:37 a.m.). Next, each scalar feature was dis-

cretized to be represented using event features. Event features

typically reflect change points in time series. An example of an event

feature is a discrete entry generated whenever “5-minute average of

HR becomes �80 bpm.” This specific event informs about a particu-

lar exceedance of a specific HR statistic. We extracted a wide variety

of such event features using different base statistics (eg, 5-minute

moving average) and various thresholds (eg, HR �80 bpm). Note

that the number of thresholds used at this stage of data processing

was much larger than thresholds used to define CRI. Their number

and granularity was a design decision (eg, for HR we used every in-

teger threshold value between 30 and 150 bpm; for RR, all integer

values between 2 and 50; and for SpO2, all integer values between

80 and 95). Additionally, calendar and time-of-day information was

added in scalar (eg, current clock time) or event feature form (eg,

“today is Monday”).

A total of 8299 distinct features were extracted from VS data, in-

cluding 225 scalar and 8074 event features, not including the target

events to be forecasted. Event features varied in sparsity, but the to-

tal number of their unique instances exceeded 100 million (8730 dif-

ferent events on average per monitoring hour, or 1 event of each

type occurring on average every 55 minutes). Similar to our previous

work,9 VS feature extraction aimed to be comprehensive by design,

as we could not be certain a priori which of the large number of ex-

tracted features, or their combinations, would be informative of the

impending CRI. We allowed our inductive learning algorithm to

identify these informative features automatically, and our rule fu-

sion algorithm helped to create conservative sets of induced rules to

remedy overfitting.

Extraction of temporal association rules
We considered association rules with conjunctive statements serving

as preconditions, and consequents in the form of distributions of

probability of occurrence of a specific type of an event, spanning spe-

cific time intervals, so-called Temporal Interval Tree Association

(TITA) rules. A TITA rule can be applied to data available at a cer-

tain point in time in an attempt to forecast a particular event of inter-

est for which it was trained, if the current data matches its

precondition. The precondition, also referred to as the rule’s body, is

a set of symbols connected with temporal constraints. TITA rules are

able to simultaneously express both sequences of discrete events and

numerical threshold equations. Figure 1 shows 3 simple examples of

TITA rules.

To extract TITA rules from data, we used a TITA Rule Learning

(TITARL) algorithm previously described,10 and later extended to
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forecasting applications.11 In brief, the TITARL rule extraction pro-

cedure was as follows:

1. Extract all unit rules with a single component in its precondition

statement (eg, “IF HR crosses-up 88 bpm, THEN CRI will occur

within the next hour”).

2. For each newly available rule, identify and evaluate the informa-

tion gain of each of the available additional components in its

precondition statement (eg, “IF HR crosses-up a threshold of 88

bpm AND if the RR is <8 breaths/minute, THEN CRI will oc-

cur within the next hour”). Various optimizations were devel-

oped to efficiently handle the large amount of possible

additional components.10

3. Select a (non-uniform) random subset of additional components

generated in step 2.

4. Build and store the (single) rule created from the most informa-

tive additional components selected in step 3.

5. Repeat step 2 until the user-selectable maximum number of rules

has been extracted.

In the process, rules exhibiting low confidence (probability of ob-

serving an event of interest when a rule’s precondition statement is

true) and/or low support (fraction of predicted events of interest)

and/or low usage (number of instances when the rule’s precondition

statement is true) are discarded by the algorithm using various con-

straints and heuristics (eg, a priori support pruning11). In the appli-

cation scenario presented here, we extracted rules that expressed

correlations between CRI events (target events) and the VS data ob-

served during periods of time preceding the events.

Assembly of a forecasting model
TITARL, like any inductive rule-learning algorithm, may and often

does extract very large sets of presumably useful rules. Applying all

such rules individually to forecast events of interest may work for

relatively small uncomplicated datasets, but this approach often fails

in most real-world applications due to overtraining, dataset com-

plexities, and intra-rule redundancies. As an example, finding 2 dis-

tinct rules that match data in close temporal proximity to each other

may or may not be indicative of an elevated probability of CRI to

occur, when compared to the probability stemming from each of

these rules individually. This can happen if the rules are not fully in-

dependent. In datasets without apparent highly predictive rules, re-

solving such interdependencies is essential to obtain reliable

forecasting models.

Instead of using a direct prediction, we aggregated the complete set

of extracted TITA rules into a single forecasting model using a rule fu-

sion algorithm introduced previously.11 The resulting model Pw
h tð Þ is

the fused probability at time t, across a set of rules, that CRI will hap-

pen between h and hþw in the future, while only considering data

available both at and before time t. Here, h denotes the forecast horizon

and w denotes the width of the time window of predicted occurrence of

a future CRI event.

The rule fusion algorithm works by considering each rule as an

individual characteristic or feature of a dataset. The value of each

rule’s feature in this dataset is the predicted probability of observing

the target event according to this rule. The mapping function from

the rule-based features to the resulting forecast model Pw
h tð Þ can be

learned using a classifier, such as a Random Forest model. The fol-

lowing summarizes the procedure:

Function Pw
h tð Þ is as follows:

1. For each rule ri, we define the score metric fiðtÞ as the probability

of observing a target CRI event in the time window

t þ h; t þ hþw½ � according to the rule ri while only considering

data available at and before time t, which is referenced to the

subsequent CRI event.

2. We populate a classification dataset M where each row repre-

sents a unique time such that at least 1 TITARL rule is activated,

and each column represents 1 of the scores fiðtÞ. Mj;i is equal to

the value of fiðtjÞ with tj being the time associated with row j.

3. The output of each row j is defined as the presence or absence of

the target CRI event in the time window tj þ h; tj þ hþw
� �

.

4. Finally, we train a Random Forest classifier on M. This classifier

represents Pw
h tð Þ.

Although alternative classification models capable of handling

highly dimensional numeric data could also be used, we chose

Random Forest based on favorable previous experience when ap-

plied to similar tasks.

Metrics of performance
Our primary aim was to quantify the operational utility of the ob-

tained CRI forecasting models. We also studied the importance of

the individual rules, specific VSs, and the individual features ex-

tracted from VS data in making event forecast decisions.

We characterized the utility of forecasting models using the

Activity Monitoring Operating Characteristic (AMOC) approach,

which is a useful method for evaluating event detection and event

forecasting systems.12 It depicts the tradeoff between forecast hori-

zon and specificity of predictions made by the evaluated system. An

AMOC curve is obtained by changing a sensitivity setting of the

evaluated system and tracking the resulting changes in the attainable

prediction look-ahead time and the correlated changes in the rate of

false predictions made by the system. Typically, longer forecast hori-

zons imply higher rates of false alerts, and vice versa.

We also used a temporal version of a Receiver Operating

Characteristic (ROC). ROC summarizes the predictive abilities of

binary classifiers by plotting their performance with regard to true

positive rates (also called recall or sensitivity) and false positive rates

Figure 1. Three examples of TITA rules: e1, e2, and e3 are generic events;

s1 is a scalar and is assigned to a numerical value at each point in time.

Histograms represent the probability distributions of the time difference be-

tween activation of the rule body and activation of the rule head. When the

body of a rule is matched, the histogram is used to infer the probability distri-

bution of the predicted event’s time of occurrence. Intervals between 2 events

in the rule’s body define constraints on the time difference between the oc-

currences of these 2 events. Note that in this work, we focused on forecasting

CRI events, therefore the head of the rules (ie, e1 events) will always be CRI.
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(1 � specificity). Standard ROCs do not reflect temporal aspects of

performance, which can be resolved by producing a number of sepa-

rate ROCs, 1 for each of the selected settings of the forecast horizon.

Alternatively, we used a Temporal ROC (T-ROC) to depict the

tradeoff between the true positive rate and the forecast horizon.

In our quantitative performance analyses, we used a 10-fold

cross-validation protocol. To ensure minimum bias of the results,

each patient’s VS data prior to the CRI event was used exclusively in

either training or testing subsets of data in each iteration of the

cross-validation procedure.

We compared the empirical performance of our temporal rule

learning models to a standard Random Forest classifier13 operating

on the same input feature set. Random Forest often outperforms

other approaches on complex datasets or on datasets with large

numbers of input dimensions.13–17 For completeness, we also re-

ported performance that can be attained by directly using the indi-

vidual VS to forecast instability (increase and decrease in HR and

RR, and decrease in SpO2). By convention, we assigned the name of

an index based on a single VS as composed of the name of the VS

followed by an up or down arrow indicating the direction of exceed-

ance (eg, HR" stands for increasing heart rate over a given thresh-

old). We reported the empirical performance of these models using

the AMOC and T-ROC frameworks.

In order to characterize the importance of individual rules used

by our system, we also evaluated their individual impact on making

effective forecast predictions.

RESULTS

Forecasting performance
Figure 2 shows the results of the 10-fold cross-validation–based

AMOCs of our temporal rule learning system, the Random Forest

model applied to the featurized VS data directly without using

TITARL, and those obtained via direct use of VSs as predictors of

future CRI events. Table 1 presents selected performance scores that

can be read from the AMOC plots shown in Figure 2. Figure 3

shows results of the T-ROC of our TITARLþFusion algorithm,

Random Forest, and direct use of VSs as predictors of future CRI

events. The sensitivity of the TITARLþFusion algorithm is consis-

tently better than all competing models.

The 2 criteria applied directly to VS data that provided the best

performance in this class of very simple models included detection

Table 1. Average forecast horizon for fixed average intervals between consecutive false positive alerts and average interval between con-

secutive false positive alerts for fixed forecast horizons

Reported value Avg. forecast horizon Avg. false positive

interval

Fixed parameter Avg. false positive

interval

Avg. forecast

horizon

Fixed parameter

value

12 h 24 h 2 min 10 min

TITARLþ Fusion 17 min 52 s 10 min 58 s 171 h 28 h

Random Forest 11 min 25 s 5 min 52 s 75 h 14 h

SpO2 # 8 min 38 s 2 min 50 s 29 h 11 h

HR " 5 min 14 s 3 min 46 s 102 h 5.2 h

HR # 4 min 50 s – – 3.7 h

RR " 8 min 45 s 5 min 10 s 98 h 9.3 h

RR # 7 min 35 s – – 10 h

Random 2 min 39 s 1 min 9 s 14 h –

Figure 2. Activity Monitoring Operating Characteristics of TITARLþFusion al-

gorithm, Random Forest, individual vital sign–based forecast models (using,

respectively, HR, RR, SpO2), and the random predictor

Figure 3. Temporal Receiver Operating Characteristics of TITARLþ Fusion al-

gorithm, Random Forest, individual vital sign–based forecast models (using,

respectively, HR, RR, SpO2), and the random predictor
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of low SpO2 values (SpO2#) and high respiratory rate values (RR").
Random Forest enables condensing of the information provided in

all VSs simultaneously, and it is not surprising that it performed bet-

ter than any model based on an individual VS, while

TITARLþFusion provided the best result overall and was found

consistently better than the competing models. Our algorithm was

able to issue CRI forecast alerts on average 17 minutes and 51 sec-

onds before onset of the CRI events if false alerts are tolerated at an

average frequency of once every 12 hours. If the tolerance of false

alerts is reduced twofold (to once every 24 hours), the average effec-

tive forecast horizon reduces to 10 minutes and 58 seconds, whereas

the Random Forest classifier yielded effective forecast horizons of,

respectively, 11 minutes and 24 seconds and 5 minutes and 51 sec-

onds for the same settings of false alert tolerance (12 and 24 hours).

Fixing the average forecast horizon to 2 and 10 minutes yielded 171

hours and 28 hours of average interval between false alerts when us-

ing TITARLþFusion. Corresponding results for the Random Forest

were 75 hours and 14 hours. The performance of other tested alter-

natives was markedly worse. These results illustrate the importance

of extracting specialized temporal and sequential patterns such as

temporal rules when forecasting discrete events using noisy, sparse,

and complex multidimensional data.

Specific rules learned from data
TITARL forecasts are generated from the association rules it has ex-

tracted, but not all rules are equally important. Removing one rule

might significantly impact the performance of the model, while re-

moving another rule might have only marginal impact. Due to the

overwhelming number of attainable rules, it is generally unfeasible

for a user to study each rule individually. Therefore, the ability to

automatically order the rules by their importance and then present

the top rules to clinicians for interpretability is a potentially power-

ful approach to both validate the existing domain knowledge and

discover new clues. To address this, we used a Random Forest mea-

sure of feature importance to characterize the usefulness of each

rule. Typically, rules with small confidence, overtrained rules, or

rules subsumed by some other more powerful predictive rules bring

a low relative gain of information to the joint model and therefore

have low importance. Figure 4 shows the 3 rules with the highest im-

portance measure values (the first rule being the most important).

Looking at these rules, we first observe that SpO2 level is strongly

correlated with upcoming CRI events. However, the SpO2 value is

not used directly, but derived features are used instead. We note that

2 of the top 3 rules rely on comparing SpO2-derived features to a

long-term baseline. Operationally, any single rule may carry a rather

low predictive value, but when the rules are combined into a joint

forecasting model using our fusion algorithm, predictive reliability

typically increases substantially.

In practice, multiple rules can be active at any given time. When

the system raises an alert, displaying the most important active rules

can provide insight as to the reason for this alert to trained users.

For other users, augmenting the display of the VS according to the

structure of the active rules (without explicitly displaying the rules)

could increase both confidence in and acceptance of the system

without requiring users to view and interpret perhaps complex rules.

Figure 5 shows an example of a display enhanced for a particular

CRI alert preceded by activation of the first rule in Figure 4. In prac-

tice, all features derived from the same VSs could be displayed on

the same plot with specific background/foreground coloring.

Figure 4. The 3 most important temporal association rules extracted to forecast CRI identified by TITARL. For each rule, we show its graphical representation and

report basic statistics (confidence, support, and number of uses) observed on the training, validation, and testing data, respectively. We also provide a literal,

plain English description of each rule. Since the experiment was run with a 10-fold cross-validation, the test dataset is 9 times smaller than the train and validation

dataset in each iteration. This explains lower usage frequencies of the rules observed on the testing data when compared to the same figures for the training and

validation sets.
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DISCUSSION

CRI events are common in SDU patients. Our method and evalua-

tion framework provide grounds to enhance the power of CRI fore-

casting systems while optimizing and reducing false alerts. We

introduced a new specialized temporal machine learning algorithm

and evaluated its capabilities to forecast future CRI events in SDU

patients. We evaluated our method using a rigorous 10-fold cross-

validation protocol and compared it to a state-of-the-art machine

learning algorithm, as well as to the predictions that can be obtained

by using individual VS observations directly. Our findings demon-

strate that a specialized temporal machine learning algorithm can

significantly improve the sensitivity of CRI forecasting at an ex-

tremely low false alert rate. This result has the potential to serve as

an underlying platform for an alerting system that could permit pre-

ventative CRI treatment and reduce alarm fatigue, a problem in-

duced by the large number of false alerts generated by current

physiologic monitors. Knowing the operational capacity of an SDU,

one can use AMOC to identify the clinically optimal forecast hori-

zon corresponding to a preset limit of false alert frequency. If the rel-

ative benefit of the marginal extension of the forecast horizon versus

the marginal cost of increased false alert probability is known, one

can identify the operationally optimal setting of the system.

This work corroborates the intuition that careful evaluation of

VS departure from patients’ individual baselines and their evolution

toward abnormality can be accomplished in practice, and has the

potential to be clinically informative as well. This is an important

consideration, since each individual may have a distinct physiologi-

cal level of normalcy, in reference to which a risk of possible CRI

evolution can be evaluated and quantified with greater accuracy

than when using a population-based reference.18 Thus, the proposed

approach can add precision to personalized medicine.

As in any machine learning exercise, data preparation and extrac-

tion of features is a crucial step and can impact performance signifi-

cantly. While featurization is usually accomplished by extracting

standard statistical measures or implementing current domain litera-

ture, using too many features can impair the performance of some al-

gorithms. We demonstrate that both stages of the TITARLþFusion

methods (a priori rule mining and learning a classification model to

enable fusion) provide a plausible solution to this problem.

Importantly, reported performance of any machine learning re-

sults is heavily dependent on the nontrivial problem of manually an-

notating medical records to provide ground truth for the algorithm.

We believe that the improvements in the annotation process we pre-

viously described,19 and briefly summarized here, may also lend im-

provements to the performance of the presented method.

It is unlikely that all good forecasting rules map to a biologic

mechanism that would make immediate physiological sense to clini-

cians. Yet the ability to map a few important rules to clinical mecha-

nisms is desirable to maintain face validity of the forecast. In

addition, highlighting the intervals of those VS time series that acti-

vate the rules, which in turn impacts forecast of CRI, should support

clinical intuition related to the particular patient being monitored.

These are relatively new utility and usability concerns, but they un-

derscore the importance of a common forecasting rule set that must

be readily interpretable from a clinical perspective to be acceptable

to clinicians.

Our study has several limitations. First, patients experiencing

CRI are likely to have subsequent CRI, and some patients will

Figure 5. Example of an enhanced bedside monitor display for a particular CRI alert (the right part of the plot). Top rule #1 (Figure 4) becomes active 27 minutes

before the onset of the CRI. This rule relies on 2 events (e2 and e3), which in turn rely on the featured signal (pre-e2 and pre-e3). When the rule activates, display-

ing the current and past values of e2, e3, pre-e2, pre-3 amd the thresholds used to compute e2 and e3 can provide an indication of the reason for issuing the alert.

To further simplify display of the justification, we can show just the raw time series of the VSs observed during periods of time that led to rule activation (in this

case, periods of suspicious behavior of SpO2 marked by the shaded areas overlaid in the plot of its time series).
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undergo a number of such events. We focused on predicting the

first CRI of each patient (if any) to make the prediction focus uni-

form across patients and the prediction problem independent of

prior CRIs and their potential treatments. Clearly, unstable pa-

tients may present repetitive CRI events, each defined by different

physiologic processes, and it is not clear how well our approach

and extracted rules would forecast the subsequent CRI events.

This is a topic for further research. Second, some of the extracted

rules suggest complex physiologic interactions and adaptations

that may not be easily quantifiable by bedside clinicians. Thus,

these rules should be used in parallel with standard VS monitoring

protocols. Third, it may be helpful to test the rules extracted from

our current dataset on a larger and more diverse SDU patient data-

set to assess generalizability. Finally, it is unclear whether the pro-

posed approach is amenable to application in other settings with

different patient care time courses, such as the operating room, in-

tensive care unit, general hospital ward, or outpatient setting. This

will require further testing. It is reasonable, however, to expect

that these same machine learning methods and protocols could be

applied in other care domains where both a long forecast horizon

and a low number of false alerts are required. Given the increase

in the amount and types of numerical data being captured by hos-

pital information systems, we believe that our approach has the

potential to serve as an integral part of future smart alerting sys-

tems integrated with bedside monitoring and electronic health

records.
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