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ABSTRACT

Objective: Phenotyping algorithms applied to electronic health record (EHR) data enable investigators to iden-

tify large cohorts for clinical and genomic research. Algorithm development is often iterative, depends on falli-

ble investigator intuition, and is time- and labor-intensive. We developed and evaluated 4 types of phenotyping

algorithms and categories of EHR information to identify hypertensive individuals and controls and provide a

portable module for implementation at other sites.

Materials and Methods: We reviewed the EHRs of 631 individuals followed at Vanderbilt for hypertension status.

We developed features and phenotyping algorithms of increasing complexity. Input categories included Interna-

tional Classification of Diseases, Ninth Revision (ICD9) codes, medications, vital signs, narrative-text search results,

and Unified Medical Language System (UMLS) concepts extracted using natural language processing (NLP). We de-

veloped a module and tested portability by replicating 10 of the best-performing algorithms at the Marshfield Clinic.

Results: Random forests using billing codes, medications, vitals, and concepts had the best performance with a

median area under the receiver operator characteristic curve (AUC) of 0.976. Normalized sums of all 4 catego-

ries also performed well (0.959 AUC). The best non-NLP algorithm combined normalized ICD9 codes, medica-

tions, and blood pressure readings with a median AUC of 0.948. Blood pressure cutoffs or ICD9 code counts

alone had AUCs of 0.854 and 0.908, respectively. Marshfield Clinic results were similar.

Conclusion: This work shows that billing codes or blood pressure readings alone yield good hypertension clas-

sification performance. However, even simple combinations of input categories improve performance. The

most complex algorithms classified hypertension with excellent recall and precision.

Key words: phenotyping algorithms, machine learning, random forests, hypertension, natural language processing, electronic

health records
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BACKGROUND AND SIGNIFICANCE

Hypertension is a prototypic intervenable chronic disease with sig-

nificant longitudinal morbidity when ineffectively treated. Hyper-

tension affects one-third of Americans1,2 and contributes to 1 in 6

adult deaths in the United States.2–5 Thus, identifying hypertension

is important as both a primary disease of study and as an important

covariate in many clinical and genetic studies, yet a rigorously evalu-

ated algorithm to identify hypertensive individuals from electronic

health records (EHRs) is lacking. In this work, we developed and

evaluated the performance of different portable algorithms and

EHR data types to identify individuals with and without hyperten-

sion.

Current clinical guidelines define hypertension as a consistent

blood pressure greater than or equal to 140 mmHg systolic and/or

90 mmHg diastolic.6,7 For example, EHR blood pressure measure-

ments do not always correlate well with a diagnosis of hypertension:

many conditions can temporarily elevate blood pressure,8 and pa-

tients with well-controlled hypertension may display consistently

normal values. Prior studies have not rigorously evaluated a general-

purpose hypertension algorithm. Studies have leveraged simple

thresholds based on a minimum number of hypertension billing

code counts9 to classify hypertension for use as covariates in studies

of other diseases such as abdominal aortic aneurysm, stroke, chronic

kidney disease, heart failure, and atrial fibrillation.2,6 Algorithms

have been developed for subtypes of hypertension, such as resistant

hypertension.10 Most phenotype algorithm evaluations have typi-

cally focused on precision.11 Given that hypertension is both a pri-

mary phenotype of interest and an important covariate for other

diseases, a phenotyping algorithm that minimizes both false nega-

tives and false positives is desirable.

EHRs contain a diverse set of data types—structured lab values,

vital signs, billing codes, narrative clinical documentation, visual

data such as X-rays, and semistructured questionnaires, among

many others. Using automated phenotyping algorithms, investiga-

tors have identified cases and controls for diseases of interest to rep-

licate known phenotype-genotype associations and make novel

discoveries,12–17 potentially with decreased cost18 and faster execu-

tion than traditional trials.

Phenotyping algorithms can be constructed from sets of nested

Boolean logic statements, exclusions, and temporal relationships ap-

plied to EHR data elements designed to identify individuals with a

given phenotype.19,20 Each data source poses unique challenges, and

use of multiple data sources often improves performance.21

Billing code-based phenotyping methods have variable perfor-

mance with estimates for cardiovascular and stroke risk factors

ranging from 0.55 to 0.95 positive predictive value (PPV).22 Simi-

larly, various phenotyping studies have used natural language pro-

cessing (NLP)-extracted concepts alone, with sensitivities ranging

from 72% to 99.6% and PPV between 63% and 100%.23–26 How-

ever, due to hypertension’s high prevalence, it is a very common en-

try within the family history section of clinical notes and may result

in many false positives.

Here we show that algorithms that combine multiple EHR data

sources achieved the best overall results. We found that machine

learning performed the best, but that deterministic algorithms

also performed well. Both approaches performed similarly at a repli-

cation site.

METHODS

Patient selection and review at Vanderbilt University

Medical Center
Our starting population consisted of all individuals in the Synthetic

Derivative, a de-identified image of the Vanderbilt University Medi-

cal Center EHR.27 This study was reviewed by the internal review

board and found to be exempt from requiring informed consent. We

randomly selected 643 adults with regular outpatient care, defined

as at least 2 outpatient visits and 2 blood pressure readings between

January 1, 2007, and January 1, 2009. Vitals are routinely recorded

at all visits for all patients (including all internal medicine clinics),

regardless of hypertension status. Inpatient blood pressures are re-

corded multiple times a day based on patient acuity, regardless of

hypertension status. Authors with a clinical background (R.M.C.,

W.Q.W., H.M., P.L.T.) manually reviewed an initial cohort

(n¼303) with 20% overlap for cases, controls, and unknowns using

de-identified notes, billing codes, and vital signs. After determining

sufficient interrater agreement (Fleiss’s j¼0.93), the remaining 340

individuals were reviewed without overlap. A board-certified inter-

nist (J.D.) provided guidance and adjudicated any conflicting or

undetermined reviews.

Input feature development
We developed 67 different features for consideration alone and as

part of different algorithms. We hypothesized that billing codes,

medications, vital readings, and clinic note content provide broad

coverage, thus enabling accurate identification of hypertension cases

and controls despite problems within each data source. We aggre-

gated general information (document counts, maximum age, total

International Classification of Diseases, Ninth Revision [ICD9] code

counts, etc.) and hypertension-specific elements (hypertensive ICD9

code count, hypertensive medication count, hypertensive blood pres-

sure reading count, hypertensive note-item count, etc.). Supplemen

tal Table 1 includes the full feature list and descriptions. We curated

a set of hypertension-related billing codes (Supplemental Table 2).

Medications were available from structured electronic prescribing

records and also extracted from narrative documents using

MedEx.28,29 Hypertension medications were determined using med-

ication strings with indications determined as part of Medication-

Indication resource-High Performance Subset (MEDI-HPS), which

lists on- and off-label indications of medications (Supplemental

Table 3).30–33 We used the hypertensive blood pressure guideline

thresholds of 140 mmHg systolic and 90 mmHg diastolic. We sepa-

rated vital readings into outpatient and inpatient only and collapsed

multiple daily readings to their median values.

We restricted narrative documents to problem lists, clinic notes,

discharge summaries, and admission history and physical notes. We

identified sections using SecTag34 and used only high-yield sections

to reduce NLP false positives, including but not limited to the “his-

tory of present illness,” “past medical history,” and “assessment

and plan.” We extracted concepts from these sections using the

KnowledgeMap Concept Identifier with a SNOMED-CT focused

subset as the vocabulary (Supplemental Table 4).26,35 We used non-

negated patient-related concepts. From the set of KnowledgeMap

Concept Identifier-extracted UMLS concepts, we identified 12 hy-

pertension concepts (Supplemental Table 5). We also calculated
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hypertension-related counts from full notes using regular expres-

sions. Regular expression matches targeted “hypertension” not pre-

ceded by “pulmonary” or “HTN” with word boundaries (to avoid

matching strings such as “tightness”; regular expression included in

Supplemental Information). Figure 1 depicts the processing pipeline.

The full protocol is available on PheKB (http://phekb.org/pheno

types/hypertension).

We assembled the final features for each category (billing codes,

medications, vital signs, hypertension regular expression matches,

and hypertension concepts) by taking the following individually and

in combination: total counts of each item, all hypertensive elements

(blood pressures above the threshold, medications with hypertension

as an indication), counts of unique items, and normalized versions

of each. We normalized by dividing hypertension-related counts by

total category counts or total unique item counts. We normalized in-

puts to account for the variable number of observations per individ-

ual. In addition, we added unique elements for ICD9 and

medication data to compensate for high-frequency concepts found

in clinical notes due to copy and paste.36 Several different medica-

tions or billing codes seemed more likely to identify a case correctly.

Algorithm development
We developed several simple algorithms as easier-to-implement al-

ternatives to those that include NLP. There were 2 types of simple

algorithms. The first summed features, 1 per category. The second

type summed the number of categories with a nonzero feature,

where each category contained a single representative feature. The

sum of category counts included an integer threshold (n¼1–4) to

predict case vs control. We also used permutations that included

normalization—normalizing by total occurrences, unique items,

documents, or total concepts as appropriate. In addition to simple

expert-defined algorithms, we also used random forests, which used

the 67 input features developed above. We chose random forests be-

cause they are robust, computationally cheap to train, and able to

handle large numbers of descriptors well.

Bootstrap analysis
To compare random forest models, individual features, and several

simple algorithms, we used a version of the 0.632þ bootstrap37,38

method and then applied each model, feature, or simple algorithm

Figure 1. Algorithm dataset generation flowchart.

We randomly sampled 631 adults for the initial population. We limited sampling to concepts that were in high-yield sections, which included “history of present illness,”

“past medical history,” and “assessment and plan.” Billing codes were available as structured data, and hypertension-related codes were physician-curated. We also sep-

arated inpatient and outpatient vitals using Current Procedural Terminology (CPT) codes.
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Table 1. Study population demographics and clinical information.

Vanderbilt (n¼ 631) Replication (Marshfield, n¼ 100)

Description Hypertensive Control Hypertensive Control

Unique individuals 369 262 59 41

Median age (IQR) 65 (56–75) 47 (37–59.75) 70.9 (56.9–80.2) 53.8 (44.4–58.9)

Female (%) 198 (54) 177 (68) 32 (54) 28 (68)

Race

White 306 227 55 40

Black 49 16 0 0

Asian 2 3 0 0

Indian American 0 2 0 0

Unknown 12 14 4 1

Medication (counts per individual and IQR)

Median 462 (207–1015) 135 (61.25–346) 1161 (867–2291) 408 (214–829)

Median hypertension-related 61 (22–173) 0 (0–5) 221 (72–538) 2 (1–7)

Median unique 84 (44–147) 41.5 (20–76) 135 (110–204) 86 (58–121)

Median unique hypertension-related 7 (3–13) 0 (0–2) 16 (9–32) 1 (1–3)

Billing codes

Any hypertension ICD9 Code 4951 101 1650 19

Essential hypertension 401.a 4936 101 1579 19

Secondary hypertension 405.a 15 0 71 0

EHR Follow-upa and IQR

Median follow-up 6.6 (5.0–8.8) 5.7 (3.3–7.7) 19.1 (15.5–19.8) 18.2 (17.0–19.6)

Number of visits with vitals 30 (16–52) 17 (9–30) 86 (66–120) 52 (35–61)

aMedian with (IQR¼ interquartile range) in years, calculated as first vitals reading to last.

Figure 2. Random forests trained on combinations of categories perform best.

We did 1000-iteration bootstrap runs for each category of features as well as increasingly comprehensive combinations of categories for successively larger train-

ing set sizes from 25 to 600. Labels indicate the set of categories used for each learning curve. Other combinations were tested but were similar to the included

examples. The graph below includes the median AUC for each learning curve in addition to the upper and lower bounds of the 95% confidence interval. For refer-

ence, lines representing the median AUC for 2 simple methods are included—hypertension (HTN) ICD9 counts and the sum of unique normalized ICD9 codes,

medications, blood pressure (BP) readings, and regular expression (RegEx) matches normalized by document counts.
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to the same test set (200 individuals). Briefly, this method samples N

elements with replacement from a population of size N, which re-

sults in mean coverage of 0.632N of the population. Sampling with

replacement exposes the model to more varied and potentially repre-

sentative weightings of the different possible populations that could

have been sampled. We repeated this sampling 1000 times and used

the 2.5th percentile and the 97.5th percentile based on the sorted re-

sults from the entire bootstrap to empirically establish the 95% con-

fidence interval (CI). Bootstraps were run for random forest models

trained across each category of features individually (e.g., ICD9

codes, medications, vitals) as well as with increasingly complex

combinations (e.g., Boolean or count combinations of different fea-

tures). We ran bootstraps for each set across training set sizes of 25,

50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, and 600 to

test the effect of training set size on algorithm performance. For

each iteration, the validation set was a random subset of 200 indi-

viduals not sampled for the training set. We calculated the area

under the receiver operating characteristic curve (AUC), sensitivity,

and PPV for each test set. We used the randomForest package in R

to train models and the ROCR package to calculate performance

metrics.39,40

Best random forest model performance evaluation
To evaluate the random forest predictions per individual, we used

the 1000 models generated in the bootstrap run along with the 1000

accompanying validation sets. For the best-performing random for-

est model by AUC—using ICD9, medications, all vitals, and NLP-

derived concepts—we aggregated independent test set predictions

across all 1000 runs and calculated the mean prediction for each in-

dividual. We applied the same approach for calculating a log-based

score,41 although in the case of the normalized sum model we used

the training set to calculate a logistic regression that mapped the

sums to the 0–1 range necessary. We then plotted a histogram of the

Figure 3. Algorithm performance.

Median AUC and 95% confidence intervals (CI) for the 1000-iteration bootstrap are depicted across all random forests, representative simple algorithms, and rep-

resentative individual features. Diamonds indicate the AUC and dashes indicate the upper and lower bounds of the 95% CI, respectively. The top 6 by median

AUC are statistically significantly better than the lower 41 of the 56 total included—comparing 95% CI.
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mean predictions to determine the counts of individuals with differ-

ent prediction ranges and identified misclassified individuals using a

threshold of 0.5. We then reviewed a subset of these sets of false pos-

itives and false negatives as part of an error analysis.

KNIME module development
We developed a Konstanz Information Miner (KNIME)42 module to

provide ease implementation of the algorithm by other users.

KNIME provides a graphical user interface to simplify interpretabil-

ity and editing. The package takes raw inputs with dates and encap-

sulates data processing, normalization, and analysis, outputting

case/control determinations for individuals. The module can also

take subsets of available inputs such as coded data only. Given la-

beled cases and controls, the module outputs aggregate performance

statistics (counts, prevalence, sensitivity, specificity, and PPV). The

module includes some of the best-performing simple algorithms and

random forest models trained with our entire reviewed dataset using

the following category combinations: (1) ICD9s, medications, and

all vitals; (2) ICD9s, medications, and all vitals including separate

outpatient and inpatient vitals; (3) all elements from the second set

plus regular expression matches; (4) all elements from the second set

plus NLP-derived concepts; and (5) all data including regular ex-

pression matches and concepts.

Replication at Marshfield Clinic
The Marshfield Personalized Medicine Research Project is a

population-based study in which participants consented and provided

DNA, plasma, and serum samples and access to their medical records

for genetic research. The cohort consists of approximately 20 000 par-

ticipants from central Wisconsin with primarily northern European

ancestry. Marshfield Clinic provides most of the primary, secondary,

and tertiary care for this cohort and the data is stored electronically in

an internally-developed EHR with medical information dating back

to the early 1960s.43

Participants (n¼15 183) with 2 or more blood pressure mea-

surements between January 1, 2007, and December 31, 2008, were

selected from the Personalized Medicine Research Project for this

study. One hundred patients were randomly selected from this sam-

ple and manually classified by 1 of 2 authors (R.A.D., A.M.N.) as

cases (having hypertension) or controls (absence of hypertension),

then used to test the KNIME workflow hypertension prediction

module. ICD9 codes, medications, pulse, outpatient CPTs, blood

pressure measurements, and hypertension concepts indexed using

MetaMap44 with negation were provided as input to the module;

however, concepts were not restricted to specific note types or note

sections as they were at Vanderbilt. Regular expression matches for

hypertension mentions within clinical notes were not tested at

Marshfield, as they were unable to extract raw text and run the reg-

ular expressions (UMLS concepts had been previously extracted).

RESULTS

Table 1 includes the summary information for the populations studied

at Vanderbilt and Marshfield Clinic. Both sites had a prevalence of hy-

pertension of almost 60%. Reviewers demonstrated high inter-rater

agreement for the subset classified by multiple reviewers at Vanderbilt

(Fleiss’s j¼0.93). Median age was lower for controls (47, IQR¼37–

59.75) compared to hypertensive individuals (65, IQR¼56–75)

(P< .00001). Median age across the entire population was 59 with an

interquartile range of 46–70. Both sites have 1.5-fold more total fe-

males. The majority of individuals were white—84% at Vanderbilt

and 95% at Marshfield Clinic. There were nonzero counts of

Figure 4. Combination methods achieve the highest AUC.

We include the ROC representative of the 50th percentile 1000 iteration boot-

strap run below. Numbers in parentheses represent the median AUCs from

the bootstrap model. The random forest model represented here is the best-

performing RF model from Figure 2. The best simple algorithm is the sum of

unique normalized hypertension ICD9, medications, blood pressures, and

regular expression matches normalized by the number of documents.

Figure 5. Histogram showing prediction separation between cases and

controls.

The top column segments, biased toward the right (1.0) are the counts of hy-

pertensive individuals with a mean random forest prediction (each taken

from a test set not used for training) within the bin range listed along the

x-axis. The bottom column segments represent the counts of controls in each

bin range. Individuals with an unexpected score (< 0.5 for cases, >0.5 for

controls) were reviewed.
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hypertension-related ICD9 codes and medications for controls at both

sites. We found 101 hypertension ICD9 codes (401.*) for 19 controls;

thus, 7.3% of Vanderbilt controls had hypertension ICD9 codes but

were judged to be controls. Similarly, 104 (39.7%) of Vanderbilt con-

trols had at least 1 medication with hypertension as a potential indica-

tion. Median follow-up was similar between both cases and controls

at Vanderbilt—6.6 years or 30 visits for hypertensive individuals and

5.7 years or 17 visits for controls. Median follow-up at Marshfield

Clinic was longer at 18.6 years as compared to 6.1 years at Vander-

bilt. Supplemental Table 6 lists median and IQR between cases and

controls.

Bootstrap performance for random forest models trended up-

wards as training set size increased and CI narrowed (Figure 2). The

best-performing model was the random forest trained on all features

for ICD9 codes, medications, vitals, and UMLS concepts (AUC

0.976). Of the individual category random forests, vitals performed

the most poorly (0.865) and models trained on the UMLS concept

features performed best (0.928). However, the difference between

them was comparable to their CIs.

Random forests using combinations of feature categories gener-

ally performed better than simple algorithms (Figure 3). The simple

algorithms performed well both with and without normalization al-

though there was a trend toward better performance for simple algo-

rithms that sum the individual normalized counts of each category.

After the top 3 random forests, the fourth highest median AUC

(0.959) was achieved by summing the unique normalized values of

hypertension-related ICD9s, medications, blood pressure readings,

and regular expression matches normalized by the number of docu-

ments. The top 6 algorithms, which were all random forest–based

except 1, were statistically better than all individual features except

the hypertension concept counts across all notes that were normal-

ized by either the total number of concepts or documents. Only

NLP-derived hypertension concepts approached the combined meth-

ods’ performance (AUC¼0.914). The worst-performing algorithms

used pulse or diastolic blood pressure alone (AUCs of 0.435–0.591).

Systolic blood pressure algorithms were better but still underper-

formed other categories of data (AUCs of 0.775–0.854). Full results,

including sensitivities and PPVs at various thresholds, are included

in Supplemental Table 7. The normalized sum and random forest us-

ing all categories outperformed all other approaches with AUCs of

0.959 and 0.976. Hypertension ICD9 code, concept, and medication

counts performed similarly at AUCs of 0.908, 0.908, and 0.907

(Figure 4).

The best random forest model’s per-individual predictions effec-

tively separated cases from controls (Figure 5). For scores>0.9 (264

total), the random forests correctly classified 97.7% of cases. Simi-

larly, the random forests correctly classified 96.8% of the controls

with median predictions <0.1 (156 total). Performance degraded as

predictions approached 0.5 from either extreme. Assuming a thresh-

old of 0.5, the random forests only correctly classified 33.3% of the

0.5–0.6 bin as cases and 52% of the controls for the 0.4–0.5 bin.

Overall, the random forests correctly classified 88.9% of the indi-

viduals with 36 false negatives and 34 false positives by median

bootstrap prediction. Using a log-based scoring metric,41 we also

calculated the performance for the best random forest compared to

a non–machine learning approach using only structured data—the

normalized sum of hypertension-related ICD9 codes, medications,

and blood pressure readings. The scores were �0.109 and �0.164

for the random forest and normalized sum model respectively (closer

to zero is better).

Comparing the true positives and negatives with false positives

and negatives across all features revealed many that were systemati-

cally different (Supplemental Table 8). For example, the number of

hypertension concepts across all notes was 840 times higher for true

positives than for false negatives. When one normalizes for the docu-

ment count, this increased to a 2335-fold difference.

Finally, we examined the portability of the best random forest

models trained on Vanderbilt data as well as the simple algorithms

at the Marshfield Clinic. Table 2 includes the AUCs, sensitivities,

and PPVs for the 5 random forests trained, 3 simple category count

algorithms with integer thresholds, and 2 summing algorithms. Of

note, the AUCs at Marshfield for methods that included concepts or

required 2 or fewer categories were lower than their counterparts at

Vanderbilt. Summing algorithms achieved slightly higher perfor-

mance than category count algorithms at both sites. All other AUCs

were comparable between sites.

DISCUSSION

In this work, we evaluated ICD9 codes, medications, vitals, and nar-

rative documents as data sources for hypertension phenotyping algo-

rithms. We also showed that combinations of multiple categories of

information result in the best performance, with AUC rising in tan-

dem with the number of categories used. Blood pressure measure-

ments, despite being the basis for determining hypertension

clinically, performed worst of all categories for the identification of

Table 2. Portability evaluation across various algorithms at Vanderbilt and Marshfield Clinic.

Vanderbilt (n¼ 631) Replication Marshfield (n¼ 100)

Model with expected features AUC (CI) Sens. PPV AUC Sens. PPV

ICD9, meds, all BP (random forest) 0.955 (0.934–0.975) 0.844 0.954 0.922 0.966 0.919

ICD9, meds, all vitals (random forest) 0.961 (0.938–0.980) 0.858 0.954 0.910 0.966 0.905

ICD9, meds, all vitals, RegEx (random forest)a 0.967 (0.948–0.985) 0.866 0.954 0.934 0.966 0.934

ICD9, meds, all vitals, concept (random forest) 0.976 (0.95–0.984) 0.902 0.952 0.873 0.966 0.864

ICD9, meds, all vitals, RegEx, concepts (random forest)a 0.968 (0.951–0.985) 0.877 0.954 0.898 0.966 0.891

Positive category count ICD9, med, and BP 2 of 3 0.833 (0.788–0.868) 0.952 0.822 0.646 1.000 0.670

Positive category count ICD9, med, and BP 3 of 3 0.877 (0.849–0.914) 0.798 0.967 0.914 0.949 0.918

Positive category count ICD9, med, BP, and concept 3 of 4 0.910 (0.868–0.936) 0.925 0.924 0.711 0.983 0.716

Sum of normalized hypertension ICD9, meds, and BP 0.915 (0.888–0.942) 1.000 0.673 0.949 1.000 0.702

Sum of normalized hypertension ICD9, meds, BP, and concept 0.929 (0.897–0.955) 1.000 0.663 0.949 1.000 0.702

aMarshfield Clinic inputs to random forest models did not include regular expression (RegEx) information.

The best AUC and model for each site-category combination are bolded.
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hypertensive individuals from EHR data, even when restricted to

outpatient measurements. This is likely due to issues such as treat-

ment reducing blood pressure to within the normal range, treatment

often starting outside of our EHR dataset, and the many nonhyper-

tension causes of high blood pressure readings within the EHR.

Medications and ICD9 codes alone achieved reasonable perfor-

mance. Individually, concepts perform best of all 4 categories. The

best-performing algorithm used random forest-based models and

identified hypertensive individuals with a median AUC of 0.976.

Multicategory random forest models also performed well at Marsh-

field, with AUCs 0.873–0.934. Thus, using more than just vitals and

ICD9 codes individually improved EHR-based hypertension pheno-

typing.

Combining multiple information sources yielded an increase in

performance regardless of method. Confidence intervals overlapped

substantially between “count” and “sum” simple algorithm types.

Normalized sum algorithms, which include more granularity and in-

formation reflecting the total occurrence of categories, performed

better at Marshfield than the count algorithm types. This may have

been due to different lengths of observation between the 2 sites.

Random forests trended higher than these simple aggregations, but

implementation may be more difficult than a simple algorithm that

combines hypertension ICD9 codes, medications, blood pressures,

and regular expression matches, whose performance does not differ

greatly (AUC of 0.976 vs 0.959). Easing implementation issues, ran-

dom forest models required relatively few training cases. As few as

25–50 cases resulted in near peak performance for most random for-

est models.

Random forests are not necessarily the best possible method, but

we have used them because they are an easy way to include nonlin-

ear interactions. If one desires an algorithm that does not require

regular expression or UMLS concepts, then the sum of unique nor-

malized hypertension ICD9, meds, and blood pressures is the best al-

gorithm that does not leverage narrative text (AUC 0.948).

Interestingly, using readings from both inpatient and outpatient

readings consistently outperformed approaches limited to readings

taken in the outpatient setting. This may be due to improved cov-

erage, as outpatient-only counts provide far less data, accounting

for only 56% of the 21 537 total per-day median vitals readings.

Thus, including inpatient data and leveraging the median to reduce

the influence of outliers and multiple daily blood pressure readings

favors the more inclusive approach.

Individual features are limited in their ability to distinguish cases

from controls. Many conditions and circumstances result in abnor-

mal blood pressure readings in nonhypertensive individuals, and

many medical encounters tend toward such stressful conditions. In

addition, individuals with successfully managed hypertension have

normal blood pressure readings. For controls, 55.7% had at least 1

blood pressure reading above the hypertension threshold, and 3.8%

had a median systolic or diastolic above threshold. For cases, 4.3%

had no blood pressures above the threshold and 1.6% had a median

diastolic and systolic below the threshold. Our set was initially se-

lected to have dense records; thus, a population with sparser EHR

data is likely to have worse vitals-only performance.

Manual review of random forest misclassifications noted several

trends. Random forest models were more likely to miss recently di-

agnosed hypertensive patients, patients without a hypertension

ICD9 code, or individuals with very few notes and only a few hyper-

tension concepts. Controls predicted to be hypertensive by the ran-

dom forest models were most likely to have been missed during

review. These individuals often had well-controlled blood pressures,

few if any ICD9 codes, and relatively few notes with complex or se-

vere diagnoses (e.g., cancer and severe Crohn’s disease).

Most algorithms trained on Vanderbilt data successfully repli-

cated on data from the Marshfield Clinic. All random forest–based

models achieved AUCs in the range of 0.873–0.934. Algorithms that

included NLP-derived concepts did not perform as well at Marsh-

field. Marshfield data included concepts extracted by MetaMap and

a different pipeline that did not limit input to high-yield note subsec-

tions, which may have had worse performance. Finally, regular ex-

pression matches were not included at Marshfield. Although

performance may have been improved by its inclusion, the perfor-

mance achieved without such data on models trained with regular

expression information highlighted the robustness of the random

forest models.

For sites that wish to optimize their hypertension phenotyping

performance, we provide a KNIME module that will automate

many of the normalization and feature creation steps. The module

includes a number of the better-performing deterministic algorithms

and random forest models trained on the full Vanderbilt dataset. We

generated the inputs in our database with 9 relatively simple queries

after concept indexing was complete. We have included algorithms

that do not require narrative information. We have provided a com-

plete description and protocol as well as example data files on

PheKB. The training pipeline for the KNIME module can use occur-

rence counts of ICD-10-CM codes if provided. ICD-10-CM codes

for hypertension are relatively simpler than ICD9 codes (I10 maps

all codes in 401.*). However, it is not clear that one could aggregate

ICD-10-CM with ICD9 codes without further study. Future work

will need to investigate the impact of inclusion of ICD-10-CM codes

into ICD9-based algorithms.

Several limitations caution the interpretation of these results. We

evaluated the portability at only a single additional site. Other insti-

tutions may differ from both Vanderbilt and Marshfield Clinic.

While we attempted to standardize the record review between

Marshfield and Vanderbilt, there may be systematic differences be-

tween the hypertensive and normotensive populations at each site.

We limited to ICD9 codes, medications, vitals, and narrative text to

achieve broad coverage with simple but readily available informa-

tion. We focused on the total counts of elements in each category

and hypertension-specific counts of each. However, other concepts

or lab values for comorbid conditions may prove useful for hyper-

tension classification. More complex NLP—perhaps taking into ac-

count temporal patterns—would likely be valuable but would also

increase implementation difficulty. While there are significant differ-

ences in hypertension prevalence between different demographic

groups, we have not included features for sex or ethnicity. Many of

our features and relevant codes were expert-curated, thus develop-

ment of similar phenotyping algorithms is not easily scalable. Medi-

cations with an indication of hypertension were determined using

MEDI-HPS and as such are imperfect and include some medications

that are for pulmonary hypertension. Our algorithm also did not de-

tect the date of onset of hypertension, which could be clinically in-

teresting in a number of circumstances. Anecdotally, we found this

challenging to accurately determine for many of the records. Pedia-

tric populations and other subspecialty clinics with higher secondary

causes may see different performance.

CONCLUSION

Our results demonstrated that we can identify hypertensive individ-

uals with high recall and precision by combining EHR data sources.
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Even simple combinations of elements from different categories are

statistically significantly better than current simple ICD9 code count

thresholds and within the confidence intervals of the best—random

forest—methods. Random forests required relatively few training

cases to achieve near peak performance. Models and features based

on structured EHR fields are more portable than text-based features,

especially regular expression–based features. The best phenotyping

algorithms have broad potential applicability.
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