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ABSTRACT

Objective: Electronic health records (EHRs) are a resource for “big data” analytics, containing a variety of data

elements. We investigate how different categories of information contribute to prediction of mortality over dif-

ferent time horizons among patients undergoing hemodialysis treatment.

Material and Methods: We derived prediction models for mortality over 7 time horizons using EHR data on

older patients from a national chain of dialysis clinics linked with administrative data using LASSO (least abso-

lute shrinkage and selection operator) regression. We assessed how different categories of information relate

to risk assessment and compared discrete models to time-to-event models.

Results: The best predictors used all the available data (c-statistic ranged from 0.72–0.76), with stronger models

in the near term. While different variable groups showed different utility, exclusion of any particular group did

not lead to a meaningfully different risk assessment. Discrete time models performed better than time-to-event

models.

Conclusions: Different variable groups were predictive over different time horizons, with vital signs most pre-

dictive for near-term mortality and demographic and comorbidities more important in long-term mortality.
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OBJECTIVE

The increasing availability of electronic health records (EHRs) offers

vast and unique opportunities for biomedical research, at the core of

which are predictive modeling and analytics. The presence of diverse

data elements allows for the construction of prediction models using

a wealth of predictors that may not all be available in more standard

settings. Depending on the EHR and other linkable sources, it is gen-

erally possible to ascertain information on patients’ demographics,

health service utilization, diagnosed comorbidities, prescribed medi-

cations, results from laboratory tests, and vital signs. In total, these

represent a source of “big data” analytics in clinical research. Owing

to these variable data elements, EHRs present the opportunity to de-

velop risk models over a range of time horizons. Studies have pre-

dicted events from within the next 12 hours1 to up to 8 years.2

Examples include predicting the risk of adverse outcomes, including

administrative events such as hospital readmission,3 and discrete

clinical events such acute kidney injury.4 As such, each study has ab-

stracted different pieces of information from its respective EHR.-

With this in mind, we sought to explore the role EHR data elements

play in predicting mortality over different time horizons. This could

inform future model development efforts by prioritizing limited re-

sources toward collecting the predictors that provide the most useful
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information for the selected prediction timeline. We addressed this

question among patients with end-stage renal disease (ESRD) under-

going hemodialysis (HD). ESRD patients are at high risk of mortal-

ity, with a 46% 3-year mortality rate after HD initiation.5

Moreover, traditional models to predict mortality have performed

poorly, particularly in older populations.6 Using EHR and adminis-

trative data from a national sample, we hypothesized that more dy-

namic clinical characteristics (ie, vitals and laboratory measures)

would result in stronger predictions in the near term, whereas more

stable metrics (ie, demographics and comorbidities) would result in

stronger predictions over a longer time horizon.

MATERIALS AND METHODS

Data sources
We used 2 data sources for this analysis: the United States Renal

Data System (USRDS) and the EHR from DaVita Inc. The USRDS7

is a national registry that includes almost all persons with ESRD. It

contains all medical claims submitted by health care providers to

Medicare (Parts A and B) for eligible patients, including claims for

prescription medications, which are covered by the Part D benefit

component of Medicare. DaVita Inc. is the second largest chain of

outpatient dialysis centers in the country. We used an anonymous

crosswalk generated by the USRDS Coordinating Center to link the

2 datasets, resulting in >97% linkage.

Sample
The study sample consisted of all patients 66 and older who initiated

HD at a DaVita Inc. facility within 30 days of their diagnosis of

ESRD, and who were alive at day 30, between July 1, 2006, and De-

cember 31, 2008. Follow-up data were available through December

31, 2011. Since our objective was to illustrate the roles of different

data elements, we used the large amount of data to create a “clean”

analytic cohort. While the full description is available in the supple

mental material, in brief, in order to allow for adjudication of

comorbidities and medication usage, we required all individuals to

have a minimum amount of coverage of Medicare Parts A, B, and D,

which cover outpatient, inpatient, and medication-related claims.

Outcome
The primary outcome of interest was mortality from any cause over

a series of 7 time horizons: 7 days, 30 days, 90 days, 180 days, 1

year, 2 years, and 3 years, with the index date being the the 30th

day of dialysis. By having follow-up through 2011, we ensured that

all individuals had the potential for at least 3 years of follow-up re-

gardless of when they started dialysis service, ie, no censoring. Fur-

thermore, by focusing on mortality, we ensured that competing risks

would not be an issue.

Predictor variables
We identified 120 baseline predictor variables and grouped them

into 6 mutually exclusive categories (see Supplemental Table 1).

These consisted of demographics (n¼5), health service utilization

(n¼4), comorbidities (n¼48), prescription medications (n¼30),

laboratory measures (n¼21), and vital signs (n¼12). See Supple

mental Methods for variable definitions.

Predictive modeling
To fit the predictive model, we used a version of logistic regression

that is appropriate when the expectation is that many predictors will

not be related to the outcome of interest, referred to as LASSO

(least absolute shrinkage and selection operator8; see supplemental

material for model description). To obtain final predictions, we per-

formed 10-fold cross-validation across the full dataset. Within each

cross-validation fold we imputed any missing data using mean impu-

tation.For each of the 7 time horizons for prediction of mortality,

we fit a LASSO logistic regression model using all available covari-

ates (7 models). Additionally, we fit separate models using just the

variables in each individual covariate group (42 models), as well as

models with all variables except those in the covariate group (42

models). This resulted in a total of 91 models. We estimated the dis-

criminatory ability of each model via the c-statistic and calculated a

95% CI9 and the calibration of each model using the calibration

slope.10 As a secondary analysis, instead of fitting a logistic model

to a specific time point, we fit a time-to-event model. We used the

LASSO analog of the Cox proportional hazards model,11 using all

available variables. We then calculated the c-statistic at each of the 7

time points.12 Finally, as a sensitivity analysis, we redid the analyses

without any cohort exclusions. All analyses were conducted in R 3.

1.2.13 This work was deemed exempt by the Institutional Review

Board at Duke University Medical School.

RESULTS

Between July 1, 2006, and December 31, 2008, 28 740 patients 66

years of age or older initiated hemodialysis treatment in a DaVita Inc.

center and were alive at day 30. After applying the stated inclusion

criteria, the final analytical cohort consisted of 6561 individuals (Fig-

ure 1). Patient characteristics on a subset of the variables are shown

in Table 1, with all variables shown in Supplemental Table 2. By 3

years, 3846 (59%) patients died; median survival was 2.2 years.

Overall patient survival is shown in Supplemental Figure 1.C-statistics

Figure 1. Cohort selection. All DaVita patients who were alive at day 30 of

dialysis were eligible. Patients had to have 1 year of Medicare coverage and

6 months of Part D coverage prior to index date.
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for the 49 prediction models based on the individual variable sets are

shown in Figure 2a, and with 95% confidence intervals in Table 2.

The models using all available information had similar predictive per-

formance for all time horizons, with c-statistics ranging from 0.72 (95

% CI, 0.71-0.73) to 0.76 (95% CI, 0.67-0.84), with the 30-day model

performing the best. Conversely, calibration of the various models

differed over the time horizons, with the longer-term models having

the best calibration. Individual regression coefficients for all models

are presented in Supplemental Figure 2.When focusing on individual

categories of variables, some noticeable patterns emerge. Generally,

the number of attributes in the variable set did not relate to the overall

c-statistic, and using all variables performed better than any subset.

Table 1. Reduced Demographics

Descriptor All People Never Die Die in 3
Years

Die in 2
Years

Die in 1 Year Die in 180
Days

Die in 90
Days

Die in 30
Days

Die in 7
Days

Number of people 6561 2715 3846 2976 1889 1145 647 201 31

Agea 75 (70, 81) 74 (69, 79) 77 (71, 82) 77 (72, 83) 77 (72, 83) 78 (72, 83) 78 (72, 83) 78 (73, 83) 79 (72.5, 84)

Sex (male)b 3606 (0.55) 1521 (0.56) 2085 (0.54) 1618 (0.54) 1017 (0.54) 626 (0.55) 366 (0.57) 111 (0.55) 12 (0.39)

Raceb

White 3837 (0.58) 1398 (0.51) 2439 (0.63) 1931 (0.65) 1240 (0.66) 759 (0.66) 437 (0.68) 135 (0.67) 21 (0.68)

Black 1514 (0.23) 702 (0.26) 812 (0.21) 611 (0.21) 384 (0.2) 236 (0.21) 129 (0.2) 35 (0.17) 6 (0.19)

Hispanic 750 (0.11) 389 (0.14) 361 (0.09) 263 (0.09) 158 (0.08) 84 (0.07) 49 (0.08) 22 (0.11) 1 (0.03)

Other 460 (0.07) 226 (0.08) 234 (0.06) 171 (0.06) 107 (0.06) 66 (0.06) 32 (0.05) 9 (0.04) 3 (0.1)

Number of hospital daysa 15 (7, 27) 12 (5, 23) 18 (9, 30) 19 (10, 31) 20 (11, 33) 22 (12, 35) 22 (13, 36) 22 (14, 36) 21 (12, 41)

Nephrology visitsa 4 (1, 7) 4 (1, 8) 3 (1, 7) 3 (1, 7) 3 (1, 6) 2 (1, 6) 2 (1, 5) 2 (1, 5) 2 (0, 5.5)

Number of comorbiditiesa 7 (5, 10) 7 (4, 9) 8 (6, 11) 8 (6, 11) 8 (6, 11) 9 (6, 11) 9 (6, 11) 9 (7, 12) 9 (6, 10.5)

Number of medicationsa 9 (7, 12) 9 (7, 11) 9 (7, 12) 10 (7, 12) 9 (7, 12) 9 (7, 11) 9 (7, 11) 9 (7, 11) 9 (6.5, 11)

aMedian and interquartile range.
bCount and percentage.

Full demographics available in appendix.
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Figure 2. (a) C-statistics for different variable sets over different time horizons. The model with all variables performs the best. The most dynamic variables (eg, vi-

tals) are most predictive in the near term, and the more stable variables (eg, comorbidities) are most predictive in the short term. (b) C-statistics after excluding

different variable sets. Removal of any 1 variable set does not lead to meaningful differences in model performance.
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Vital signs and services utilization formed the best predictors in the near

term, each having a c-statistic of 0.69 for 7 days out and then decreasing

over time. Conversely, comorbidities formed the best predictor in the

longer term, increasing over time to a maximum c-statistic of 0.67 for a

3-year prediction. Laboratory values were a consistently strong predic-

tor, while demographics were consistently weak. When we considered

the impact of removing individual predictor sets (Figure 2b), we found

that no single variable group had a meaningful impact on the prediction

assessment. When we explored fitting a single time-to-event model ver-

sus individual logistic models, the individual logistic models performed

best, as expected (Figure 3). Finally, after redoing the analysis with all

available data, results were very similar (Supplementary Table S4 and

Figure S3). The exception was the medication results, which showed no

predictive ability, likely owing to the higher percentage of people with-

out Medicare Part D and therefore missing this information.

DISCUSSION

This analysis highlights the roles different EHR data elements play

in predicting mortality in patients on dialysis over different time pe-

riods. Overall, we found that a “kitchen-sink” approach that utilizes

all available data performs better than focusing on any particular set

of information. While the full model performed best, as we explored

the role of different variable groups, we observed that vital signs,

which can be highly variable, were the most predictive for a 7-day

risk, but the least predictive for a 3-year prediction. Conversely, de-

mographic characteristics, which tend to be very stable, showed a

steady increase in importance over time. These results correspond

with previous studies using EHR data to develop risk models, illus-

trating that EHR-based models perform better with nearer-term

events.14–21 Moreover, when comparing the “important” variables

over different time horizons, previous work has similarly suggested

Table 2. C-statistics across prediction models and variable sets

Variable Group 7 days 30 days 90 days 180 days 1 year 2 years 3 years

All 0.761 (0.686-0.837) 0.756 (0.722-0.791) 0.735 (0.714-0.756) 0.738 (0.722-0.754) 0.727 (0.713-0.741) 0.721 (0.709-0.734) 0.726 (0.714-0.739)

Demographics 0.548 (0.437–0.658) 0.569 (0.529-0.61) 0.588 (0.565-0.611) 0.600 (0.582-0.618) 0.603 (0.588-0.618) 0.615 (0.601-0.628) 0.623 (0.609-0.636)

Service Utilization 0.686 (0.603-0.769) 0.684 (0.647-0.72) 0.676 (0.655-0.698) 0.654 (0.636-0.671) 0.633 (0.618-0.648) 0.628 (0.614-0.641) 0.627 (0.614-0.641)

Comorbidities 0.548 (0.454-0.642) 0.661 (0.625-0.697) 0.643 (0.621-0.665) 0.647 (0.629-0.664) 0.650 (0.636-0.665) 0.659 (0.646-0.672) 0.673 (0.660-0.687)

Medications 0.596 (0.501-0.691) 0.658 (0.62-0.696) 0.643 (0.621-0.665) 0.651 (0.634-0.669) 0.643 (0.628-0.657) 0.639 (0.625-0.652) 0.636 (0.622-0.649)

Labs 0.640 (0.551-0.729) 0.689 (0.649-0.729) 0.672 (0.649-0.695) 0.679 (0.661-0.696) 0.665 (0.650-0.680) 0.652 (0.639-0.665) 0.651 (0.637-0.664)

Vitals 0.685 (0.590-0.781) 0.645 (0.602-0.687) 0.643 (0.621-0.666) 0.650 (0.632-0.668) 0.625 (0.610-0.640) 0.624 (0.610-0.637) 0.612 (0.598-0.625)

Bolded represents predictor group.
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that more “dynamic” metrics are important for nearer-term out-

comes and more “stable” metrics are important for longer-term

events.17This finding stresses the importance of machine-learning

methods capable of handling large numbers of disparate predictor

variables. With a large number of variables, particularly correlated

ones, regularized methods such as LASSO are highly effective, since

they stabilize regression coefficients via shrinkage. Therefore, in the

age of EHRs where many predictors are available, preselection of

variables may not be necessary. Unfortunately, this counters the ten-

dency in the field to use limited variable sets to develop predictive

models with EHR data.22As expected, we found that a time-to-event

model performed worse than the corresponding time-specific model.

While logistic regression approximates the Cox model23 and some

previous work suggests that survival-based predictions perform bet-

ter than time-specific ones,24 the likely reason the Cox model per-

formed worse was that the hazards for various predictors are not

proportional over time. This nonproportionality is directly sug-

gested by the variable associations by the different predictor sets.

While overall time-to-event models provide more flexibility—a sin-

gle model can be applied to multiple time horizons—in this scenario

they result in less precise predictions.23 Therefore, if the goal is to fo-

cus on specific time horizons (eg, 30-day readmission), a time-

specific model (either logistic or Cox-based) might be preferential.As

more researchers and clinicians turn to EHRs to inform risk assess-

ment and clinical decision-making, this work highlights the types of

variables that should be captured and used in these analyses. Cur-

rently, the motivation behind most EHR systems is to improve billing

and operations in the hospital. For this reason, diagnosis codes, which

are tied to billing, tend to be well captured.25 Conversely, more acute

clinical metrics tend to be not as well captured and easily retrieved.26

However, as our results indicate and previous work has suggested,

models to predict mortality based solely on administrative data6 per-

form worse than models based on clinical data.27 An open clinical

question is how to assess near-term risk of disease.28 This work shows

how this is possible: through the use of dynamic data. Since EHRs

most readily capture vital signs and laboratory tests, they may be ide-

ally suited for such short-term prediction. However, one challenge in

implementing such models will be discerning their clinical utility.

Since the rate of near-term events is so low (0.5%), the positive pre-

dictive value will be correspondingly low. Such issues require further

consideration.Overall, this study had several strengths and limita-

tions. We used a large source of data to create a well-defined cohort

of individuals starting HD treatment for ESRD. While we selected a

small proportion of the overall population, we were able to ensure

full capture of a range of data elements with minimal missing data.

Even when we used the full, more limited cohort, the results were sim-

ilar. However, it should be noted that this study utilized only 1 EHR

in 1 disease area, for 1 outcome. We focused on predicting mortality

to avoid the complication of competing risks, but it is likely that dif-

ferent outcomes would show different patterns. Also not all EHR sys-

tems will have the benefit of linkage with alternative data sources (eg,

Medicare claims) for adjudication of information.

CONCLUSIONS

This study illustrates how different data elements, regularly cap-

tured by an EHR, relate to prediction of mortality over different

time periods. We show that models that contain all available predic-

tors outperform those that do not, and that time-specific models per-

form better than time-general ones.
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