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Abstract

An emerging hallmark of cancer is reprogrammed cellular metabolism, and several cancers

involve increased glucose intake and glutamine addiction. Hepatocellular carcinoma (HCC)

is one of the most fatal cancers, and its molecular basis needs to be delineated to identify

biomarkers for its potential treatment without resection. Therefore, this study aimed to deter-

mine the metabolism status of HCC by evaluating the expression of the glucose transporter

GLUT1 and glutamine transporter ASCT2. We enrolled 192 patients with surgically resected

HCC in this study. Their tissue samples were subjected to immunohistochemistry to detect

GLUT1 and ASCT2 expression. The prognostic value of GLUT1 and ASCT2 expression

and their combined metabolic index was determined by Kaplan–Meier analysis and the Cox

proportional hazards model. We found that GLUT1 and ASCT2 expression was significantly

upregulated in tumor tissues as compared to adjacent non-tumor tissues and was positively

associated with tumor size. Survival analysis revealed that patients with high GLUT1 or

ASCT2 expression had poor overall survival (OS) and recurrence-free survival (RFS). In

HCC patients, ASCT2 expression was an independent negative prognostic factor for OS

(hazard ratio [HR], 1.760; 95% confidence interval [CI] = 1.124−2.755; p = 0.013) and the

metabolic index was an independent negative prognostic factor for OS (HR = 1.672, 95% CI

= 1.275−2.193, p < 0.001) and RFS (HR = 1.362, 95% CI = 1.066−1.740, p = 0.013). In con-

clusion, the tumor metabolism status determined by expression of GLUT1 and ASCT2 and

their metabolic index is a promising prognostic predictor for HCC patients.

Introduction

Hepatocellular carcinoma (HCC) is one of the most fatal cancers and a serious public health

problem, with an increasing incidence and mortality worldwide [1]. Despite improved diag-

nostic and treatment strategies, surgical resection is still the most effective curative therapy for

HCC [2, 3], and only a few drugs are available for the treatment of patients with unresectable
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HCC [4]. Therefore, it is vital to elucidate the molecular basis of HCC in order to help identify

biomarkers to predict clinical outcomes of HCC patients and targets for its treatment.

To support cell growth and survival, cellular metabolism is reprogrammed to balance bio-

synthetic processes with energy supply to cancer cells, which is a hallmark of cancer [5]. Glu-

cose, a fundamental source of energy, is metabolized by aerobic glycolysis in many cancers,

regardless of the oxygen availability. This phenomenon, known as the Warburg effect, is

accompanied by increased glucose intake [6]. Glutamine, another important nutrient and the

most abundant amino acid in the serum, acts as a major source of nitrogen for nucleotide and

amino acid synthesis and a source of carbon for replenishment of tricarboxylic acid cycle inter-

mediates. Although glutamine is a nonessential amino acid in normal cells, its addiction,

which is characterized by poor cancer-cell survival in the absence of glutamine, is observed in

several cancers [7].

Membrane transporters, with their complicated metabolic networks, are necessary channels

for nutrients influxes and may provide insight into the cellular metabolism. Glucose diffusion

into the cytoplasm is facilitated by a group of membrane proteins termed glucose transporters

[8]. The most typical one, glucose transporter 1 (GLUT1), is upregulated in several cancers

such as colorectal cancer [9], breast cancer [10] and prostate cancer [11]. Glutamine is

imported into the cytoplasm by four major transporters [12], of which the alanine-, serine-,

cysteine-preferring transporter 2 (ASCT2) is essential for glutamine uptake by tumor cells

[13]. ASCT2 expression was found to be upregulated in several cancers including colorectal

cancer [14], breast cancer [15], and non-small cell lung cancer [16].

In this study, we aimed to delineate the metabolism status of HCC tissue by evaluating

GLUT1 and ASCT2 expression and to analyze the prognostic significance of expression of

these transporters in HCC patients.

Materials and Methods

Patients and samples

Archived, formalin-fixed, paraffin-embedded, paired tumor and non-tumor tissues were

obtained from 15 patients who underwent HCC resection between 2012 and 2013 at the Sun

Yat-sen University Cancer Center (Guangzhou, China). A cohort of 192 patients who under-

went curative resection for HCC between 2005 and 2008 were randomly enrolled for the prog-

nostic study. The eligibility criteria of patients’ enrollment were as follows: (a) histologically

confirmed diagnosis, (b) no distant metastasis, (c) no anticancer therapies prior to surgery, (d)

no serious complications or other malignant diseases, and (e) availability of resection tissues

and follow-up data. The tumor stage was determined according to the 7th Edition tumor-

node-metastasis classification system and the Barcelona Clinic Liver Cancer staging system.

Tumor differentiation was graded according to the Edmondson grading system.

This study was approved and supervised by the Research Ethics Committee of Sun Yat-sen

University Cancer Center in strict accordance with the ethical guidelines of the Declaration of

Helsinki. All samples were collected after obtaining written informed consent from all patients

prior to surgery. All samples were coded, and the data were stored anonymously.

Follow-up

The follow-up procedures from our previous study were adopted [17]. Data were censored at

the last follow-up for patients without recurrence or death. Overall survival (OS) was defined

as the interval between the time of surgery to death or the last follow-up. Recurrence-free sur-

vival (RFS) was defined as the time from the date of surgery to recurrence, the last follow-up

for patients without recurrence, or death if no recurrence was observed.
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Tissue section and microarray

Paraffin-embedded sections from the 15 patients were used to detect GLUT1 and ASCT2

expression in tumor and matched, adjacent, non-tumor tissues by immunohistochemistry

(IHC). The paraffin-embedded sections were prepared as described previously [17]. In brief,

formalin-fixed tissues were paraffin-embedded, cut into 4-μm sections using a microtome,

and dried.

Tissue microarray (TMA) sections from the 192 patients’ specimens were used for survival

analysis. The TMA was constructed as described previously [17]. Briefly, each representative

area was pre-marked in the paraffin-embedded blocks on the basis of the hematoxylin and

eosin (H&E) staining, excluding necrotic and hemorrhagic areas. To ensure reproducibility

and homogeneity, duplicates of 1-mm (diameter) cylinders from the tumor tissues were

obtained from each patient.

IHC

IHC was performed as described in our previous study [17]. In short, the sections were

sequentially deparaffinization and re-hydrated with xylene and a decreasing ethanol series.

Subsequently, the slides were soaked in 0.3% H2O2 for 10 min to reduce endogenous peroxi-

dase activity and boiled in 10 mM citrate buffer (pH 6.0) for 10 min for heat-induced epitope

retrieval. The sections were then incubated with anti-GLUT1 antibody (dilution 1:500, Milli-

pore, Cat# 07–1401) or anti-ASCT2 antibody (dilution 1:500, Novus, Cat# NBP1-89327) over-

night at 4˚C. Horseradish peroxidase-conjugated anti-rabbit/mouse Dako REAL™ EnVision™
detection systems (Dako, Cat# K5007) were used according to the manufacturer’s instructions.

Brown color indicated positive staining. All sections were counterstained with Mayer’s hema-

toxylin and mounted with a non-aqueous mounting medium.

Automated image acquisition and quantification

To assess the expression level of GLUT1/ASCT2, the Vectra-Inform image analysis system

(Perkin-Elmer Applied Biosystems) was used as described in previous studies [18, 19]. In brief,

a scanning protocol was designed on the basis of the TMA core number and size. Nuance mul-

tispectral image cubes (8-bit) were acquired from the TMA at a constant 200× magnification.

The spectral library containing two chromogens was built with two control HCC tissue slides

stained with only 1 chromogen (3,30-diaminobenzidine or hematoxylin). The spectral library

was used to unmix the signals on the multicolored images by recognizing their unique spectral

curves for quantitation. Images were analyzed using InForm image analysis software (version

2.0.1; Perkin-Elmer Applied Biosystems) to identify tissue compartments (tumor and non-

tumor tissue) and subcellular compartments (nucleus, cytoplasm, and membrane). The H-

score was calculated by quantifying target signals in selected tissues and cellular compartments

of interest following the manufacturer’s protocol.

Statistical analysis

IBM SPSS Software (version 21; IBM Corporation) and GraphPad Prism (version 6; GraphPad

Software) were used for the statistical analysis. The significance of differences between values

was determined by the Wilcoxon matched-pairs signed rank test or Mann–Whitney t-test, as

indicated. The correlation between the GLUT1/ASCT2 expression status and the clinicopatho-

logical features was analyzed by χ2 test or Fisher’s exact test, as appropriate. The Pearson corre-

lation was used to analyze the correlation between GLUT1 and ASCT2 staining scores. The OS

and RFS curves were generated by the Kaplan–Meier method and analyzed using the log-rank
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test. Prognostic factors were determined by univariate and multivariate analysis with the Cox

proportional hazards model. Variables associated with survival by univariate analysis were

adopted as covariates multivariate Cox proportional hazards analysis. A p value < 0.05 was

considered statistically significant.

Results

GLUT1 and ASCT2 expression in tumor and non-tumor tissues of HCC

patients

IHC staining of the 15 HCC specimens showed clear and distinguishable membrane staining

for both GLUT1 and ASCT2 in tumor tissues, but weak staining in adjacent hepatocytes (Fig

1A and 1B). GLUT1 expression was significantly higher in tumor tissues (median score = 30.0)

than in the adjacent non-tumor tissues (median score = 0.0; p = 0.008; Fig 1C), as quantified

by the IHC H-score. A similar result was obtained for ASCT2 (median score: tumor tissues [T]

= 55.0, non-tumor tissues [N] = 0.0; p = 0.009, Fig 1D). These data suggest that GLUT1 and

ASCT2 expression was upregulated during neoplasia.

GLUT1/ASCT2 expression and its correlation with clinicopathological

characteristics

The clinicopathological features of the cohort 192 HCC patients are summarized in Table 1.

The median follow-up duration was 56.2 months (range, 2−96 months). During the follow-up

period, 95 patients (49.5%) died and 104 patients (54.2%) were diagnosed with tumor recur-

rence. The median OS and RFS for patients were 56 and 20 months, respectively. Patients were

Fig 1. Significantly elevated GLUT1 and ASCT2 expression levels in hepatocellular carcinoma (HCC). (A–B)

Immunohistochemistry (IHC) assays of GLUT1 (A) and ASCT2 (B) expression in tumor (T) and adjacent non-tumor tissues (N). The

scale bar indicates 50 μm. (C-D) GLUT1 (C) and ASCT2 (D) expression levels in tumor (T) tissue are significantly higher than those

in adjacent non-tumor tissue (N) (n = 15). The IHC H-scores are shown as a box-plot; ** indicates p < 0.01.

doi:10.1371/journal.pone.0168907.g001
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Table 1. Clinical characteristics of patients with hepatocellular carcinoma.

Variable No. of patients %

No. of patients 192 100.0

Age; median (range), yr 48 (13–76)

Gender

Female 25 13.0

Male 167 87.0

HBsAg

Negative 20 10.4

Positive 172 89.6

AFP; median (range), ng/mL 205.7 (0.0–121000.0)

ALT; median (range), U/L 39.0 (4.0–377.0)

Tumor size; median (range), cm 6.0 (1.3–20.0)

Liver cirrhosis

No 54 28.1

Yes 138 71.9

Child–Pugh class

A 179 93.2

B 12 6.3

C 1 0.5

Tumor number

Single 140 72.9

Multiple 52 27.1

Satellite nodule

No 172 89.6

Yes 20 10.4

Tumor capsule

No/incomplete 125 65.1

Complete 67 34.9

Tumor differentiation

I 11 5.7

II 110 57.3

III 68 35.4

IV 3 1.6

Vascular invasion

No 174 90.6

Yes 18 9.4

TNM stage

I 128 66.7

II 23 12.0

III 41 21.4

BCLC stage

0 4 2.1

A 136 70.8

B 32 16.7

C 20 10.4

Abbreviations: HBsAg, hepatitis B surface antigen; AFP, α-fetoprotein; ALT, alanine aminotransferase;

TNM, tumor-node-metastasis; BCLC, Barcelona Clinic Liver Cancer

doi:10.1371/journal.pone.0168907.t001
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further divided into groups according to the level of GLUT1 and ASCT2 expression. The cut-

off value of GLUT1 and ASCT2 expression was 31.75 and 78.75, respectively, as determined by

the receiver operating characteristic (ROC) curve. GLUT1 and ASCT2 were highly expressed

in 54.7% (105/192) and 35.9% (69/192) of all cases, respectively.

We also analyzed the correlation between GLUT1/ASCT2 status and clinicopathological

features. Expression of both GLUT1 and ASCT2 was associated with tumor size (p< 0.01,

Table 2). Patients with a large tumor tended to have higher expression of GLUT1 or ASCT2

(p< 0.01, Fig 2A−2C). In addition, ASCT2 expression was associated with poor differentiation

(p = 0.020, Table 2). Furthermore, there was a positive correlation between GLUT1 and

ASCT2 expression (r = 0.556, p< 0.001, Fig 2D).

Prognostic value of GLUT1 and ASCT2 expression in HCC

Univariate analysis of GLUT1/ASCT2 status and conventional clinicopathologic parameters

for prognosis showed that high expression of GLUT1, high expression of ASCT2, high α-feto-

protein level, high alanine aminotransferase level, large tumor size, multiple tumor number,

satellite nodule, incomplete tumor capsule, poor tumor differentiation, and vascular invasion

were unfavorable predictors for OS of HCC patients (Table 3). Moreover, high expression of

GLUT1, high expression of ASCT2, young age, large tumor size, multiple tumor number, poor

tumor differentiation, and vascular invasion were significantly associated with shorter RFS in

HCC patients (Table 3).

The Kaplan–Meier survival curves showed that patients with high GLUT1 expression had

lower OS (p = 0.004, Fig 3A) and RFS rate (p = 0.041, Fig 3B). The 5-year OS and RFS rates of

the high GLUT1 expression group were 33.6% and 17.2%, respectively, which were signifi-

cantly lower than those of the low GLUT1 expression group (56.3% and 29.2%, respectively).

At the same time, high ASCT2 expression indicated poorer OS (p< 0.001, Fig 3C) and RFS

(p = 0.025, Fig 3D). The 5-year OS rate of the high and low ASCT2 expression group were

31.5% and 50.6%, respectively. These findings suggest that both GLUT1 and ASCT2 are

important indicators of prognosis in HCC patients.

Multivariate Cox model for assessing whether GLUT1 and ASCT2 expression could be

independent predictors for OS and RFS in HCC patients revealed that the ASCT2 expression

was an independent negative prognostic factor for OS (HR = 1.760, 95% CI = 1.124–2.755,

p = 0.013, Table 3) in HCC patients.

Prognostic significance of the metabolic index

Reprogrammed cellular metabolism is a hallmark of cancer [5], in which glucose and gluta-

mine metabolism plays a dominant role [6, 7]. GLUT1 and ASCT2 are the most important

transporters for glucose and glutamine influxes and may provide insight into the cellular

metabolism in cancer [8, 12, 13]. Therefore, we united GLUT1 and ASCT2 expression status

into the metabolic index to evaluate the combined influence of GLUT1 and ASCT2 in HCC.

Briefly, low and high expressions of GLUT1 or ASCT were assigned scores of 0 and 1, respec-

tively. Thereafter, the GLUT1 and ASCT2 indices were added to obtain the metabolic index,

which ranged from 0 to 2. Thus, patients were classified into three groups: 0, low GLUT1 and

low ASCT2 (n = 73); 1, low GLUT1 and high ASCT2, or high GLUT1 and low ASCT2

(n = 64); 2, high GLUT1 and high ASCT2 (n = 55). Kaplan–Meier survival analysis revealed

that patients with a high metabolism index had poor OS (p< 0.001, Fig 3E) and RFS

(p = 0.016, Fig 3F). Furthermore, multivariate analysis showed that the metabolic index was an

independent negative prognostic factor for both OS (hazard ratio [HR] = 1.672, 95% confi-

dence interval [CI] = 1.275−2.193, p< 0.001) and RFS (HR = 1.362, 95% CI = 1.066–1.740,

GLUT1 and ASCT2 as Prognostic Factors of HCC
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Table 2. Correlation between GLUT1/ASCT2 expression and clinicopathological parameters.

Characteristics No. GLUT1 p Value ASCT2 p Value

Low High Low High

Age (years)

�48 96 44 52 1.00 60 36 0.76

>48 96 43 53 63 33

Gender

Female 25 14 11 0.29 19 6 0.26

Male 167 73 94 104 63

HBsAg

Negative 20 8 12 0.64 14 6 0.63

Positive 172 79 93 109 63

AFP (ng/mL)

�20 63 32 31 0.35 46 17 0.08

>20 129 55 74 77 52

ALT (U/L)

�40 100 47 53 0.67 62 38 0.55

>40 92 40 52 61 31

Tumor size (cm)

�5 84 49 35 0.001 64 20 0.002

>5 108 38 70 59 49

Liver cirrhosis

No 54 26 28 0.63 35 19 1.00

Yes 138 61 77 88 50

Child–Pugh class

A 179 81 98 1.00 118 61 0.07

B-C 13 6 7 5 8

Tumor number

Single 140 60 78 0.74 91 49 0.74

Multiple 52 25 27 32 20

Satellite nodule

No 172 78 94 1.00 113 59 0.22

Yes 20 9 11 10 10

Tumor capsule

No/incomplete 125 56 69 0.88 77 48 0.35

Complete 67 31 36 46 21

Tumor differentiation

I-II 121 56 65 0.77 85 36 0.03

III-IV 71 31 40 38 33

Vascular invasion

No 174 79 95 1.00 115 59 0.08

Yes 18 8 10 8 10

TNM stage

I 128 58 70 1.00 86 42 0.21

II-III 64 29 35 37 27

BCLC stage

(Continued )
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Table 2. (Continued)

Characteristics No. GLUT1 p Value ASCT2 p Value

Low High Low High

0-A 140 63 77 1.00 95 45 0.09

B-C 52 24 28 28 24

p values were analyzed by χ2 test or Fisher’s exact test, as appropriate

Abbreviations: HBsAg, hepatitis B surface antigen; AFP, α-fetoprotein; ALT, alanine aminotransferase; TNM, tumor-node-metastasis; BCLC, Barcelona

Clinic Liver Cancer; GLUT1, glucose transporter 1; ASCT2, alanine, serine, cysteine-preferring transporter 2

doi:10.1371/journal.pone.0168907.t002

Fig 2. Association between expression levels of GLUT1 and ASCT2 and tumor size. (A) IHC staining for GLUT1 and ASCT2 in

patients with tumor diameter less or more than 5 cm. The scale bar indicates 100 μm. (B-C) The IHC H-scores for GLUT1 (B) and

ASCT2 (C) in patients with tumor diameter less or more than 5 cm. The IHC H-scores are expressed as mean ± standard error of

mean (bars); ** represents p < 0.01. (D) GLUT1 expression level is positively correlated with ASCT2 expression (n = 192).

doi:10.1371/journal.pone.0168907.g002

GLUT1 and ASCT2 as Prognostic Factors of HCC
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p = 0.013) in HCC patients (Table 4). Overall, the metabolic index was a powerful prognostic

factor for OS and RFS in HCC patients.

Discussion

Reprogrammed cellular metabolism is an emerging hallmark of cancer, and the altered meta-

bolic processes are potential targets for treatment of HCC. In the present study, we detected

the expression of two important transporters GLUT1 and ASCT2 to delineate their metabolic

status in HCC, and evaluated their prognostic values.

Our data showed that GLUT1 and ASCT2 expression was significantly upregulated in HCC

as compared to the adjacent non-tumor hepatocytes. In a previous study, GLUT1 expression

was reported to be upregulated in several cancers such as colorectal cancer and cervical cancer,

and its high expression was an independent factor for poor prognosis in colorectal cancer [9,

20]. A functional study suggested that GLUT1 was critical for the proliferation and migration

of HCC cells [21], but its prognostic value has not yet been reported. Similarly, ASCT2 expres-

sion was found to be upregulated in several cancers, including colorectal cancer [14], breast

cancer [15], non-small cell lung cancer [22], and clear-cell renal cell carcinoma [23]. Elevated

ASCT2 expression promoted cell growth and survival in colorectal cancer and lung cancer,

partially mediated by mammalian target of rapamycin (mTOR) signaling [14, 16]. In accor-

dance with the vital functions of GLUT1 and ASCT2, we found that patients with higher

expression of GLUT1/ASCT2 had shorter OS and RFS. Furthermore, the metabolic index,

which combines the GLUT1 and ASCT2 expression status, was an independent prognostic fac-

tor for OS and RFS in HCC.

The expression levels of GLUT1 and ASCT2 were most closely related to the tumor size

among the conventional clinicopathological characteristics of HCC. GLUT1 and ASCT2 are

Table 3. Univariate and multivariate analysis of factors associated with survival and recurrence.

Variables OS RFS

Univariate

p value

Multivariate Univariate

p value

Multivariate

p value HR 95% CI p value HR 95% CI

Age (years) N.S. 0.008 0.010 0.591 0.397–0.880

Gender N.S. N.S.

HBsAg N.S. N.S.

AFP (ng/mL) <0.001 0.022 1.830 1.090–3.073 N.S.

ALT (U/L) 0.006 0.002 1.946 1.280–2.959 N.S.

Tumor size (cm) <0.001 N.S. 0.003 N.S.

Liver cirrhosis N.S. N.S.

Tumor number <0.001 0.011 1.881 1.159–3.057 <0.001 0.009 1.787 1.154–2768

Satellite nodule 0.022 N.S. N.S.

Tumor capsule 0.005 0.029 0.586 0.363–0.946 N.S.

Tumor differentiation 0.014 N.S. 0.011 N.S.

Vascular invasion < 0.001 < 0.001 7.454 3.880–14.319 <0.001 <0.001 4.198 2.131–8.268

GLUT1 0.004 N.S. 0.042 N.S.

ASCT2 < 0.001 0.013 1.760 1.124–2.755 0.026 N.S.

Univariate analysis, Cox proportional hazards regression model.

Multivariate analysis, Cox proportional hazards regression model. Variables were adopted by univariate analysis.

Abbreviations: OS, overall survival; RFS, recurrence-free survival; HR, hazard ratio; CI, confidence interval; N.S., not significant; HBsAg, hepatitis B surface

antigen; AFP, α-fetoprotein; ALT, alanine aminotransferase; GLUT1, glucose transporter 1; ASCT2, alanine, serine, cysteine-preferring transporter 2

doi:10.1371/journal.pone.0168907.t003
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Fig 3. Prognostic significance of GLUT1 expression, ASCT2 expression, and the metabolic index. (A–B) HCC patients

with higher GLUT1 expression have shorter OS (A) and RFS (B). (C–D) Higher expression of ASCT2 predicts poor OS (C) and

RFS (D) in HCC patients. (E–F) HCC patients with higher metabolic index have poor OS (E) and RFS (F) (n = 192).

doi:10.1371/journal.pone.0168907.g003

GLUT1 and ASCT2 as Prognostic Factors of HCC
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necessary for cell proliferation and tumor growth [14, 16, 21], and large tumors might promote

the expression of GLUT1 and ASCT2. Large tumors are usually accompanied by a hypoxic

condition, which is known to induce the expression of hypoxia-induced factor 1α (HIF1α)

[24] that is associated with tumor size [25] and promotes the expression of GLUT1 in HCC

[21]. Consistently, we found that the expression of GLUT1 was higher in tumors larger than

5 cm in diameter. In a previous report, lactate, a product of glycolysis, was shown to trigger

the expression of ASCT2 via activation of c-Myc [26], suggesting a close relation between glu-

cose and glutamine metabolism. In the present study, we found that ASCT2 expression was

positively associated with GLUT1 expression. These data suggest a positive feedback loop

between tumor growth and GLUT1/ASCT2 upregulation, which might be important for HCC

progression.

Glucose and glutamine are important nutrients for not only cancer cell survival, but also

immune cell function. For example, they are important for T-cell activation and differentiation

[27]. When deprived of glucose, T cells display defective cell activation and functional capacity,

such as impaired clonal expansion and reduced interferon (IFN)-γ, granzyme, and perforin

production [28–30]. Under conditions of glutamine deprivation, naïve CD4+ T cells preferably

differentiate into Foxp3+ regulatory T (Treg) cells, even if activated by cytokines that normally

induce the generation of T helper 1 (TH1) cells [31]. Due to strong nutrient influx in cancer

cells, GLUT1 and ASCT2 may contribute to development of a tumor microenvironment by

regulating the nutrient concentration. In recent studies, several research groups independently

showed that the Warburg metabolism enables tumor cells to restrict glucose availability to T

cells, suppressing the anti-tumor immunity [32–34]. Thus, the nutrient competition is a new

avenue of tumor immune suppression in addition to the immune checkpoints [35].

In conclusion, GLUT1 and ASCT2 expression was significantly upregulated in HCC tumor

cells as compared to adjacent non-tumor hepatocytes, especially in large tumors. Patients with

Table 4. Univariate and multivariate analysis of metabolic index associated with survival and recurrence.

Variables OS RFS

Univariate

p value

Multivariate Univariate

p value

Multivariate

p value HR 95% CI p value HR 95% CI

Age (years) N.S. 0.008 0.010 0.592 0.398–0.881

Gender N.S. N.S.

HBsAg N.S. N.S.

AFP (ng/mL) 0.001 0.020 1.842 1.100–3.086 N.S.

ALT (U/L) 0.006 0.002 1.937 1.275–2.943 N.S.

Tumor size (cm) 0.001 N.S. 0.003 N.S.

Liver cirrhosis N.S. N.S.

Tumor number < 0.001 0.011 1.882 1.158–3.059 < 0.001 0.009 1.784 1.153–2.760

Satellite nodule 0.022 N.S. N.S.

Tumor capsule 0.005 0.029 0.586 0.363–0.947 N.S.

Tumor differentiation 0.014 N.S. 0.011 N.S.

Vascular invasion < 0.001 < 0.001 7.496 3.908–14.376 < 0.001 < 0.001 4.210 2.142–8.280

Metabolic index < 0.001 < 0.001 1.672 1.275–2.193 0.011 0.013 1.362 1.066–1.740

Univariate analysis, Cox proportional hazards regression model

Multivariate analysis, Cox proportional hazards regression model. Variables were adopted by univariate analysis.

Abbreviations: OS, overall survival; RFS, recurrence-free survival; HR, hazard ratio; CI, confidence interval; N.S., not significant; HBsAg, hepatitis B surface

antigen; AFP, α-fetoprotein; ALT, alanine aminotransferase; GLUT1, glucose transporter 1; ASCT2, alanine, serine, cysteine-preferring transporter 2

doi:10.1371/journal.pone.0168907.t004
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high GLUT1 or ASCT2 expression have poor OS and RFS. Furthermore, the metabolic index

was an independent prognostic factor for both OS and RFS. Our study suggests that the tumor

metabolism status determined by GLUT1 and ASCT2 expression might be a promising prog-

nostic biomarker and therapy target in HCC patients.
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