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Abstract

A thorough search for bat herpesviruses was carried out in oropharyngeal samples taken

from most of the bat species present in the Iberian Peninsula from the Vespertilionidae,

Miniopteridae, Molossidae and Rhinolophidae families, in addition to a colony of captive fruit

bats from the Pteropodidae family. By using two degenerate consensus PCR methods tar-

geting two conserved genes, distinct and previously unrecognized bat-hosted herpesviruses

were identified for the most of the tested species. All together a total of 42 potentially novel

bat herpesviruses were partially characterized. Thirty-two of them were tentatively assigned

to the Betaherpesvirinae subfamily while the remaining 10 were allocated into the Gamma-

herpesvirinae subfamily. Significant diversity was observed among the novel sequences

when compared with type herpesvirus species of the ICTV-approved genera. The inferred

phylogenetic relationships showed that most of the betaherpesviruses sequences fell into a

well-supported unique monophyletic clade and support the recognition of a new betaherpes-

virus genus. This clade is subdivided into three major clades, corresponding to the families

of bats studied. This supports the hypothesis of a species-specific parallel evolution process

between the potentially new betaherpesviruses and their bat hosts. Interestingly, two of the

betaherpesviruses’ sequences detected in rhinolophid bats clustered together apart from

the rest, closely related to viruses that belong to the Roseolovirus genus. This suggests a

putative third roseolo lineage. On the contrary, no phylogenetic structure was detected

among several potentially novel bat-hosted gammaherpesviruses found in the study.

Remarkably, all of the possible novel bat herpesviruses described in this study are linked to

a unique bat species.

Introduction

Herpesviruses make up a wide group of DNA viruses extensively disseminated in nature that

is present in most vertebrates and, recently discovered, can even infect some marine bivalves.
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Due to the steady increase in the number of members recognized within this large group of

viruses and their significant heterogeneity, the classification of herpesviruses has been recently

updated by the International Committee on Taxonomy of Viruses (ICTV). The family Herpes-
viridae contains mammal, bird and reptile viruses. In addition, two other families have been

created, one to harbor the fish and frog viruses (Family Alloherpesviridae), and another to

include the herpesviruses found in invertebrate animals (Family Malacoherpesviridae), all

three families grouped in the Order Herpesvirales [1]. Mammalian herpesviruses account for

most of the diversity within Herpesviridae and represent ten out of the thirteen genera recog-

nized to date. Within the mammalian group, primates have the highest number of described

herpesviruses, grouped in six different genera. Ungulates and rodents also show a high number

of diverse herpesviruses. They are distributed through several genera, three of which are exclu-

sive. However, despite being increasingly recognized as common reservoir hosts for many

viruses [2], bats have been relatively poorly studied in this aspect. In fact, and despite the

remarkable accumulation of novel viruses associated with the improvement of new generation

sequencing techniques, herpesviruses of bats are definitely underrepresented. Considering that

the order Chiroptera contains 1,116 recognized species, represents around twenty per cent of

the mammalian diversity world-wide and is the second most speciose mammal group after

rodents [3], this is quite surprising.

The first reference to any herpesvirus detected in bats dates back to 1996 when cytomegalo-

virus-like particles were identified in the principal submandibular gland of the little brown

bat (Myotis lucifugus) by electron microscopy [4]. Since then, herpesviruses, or herpesviral

sequences, have been progressively documented in bat species. Evidence of alphaherpesviruses

has recently been found in pteropid bats such as Eidolon helvum, E. dupreanum, Pteropus lylei
(a nectarivorous bat), Lonchophylla thomasi, and an unidentified bat [5, 6]. Several betaherpes-

viruses and gammaherpesviruses have also been detected in bats from the families Vespertilio-
nidae [7,8], Miniopteridae [9, 10], Pteropodidae [11], Hipposideridae [12] and Rhinolophidae
[8]. Nevertheless, with the exception of a few vespertilionid gammaherpesviruses described by

Wibbelt et al. [7], relatively little is known about the phylogenetic relationships among the dif-

ferent bat herpesvirus species.

Two consensus PCR methods targeting two well-conserved genes were designed in order to

thoroughly study the viruses affecting bats in Iberia. The methods were especially designed

with the aim of identifying and characterizing some, as of yet, unknown bat-associated herpes-

viruses and the relationships between them. Both methods were applied to oropharyngeal sam-

ples taken from most of the bat species known in the Iberian Peninsula. Samples from the

Vespertilionidae, Miniopteridae, Molossidae and Rhinolophidae familes were taken. As a result,

forty-two potentially novel bat herpesviruses are described in this study as well as their evolu-

tionary relationships in relation to the available reference material.

Materials and Methods

Samples collection and handling

A total of 368 bats belonging to 26 species (Table 1) were captured and sampled through sev-

eral campaigns in 30 different sites across the Iberian Peninsula from 2002 to 2008 (Fig 1).

Sample collecting was completed as part of a bat rhabdoviruses and lyssaviruses surveillance

program and was conducted according to the approved protocol by the General Research Pro-

gram of the Spanish Government under the specific projects SAF2006-12784-C02-02 and

SAF2009-09172. Collection permits were obtained from the respective Autonomous Comu-

nities’ authorities. Collection methods followed the regulations and ethical procedures accord-

ing to the Spanish Bat Society (SECEMU). Bats were mainly captured with mist-nets and
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hand-nets as they left diurnal roosts or along their nocturnal commuting flights. Bats were

released at the same collecting point after being identified, measured, sexed and sampled. For

cryptic species, taxonomic identification was confirmed genetically by amplification and

sequencing of a diagnostic fragment of the mtDNA cytochrome B gene following Ibáñez et al.

[13]. Additionally, 31 exotic African fruit bats (Rousettus aegyptiacus), from the Pteropodidae
family, kept in captivity at the zoobotanical park of Jerez de la Frontera (Cádiz), were also sam-

pled in 2010.

Oropharyngeal swabs were collected and preserved at room temperature in 1 mL of lysis

buffer containing 4 M GuSCN (Sigma-Aldrich), 0.5% N-lauroylsarcosine (Sigma-Aldrich), 1

mM dithiothreitol (Sigma-Aldrich), 25 mM sodium citrate (Sigma-Aldrich) and 0.1 mg/mL

Table 1. Iberian bat species tested for herpesviruses.

Bat species Oropharyngeal samples positive/

total

Capture Locationa Capture Year

Family Scientific name Common name

Vespertilionidae Barbastella barbastellus Barbastelle bat 0/4 1, 14 2007, 2008

Eptesicus isabellinus Meridional serotine bat 16/33 5, 12, 16, 19, 20, 27,

29, 30

2004, 2007

Eptesicus serotinus Serotine bat 11/15 2, 18, 25 2003, 2007

Hypsugo savii Savi’s pipistrelle 2/10 1, 17 2007

Myotis alcathoe Alcathoe’s bat 1/1 23 2007

Myotis bechsteinii Bechstein’s bat 2/3 1, 15 2007

Myotis blythii Lesser mouse-eared bat 6/6 10 2004

Myotis capaccinii Long-fingered bat 3/15 8, 9 2004

Myotis daubentonii Daubenton’s bat 10/26 3, 6, 7 2004, 2007

Myotis emarginatus Geoffroy’s bat 7/31 3, 28 2004, 2007,

2008

Myotis escalerai Iberian Natterer’s bat 9/17 1, 10, 17, 30 2004, 2007

Myotis myotis Greater mouse-eared bat 9/18 7, 9, 10 2004, 2007

Myotis mystacinus Whiskered bat 1/2 23 2007

Nyctalus lasiopterus Greater noctule bat 3/3 15 2007

Nyctalus leisleri Lesser noctule bat 6/8 1, 15, 17 2007

Nyctalus noctula Common noctule bat 13/18 22 2007

Pipistrellus kuhlii Kuhl’s pipistrelle 5/6 7, 15 2007

Pipistrellus pipistrellus Common pipistrelle 3/6 1 2007

Pipistrellus pygmaeus Soprano pipistrelle 1/1 7 2007

Plecotus austriacus Grey long-eared bat 9/11 1, 17, 12, 30 2004, 2007

Miniopteridae Miniopterus schreibersii Schreiber’s bat 29/40 7, 9, 10, 11, 15 2002, 2004,

2007

Rinolophidae Rhinolophus euryale Mediterranean horseshoe

bat

0/52 4, 9, 28 2004, 2007,

2008

Rhinolophus

ferrumequinum

Greater horseshoe bat 15/24 3, 7, 12, 17, 28 2004, 2007,

2008

Rhinolophus

hipposideros

Lesser horseshoe bat 1/10 13, 20, 24, 26 2007, 2008

Rhinolophus mehelyi Mehely’s horseshoe bat 0/1 7 2007

Molossidae Tadarida teniotis European free-tailed bat 6/7 21, 27 2008

Pteropodidaeb Rousettus aegyptiacus Egyptian fruit bat 5/31 2010

a See Fig 1 for details.
b Exotic bat species in the Iberian fauna, kept captive in a zoo.

doi:10.1371/journal.pone.0169153.t001
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glycogen (Boehringer Mannheim). Total nucleic acids were extracted from 200 μl of the buff-

ered suspension of each swab, resuspended in 50 μL of high pure molecular biology grade

water and then stored at -80˚C until polymerase chain reaction (PCR) was performed.

Panherpesvirus PCR methods

Two consensus PCR methods to detect all members of the Herpesviridae family targeting con-

served regions of the exon 2 of the ATPase subunit of the terminase gene (panCSG) and the

catalytic subunit of the DNA polymerase (panDPOL) were designed in a conventional nested

format. Both methods were optimized with controlled DNA copies of human herpesviruses

and two animal herpesviruses harboring a high guanine-cytosine content, the bovine herpesvi-

rus 1 (BoHV1) and the suid herpesvirus 1 (SuHV1). The evaluation of both methods was done

Fig 1. Bat capture sites in the Iberian Peninsula. 1 Albanyà, Girona. 2 As Pontes, A Coruña. 3 Benaoján, Málaga. 4 Boltaña,

Huesca. 5 Bornos, Cádiz. 6 Calañas, Huelva. 7 Cañamero, Cáceres. 8 Castelló de la Plana, Castellón. 9 Cotes, Valencia. 10 Dénia,

Alacant. 11 Gaucı́n, Málaga. 12 Jumilla, Murcia. 13 Karrantza, Bizkaia. 14 La Morera de Montsant, Tarragona. 15 Cortes de la

Frontera, Málaga. 16 Las Cabezas de San Juan, Sevilla. 17 Montagut, Girona. 18 Mutiloa, Gipuzkoa. 19 Niebla, Huelva. 20

Nuñomoral, Cáceres. 21 Oliete, Teruel. 22 Pamplona, Navarra. 23 Samos, Lugo. 24 Santa Cruz de la Serós, Huesca. 25 Ugao,

Bizkaia. 26 Valdegovı́a, Arava. 27 Villarrasa, Huelva. 28 Villaviciosa de Córdoba, Córdoba. 29 Yecla, Murcia. 30 Zalamea la Real,

Huelva.

doi:10.1371/journal.pone.0169153.g001
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using clinical specimens containing human herpesviruses. The primers sets used are listed in

Table 2.

All nucleic acids extracted from bat oropharyngeal samples (5 μL) were initially tested

using a first round panCSG mixture containing 1 μM each of degenerate primers CSGdeg1F

and CSGdeg1R, 0.4 mM each dNTP, 10% DMSO, 5% glycerol and 2.5 U of AmpliTaq DNA

Polymerase (Applied Biosystems) in a buffer with a final concentration of 60 mM Tris–HCl

(pH 8.5), 15 mM (NH4)2SO4 and 2 mM MgCl2 and adjusted for a total volume of 50 μL. The

amplification conditions consisted of 2 min at 94˚C, followed by 40 cycles for 30 sec at 94˚C, 3

min at 40˚C and 30 sec at 72˚C, and a final extension at 72˚C for 5 min in an automated PTC-

200 Peltier Thermal Cycler (MJ Research). The second-round amplification was carried out

adding 2 μL of primary amplification product to 48 μL of a secondary amplification mixture as

above except for 0.2 mM each dNTP and 1 μM each of degenerate primers CSGdeg2F and

CSGdeg2R under the same conditions used for the first round, except that the annealing tem-

perature was 35˚C. Amplification products were visualized by ethidium bromide staining fol-

lowing electrophoresis on 2% NuSieve (FMC BioProducts) agarose gels. Positive and negative

PCR controls containing a fixed quantity of HHV5 genome and nuclease-free water were

included in each run. Usual precautions were taken to avoid cross-contamination of samples

before and after nucleic acids extraction and amplification. In order to increase phylogenetic

accuracy, specimens with a positive result were subsequently subjected to a second method of

nested PCR targeting the catalytic subunit of the DNA polymerase (panDPOL), using degener-

ate primers POLdeg1F and POLdeg1R for the first-round amplification and POLdeg2F and

POLdeg2R for the second-round. The usual prevention measures to avoid false positive results

due to cross-contamination were adopted. Briefly, a total of 5 μL was added to a reaction mix-

ture containing 60 mM Tris–HCl (pH 8.5), 15 mM (NH4)2SO4, 2 mM MgCl2, 1 μM each of

forward and reverse primers, 0.4 mM each dNTP, 5% DMSO and 2.5 U of AmpliTaq DNA

Polymerase (Applied Biosystems) in a total volume of 50 μL. Amplification consisted of 1 cycle

at 94˚C for 2 min, followed by 40 cycles of 94˚C for 30 sec, 45˚C for 3 min, and 72˚C for 30

sec, and a final extension at 72˚C for 5 min. Two microliters of primary product were then

transferred to 48 mL of the secondary amplification mixture as above except for 0.2 mM each

dNTP. The samples were then incubated for 1 cycle at 94˚C for 2 min and then 40 cycles of

94˚C for 30 sec, 40˚C for 3 min, and 72˚C for 30 sec. Amplification products were visualized

on a 2% agarose gel.

Table 2. Degenerate primers sets used for amplification of novel bat herpesviruses.

PCR method Primera Primer sequence (5’-3’)b Genome positionc Amplicon size (bp)d

panCSG CSGdeg1F GTIGAYGARRSIMAYTTYAT 134873–134854

CSGdeg1R TTKIIIGTRWAIGCIGGRTC 134389–134408 470–494

CSGdeg2F MYISYAARMTIATITTYRTITCITC 134782–134806

CSGdeg2R GTRWAIGCIGGRTCIAIRTA 134395–134414 397–421

panDPOL POLdeg1F GAYTTYSMIAGYYTITAYCC 79774–79755

POLdeg1R TTICKIACSARITCIACICCYTT 78969–78991 713–992

POLdeg2F ATIATIMWRGCICAYAAYYTITG 79750–79728

POLdeg2R AAIAIISWRTCIGTRTCICCRTA 79179–79201 482–758

a Forward (F) and reverse (R) strand for primer sequences.
b Inosine (I) in the three- and four-fold degenerate positions.
c Positions of primers in HHV5 reference genome (GenBank accession number NC_006273).
d Amplicon size is variable depending on the virus detected.

doi:10.1371/journal.pone.0169153.t002

Betaherpesviruses and Bats Parallel Evolution

PLOS ONE | DOI:10.1371/journal.pone.0169153 December 30, 2016 5 / 17



Sequence analyses and data set alignments

Amplification products of the expected size were purified using QIAquick PCR Purification

kit or QIAquick Gel Extraction kit (Qiagen) and directly double-strand sequenced by the

Sanger chain-termination method using the BigDye Terminator v3.1 Cycle Sequencing Kit

protocol and the ABI PRISM 3700 DNA Analyzer (Applied Biosystems). The nucleotide

sequences of the amplification products excluding primer binding sites and the corresponding

amino acid sequences were compared with those published in GenBank database using the

BLASTn and BLASTp algorithms available on the National Center for Biotechnology Informa-

tion webpage (http://blast.ncbi.nlm.nih.gov/). This procedure is sufficient to assess whether a

virus is already known or novel and allows for a preliminary assignation of novel viruses to

any of the herpesvirus subfamilies. As a first attempt to check for homology, amino acid

sequence identity and similarity were calculated by global pairwise alignments with the homol-

ogous sequences of type herpesvirus species of the ICTV-approved genera using the EMBOSS

Needle program (version 6.6.0), based on the Needleman-Wunsch algorithm and available at

the European Bioinformatics Institute webpage (http://www.ebi.ac.uk/Tools/psa/emboss_

needle/). This global alignment tool generates the best alignment over the entire length of each

pair of sequences. The scoring parameters were fixed by using the amino acid substitution

matrix BLOSUM62, and penalties for gaps: GOP = 15 and GEP = 0.5.

Multiple-sequence alignments of the nucleotide sequences obtained in this study and those

retrieved from the GenBank database were performed using the online MAFFT software ver-

sion 7.220 [14] and applying the E-INS-i algorithm, the 200PAM/k = 2 scoring matrix, a gap

opening penalty of 1.53, and an offset value of zero (http://mafft.cbrc.jp/alignment/server/).

Poorly aligned positions and highly divergent regions were removed using the online version

of the GBlocks program [15] (http://molevol.cmima.csic.es/castresana/Gblocks_server.html),

ensuring the selected blocks contained only complete codons and allowing smaller final blocks,

some gap positions within the blocks and less strict flanking positions in order to get a less

stringent selection.

Four different data sets (DS) were defined in the study, three of them containing aligned

DNA sequences of viruses that belonged (or were assigned) to the Betaherpesvirinae subfamily.

Data set 1 (DS1) contained sequences coming from the panCSG PCR method along with

retrieved sequences from GenBank for this particular fragment. Alongside, data set 2 (DS2)

comprised the panDPOL amplified fragment from our samples and retrieved sequences from

GenBank. Data set 3 (DS3) was then constructed by concatenating DS1 and DS2, to yield

more accurate reconstructions of the phylogenetic relationships. The gammaherpesvirus

HHV4 was included as an outgroup in DS1-DS3 data sets. Another data set (DS4), was set up

with the sequences of the panCSG PCR that belonged (or were assigned) to the Gammaherpes-
virinae subfamily, again aligned with sequences retrieved from GenBank and including the

human cytomegalovirus HHV5 as an outgroup.

Phylogenetic inference

Phylogenetic reconstructions for all 4 data sets were obtained under Bayesian inference and

using posterior probability criterion (BPP) implemented with the software MrBayes v3.2.1

[16]. Two simultaneous runs of 107 generations were conducted for each data set respectively

with 4 Markov chains, with a sampling frequency every 500 trees and assuming an initial

burn-in of 25%. The best performing nucleotide substitution models for each data set (TrN+I

+G for the terminase and GTR + I + G for the DNA polymerase fragments) were selected

using the Bayesian information criteria (BIC) implemented in the program jModelTest [17].

Markov chain Monte Carlo (MCMC) sampling convergence was assessed by checking the

Betaherpesviruses and Bats Parallel Evolution
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average standard deviation of split frequencies dropped below 0.01. Convergence of chains

was confirmed by the PSRF statistic implemented in MrBayes.

Preliminary nomenclature, proposed abbreviations and GenBank

accession numbers

The name of the viruses described in this study were assigned after their bat host species and

by adding betaherpesvirus or gammaherpesvirus, depending on which subfamily the virus was

tentatively assigned to and a number according to the sequential order of its finding. Abbrevia-

tions use the first letter of the generic host bat name and the first three letters of the specific

host bat name, followed by suffixes BHV or GHV for betaherpesvirus or gammaherpesvirus

(e.g., EisaBHV1 for Eptesicus isabellinus betaherpesvirus 1). The complete names, abbrevia-

tions and the corresponding GenBank accession numbers for the sequences of the potentially

novel viruses described in this study are listed in Tables 3 and 4.

Nomenclature, acronyms and GenBank accession numbers of published

viruses

Updated formal taxonomic names and the corresponding acronyms used in this study follow

the recommendations of the Herpesviridae Study Group of the International Committee on

Taxonomy of Viruses (ICTV) [1] and are presented as supporting information”S1 File”.

Results

Out of the total 368 Iberian bats studied, herpesviral genomic sequences were detected in 168

(45%) of the samples, which were all confirmed by sequencing. DNA of at least one herpesvi-

rus was detected in 23 out of the 26 Iberian bat species analyzed, and also in the fruit bat Rou-
settus aegyptiacus (Table 1). Only the bats Barbastella barbastellus (0/4), Rhinolophus mehelyi
(0/1) and R. euryale (0/52) failed to show evidence of herpesviruses in their oropharynx sam-

pling. The presence of at least two different herpesviruses in the same specimen was detected

in six oropharyngeal swabs which subsequently were not further analyzed. A total of 42 differ-

ent herpesviruses were detected, most of them using the panCSG PCR (39/42), with 19 of

them rendering a positive result also in a second PCR method targeting the DNA polymerase

(panDPOL).Three herpesviruses were only identified by the panDPOL PCR method. Novel

herpesvirus sequences were tentatively assigned to the Betaherpesvirinae (32/42) and Gamma-
herpesvirinae subfamilies (10/42). No evidence of alphaherpesviruses was found in the saliva of

the bats sampled. Remarkably, every single herpesvirus species was linked to a specific bat spe-

cies. However, detection of several herpesviruses per bat species was a common finding, with

12 species hosting two or more herpesviruses. The bats Miniopterus schreibersii and Tadarida
teniotis contributed the most to the list of novel herpesvirus sequences detected. Each showed

four different viruses, three betaherpesviruses and one gammaherpesvirus. For the purpose of

this report all potentially novel herpesviruses were tentatively named, as described in Materials

and Methods and listed with GenBank accession numbers in Tables 3 and 4.

Pairwise sequence comparisons with the type herpesvirus species of the ICTV-approved

genera showed a range of distinct percent amino acids identity values in the target terminase.

This depended on the genus considered. Bat herpesviruses assigned to the Betaherpesvirinae
subfamily presented ranges between 62–76% identity when compared with HHV5, the type

herpesvirus species of the Cytomegalovirus genus, 62–78% identity with MuHV1 (Muromega-
lovirus), 45–51% identity with EEHV1 (Proboscivirus), 52–61% identity with HHV6A (Roseolo-
virus). The last one, with the exception of the herpesviruses detected in the two rhinolophid

Betaherpesviruses and Bats Parallel Evolution
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bats that showed much higher identities with the Roseolovirus (76% and 79% respectively).

Regarding the bat herpesviruses ascribed to the Gammaherpesvirinae subfamily, values ranged

between 52–64% when compared with HHV4 (Lymphocryptovirus), 48–66% with AlHV1

(Macavirus), 47–69% with EHV2 (Percavirus), and 43–73% with SaHV2 (Rhadinovirus).
Data set DS1 consisted in an alignment of 52 homologous sequences of a 373 bp long frag-

ment of the terminase gene including 31 novel bat herpesvirus sequences and 21 sequences

retrieved from GenBank. Similarly, data set DS2 consisted in an alignment of 50 sequences

of a 412 bp long fragment of the DNA polymerase gene and being 19 of them novel bat

Table 3. Potentially novel bat betaherpesviruses.

Tentative virus name Abbreviation Positivea / tested animals GenBank Accession n˚ % Amino acid sequence

identityb

terminase polymerase HHV5 MuHV1 EEHV1 HHV6A

Eptesicus isabellinus betaherpesvirus 1 EisaBHV1 14/33 JX294544 KT886843 75.4 77.0 49.2 59.0

Eptesicus isabellinus betaherpesvirus 2 EisaBHV2 1/33 JX294545 KR608281 74.6 76.2 49.2 59.0

Eptesicus serotinus betaherpesvirus 1 EserBHV1 11/15 JX294546 75.4 77.0 49.2 59.0

Hypsugo savii betaherpesvirus 1 HsavBHV1 2/10 JX294547 KR608282 74.6 74.6 50.0 59.0

Miniopterus schreibersii betaherpesvirus 1 MschBHV1 1/40 EF151197 70.5 74.6 49.2 58.2

Miniopterus schreibersii betaherpesvirus 2 MschBHV2 26/40 EF151196 KR608283 69.7 74.6 49.2 59.0

Miniopterus schreibersii betaherpesvirus 3 MschBHV3 1/40 JX294548 62.0 66.7 45.4 51.9

Myotis alcathoe betaherpesvirus 1 MalcBHV1 1/1 JX294552 KR608287 73.0 75.4 49.2 57.4

Myotis bechsteinii betaherpesvirus 1 MbecBHV1 2/3 JX294549 73.1 76.5 48.7 56.3

Myotis blythii betaherpesvirus 1 MblyBHV1 6/6 EF151194 74.6 73.8 50.0 54.1

Myotis daubentonii betaherpesvirus 1 MdauBHV1 9/26 JX294550 KR608284 73.8 76.2 49.2 58.2

Myotis emarginatus betaherpesvirus 1 MemaBHV1 4/31 JX294551 KR608285 73.0 74.6 48.4 56.6

Myotis escalerai betaherpesvirus 1 MescBHV1 8/17 EF151193 74.6 74.6 50.8 55.7

Myotis escalerai betaherpesvirus 2 MescBHV2 1/17 KT886845 KT886844 73.0 75.4 49.2 57.4

Myotis myotis betaherpesvirus 1 MmyoBHV1 8/18 EF151195 KR608286 74.6 73.8 50.0 54.1

Myotis mystacinus betaherpesvirus 1 MmysBHV1 1/2 JX294553 KR608288 73.0 74.6 49.2 58.2

Nyctalus lasiopterus betaherpesvirus 1 NlasBHV1 2/3 JX294554 KR608289 76.2 77.9 50.0 60.7

Nyctalus leisleri betaherpesvirus 1 NleiBHV1 5/8 JX294555 KR608290 73.0 74.6 50.0 58.2

Nyctalus noctula betaherpesvirus 1 NnocBHV1 13/18 JX294556 75.4 77.0 48.4 59.8

Pipistrellus kuhlii betaherpesvirus 1 PkuhBHV1 5/6 JX294557 KR608291 75.4 77.0 49.2 60.7

Pipistrellus pipistrellus betaherpesvirus 1 PpipBHV1 2/6 JX294558 75.4 76.2 49.2 59.8

Pipistrellus pipistrellus betaherpesvirus 2 PpipBHV2 1/6 JX294559 KR608292 74.6 76.2 50.0 59.8

Pipistrellus pygmaeus betaherpesvirus 1 PpygBHV1 1/1 JX294560 74.6 75.4 49.2 59.0

Plecotus austriacus betaherpesvirus 1 PausBHV1 8/11 JX294561 KR608293 73.0 74.6 50.8 59.0

Plecotus austriacus betaherpesvirus 2 PausBHV2 1/11 JX294562 73.0 74.6 50.0 58.2

Rhinolophus ferrumequinum betaherpesvirus

2

RferBHV2 15/24 JX294567 KR608294 62.3 62.3 46.7 76.2

Rhinolophus hipposideros betaherpesvirus 1 RhipBHV1 1/10 JX294568 66.4 63.1 50.4 78.7

Rousettus aegyptiacus betaherpesvirus 1 RaegBHV1 1/31 JX294565 66.4 73.0 47.5 53.3

Rousettus aegyptiacus betaherpesvirus 2 RaegBHV2 1/31 JX294566 64.8 73.0 48.4 52.5

Tadarida teniotis betaherpesvirus 1 TtenBHV1 2/7 JX294563 KR608295 70.5 76.2 48.4 54.9

Tadarida teniotis betaherpesvirus 2 TtenBHV2 2/7 JX294564 KR608296 68.9 74.6 47.5 55.7

Tadarida teniotis betaherpesvirus 3 TtenBHV3 1/7 KR608297

a Number of positive animals in the PCR method targeting the terminase gene
b Related to terminase. Viruses used for comparison were Human herpesvirus 5 (HHV5), Murid herpesvirus 1 (MuHV1), Elephant endotheliotropic

herpesvirus 1 (EEHV1) and Human herpesvirus 6 strain U1102 (HHV6A).

doi:10.1371/journal.pone.0169153.t003
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herpesvirus sequences. Data set DS3 was constituted by concatenating both the terminase and

the DNA polymerase fragments. This came to a total of 785 aligned characters for 40 betaher-

pesviruses. Finally, data set DS4 consisted of an alignment of 43 sequences of a 376 bp long

fragment of the terminase gene, including 9 novel bat herpesvirus sequences and 34 retrieved

from GenBank.

The phylogenetic analysis performed with the DS3 alignment (Fig 2a) showed that, with the

exception of those detected in rhinolophid bats, all bat herpesvirus sequences tentatively

assigned to the Betaherpesvirinae subfamily grouped in a well-supported monophyletic clade.

This clade was subsequently subdivided into three well-supported subclades: Subclade I com-

prising of all novel viruses detected in vespertilionid bats (EisaBHV1, EisaBHV2, HsavBHV1,

MalcBHV1, MdauBHV1, MemaBHV1, MescBHV2, MmyoBHV1, MmysBHV1, NlasBHV1,

NleiBHV1, PausBHV1, PkuhBHV1 y PpipBHV2); subclade II comprising of viruses detected

in miniopterid bats (novel virus MschBHV2 and the previously described virus MsHV [10],

both found in Miniopterus schreibersii); and subclade III comprising of novel viruses detected

Table 4. Potentially novel bat gammaherpesviruses.

Tentative virus name Abbreviation Positivea / tested animals GenBank Accession n˚ % Amino acid sequence

identityb

terminase polymerase HHV4 AlHV1 EHV2 SaHV2

Eptesicus isabellinus gammaherpesvirus 1 EisaGHV1 1/33 KR608273 63.7 52.4 55.2 53.2

Miniopterus schreibersii gammaherpesvirus 1 MschGHV1 1/40 KR608278 KR608298 59.7 66.1 67.2 72.6

Myotis capaccinii gammaherpesvirus 1 McapGHV1 3/15 KR608274 60.5 59.7 64.8 64.5

Myotis daubentonii gammaherpesvirus 1 MdauGHV1 1/26 KR608275 52.4 48.4 47.2 43.5

Myotis emarginatus gammaherpesvirus 1 MemaGHV1 3/31 KR608276 54.0 51.6 47.2 43.5

Myotis myotis gammaherpesvirus 1 MmyoGHV1 1/18 KR608277 59.7 59.7 64.0 63.7

Nyctalus lasiopterus gammaherpesvirus 1 NlasGHV1 1/3 KR608279 58.1 58.9 67.2 64.5

Nyctalus leisleri gammaherpesvirus 1 NleiGHV1 1/8 KR608299

Rousettus aegyptiacus gammaherpesvirus 1 RaegGHV1 3/31 KR608280 54.0 55.6 68.8 67.7

Tadarida teniotis gammaherpesvirus 1 TtenGHV1 1/7 KR608300

a Number of positive animals in the PCR method targeting the terminase gene
b Related to terminase. Viruses used for comparison were Human herpesvirus 4 (HHV4), Alcelaphine herpesvirus 1 (AlHV1), Equid herpesvirus 2 (EHV2)

and Saimiriine herpesvirus 2 (SaHV2).

doi:10.1371/journal.pone.0169153.t004

Fig 2. Phylogenetic analysis of potentially novel bat betaherpesviruses. Phylogenetic relationships of the novel bat-hosted betaherpesviruses

(in bold) with their arrangement in relation to the main groups of betaherpesviruses available from GenBank. The reconstructions were built under

the Bayesian criterion allowing specific model rates. The consensus topologies show Bayesian posterior probabilities (BPP) >0.7 after sampling

107 generations. The phylogenetic analysis was based on the alignments of 2a) the concatenated terminase (373bp) and polymerase (412 bp)

fragments. 2b) the fragment of the ATPase subunit of the terminase gene. 2c) the fragment of the conserved region of the catalytic subunit of the

DNA polymerase gene. Abbreviations of full virus names follow the designation explained in Materials and Methods and presented in the

supporting information “S1 File”.

doi:10.1371/journal.pone.0169153.g002
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in molossid bats (TtenBHV1 and TtenBHV2). Furthermore, subclade I visibly branched into

two different groups, one containing viruses detected in bats belonging to the genus Myotis,
and a second group containing viruses linked to the rest of the vespertilionid bats. Phyloge-

netic analysis performed using the individual gene fragments (DS1 and DS2 alignments)

presented lower resolution than the combination of both (Fig 2b and 2c), showing DS2 in gen-

eral in a better resolution than DS1. Nevertheless, these separated data sets allowed for the

inclusion of more novel virus sequences as well as more additional reference material in the

analyses that, in turn, have helped clarifying the hypothesized phylogenetic relationships. For

instance, terminase-based phylogeny (DS1) has enabled the inclusion of the novel viruses

RaegBHV1 and RaegBHV2 found in the fruit bat Rousettus aegyptiacus that grouped together

in a separate clade but linked to other bat viruses (Fig 2b). Besides, the DS1-based phylogeny

has allowed the addition of the novel viruses EserBHV1, MbecBHV1, MblyBHV1, MescBHV1,

NnocBHV1, PausBHV2, PpipBHV1 and PpygBHV1, which are all found in vespertilionid

bats. Additionally, the novel viruses MschBHV1 and MschBHV3 that are detected in Miniop-
terus schreibersii, have extended subclades I and II respectively. Remarkably, the newly added

novel virus detected in Rhinolophus hipposideros (RhipBHV1) clustered together with the virus

RferBHV2 from R. ferrumequinum in a unique group separated from all other bat herpesvi-

ruses related to the viruses that compose the Roseolovirus genus (Fig 2b). On the other hand,

the polymerase-based phylogeny (DS2) has allowed the inclusion of the already known

TrBHV1 virus detected in the vespertilionid bat Tylonycteris robustula in China [8] and that

interestingly, appears closely related to viruses linked to the bat genus Myotis. Moreover, this

phylogeny has allowed for the inclusion of the already described virus BatBHV2 detected in

Miniopterus fuliginosus in Japan [9] and the novel virus TtenBHV3 found in Tadarida teniotis
that have given support to the defined subclade II and subclade III respectively (Fig 2c).

Finally, the inclusion of the known virus RfBHV1 from a R. ferrumequinum detected in China

[8] has reinforced the remarkable association found between our novel viruses detected in Rhi-
nolophus bats and the genus Roseolovirus.

Regarding to the bat herpesviruses tentatively placed in the Gammaherpesvirinae subfamily,

only one (MschGHV1), out of the ten potentially novel gammaherpesviruses found was posi-

tive for both markers. Consequently, the phylogenetic analysis relied solely on the alignment

of the 376 bp fragment of the exon 2 of the ATPase subunit of the terminase (DS4). This

brought about quite low resolution and few nodes of the resulting topology were actually well-

supported (See supporting information “S2 File”).

Discussion

Within this study, bat herpesviruses have been largely examined across 26 out of the 31 bat

species found so far in the Iberian Peninsula, covering the four families of bats recognized at

present in Europe (Vespertilionidae, Miniopteridae, Molossidae and Rhinolophidae). Forty-two

potentially novel bat herpesviruses were identified, most of them (32 out of 42) tentatively

assigned to the Betaherpesvirinae subfamily and the remaining 10 allocated into the Gamma-
herpesvirinae subfamily. The high proportion of betaherpesviruses found can be explained by

the fact that only oropharyngeal swabs were tested. It is well-known that betaherpesviruses can

be maintained in latency in secretory glands representing a major site of betaherpesviruses

replication and transmission [18]. In particular, salivary glands have been shown to represent

a privileged site for cytomegalovirus immune evasion and persistence [19]. No alphaherpes-

viruses were detected in this study nor in the study by Wibbelt et al. [7] who analyzed bat lung

tissues. However, evidence of alphaherpesviruses in other bats has recently been provided

from spleen tissues of Indonesian fruitbats [5], and from throat swabs and salivary glands of
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other fruit bats from the genera Eidolon and Pteropus [6]. The absence of alphaherpesviruses

in bats aside from fruit bats could indicate that bat alphaherpesviruses evolved only in the Pter-
opodidae family. Nevertheless, and according to the supra-family relationships described

recently among bats [20], we would expect them to also appear in the other families, such as,

Rhinolophidae that form, together with the pteropodids, the recently recognized Yinpterochir-
optera suborder. Although we analyzed oropharyngeal specimens from 31 captive Rousettus
aegyptiacus, this sampling could not have been enough to successfully detect the alphaherpes-

viruses. Another possible explanation is that the primers used for the universal detection of

herpesviruses were less effective for detecting viruses belonging to the subfamily Alphaherpes-
virinae, but this is not likely since the design and optimization processes of the panherpesvirus

PCR were carried out with representative viruses of genera Simplexvirus, Varicellovirus, Ilto-
virus and Mardivirus, among others.

The detection of herpesviruses was carried out by amplifying two genomic regions included

in the core genes of herpesviruses, being two out of the only three detectably conserved genes

in the order Herpesvirales [21]. As a consequence, the terminase gene has previously been cho-

sen to describe alpha- [22, 23], beta- [24] and gammaherpesviruses [25–28] in an assorted

representation of animals. Likewise, the catalytic subunit of the DNA polymerase, first used by

Van Devanter et al. [29] and then improved by Ehlers et al. [30], has been employed in a myr-

iad of studies describing novel members of the three subfamilies of the family Herpesviridae,
making this gene the most frequently sequenced of the herpesviral genome. Both PCR meth-

ods were subjected to a thorough optimization process, nevertheless the panDPOL method

did not reach the sensitivity of that designed in the terminase gene, probably because the

amplified fragment was much longer. Still, this marker was highly informative and contributed

significantly to the high level of phylogenetic resolution obtained when concatenating the two

fragments.

An important amount of bats out of the total analyzed (45%) harbored at least one herpesvi-

rus at the time of sampling revealing, in general, a wide distribution for most of bat herpesvi-

ruses and a high frequency of reactivation. Because bats were captured along different years

and at different locations, the possibility that viruses of the same bat species were originated

from the same roost population was ruled out. Even so, the percentage of positives for this

study is slightly lower than the 60% found in the only other comprehensive specific search for

herpesviruses in bats published to date, that was carried out in 25 bats from eight vespertilionid

species [7]. Nevertheless, some particular species, such as Eptesicus serotinus (11/15; 73%),

Miniopterus schreibersii (29/40; 72%) and Rhinolophus ferrumequinum (15/24; 62%) showed

higher percentages of positivity in our study. On the contrary, we did not detect any herpesvi-

rus in the species Rhinolophus euryale, despite sampling a total of 52 individuals along three

years and from different sites. This difference in prevalence for the two horse-shoe bats is quite

surprising since both Rhinolophus are quite close both phylogenetically and ecologically, and

in fact, is quite usual to find them sharing roosts.

Every possible novel bat herpesvirus described in this study was linked to a unique bat spe-

cies. This species-specificity is a common feature for most of the viruses belonging to Beta-
and Gammaherpesvirinae subfamilies [31]. In contrast to this, the study carried out by Wibbelt

et al. showed infection of different hosts with the same herpesvirus [7]. The authors detected

five out of the eight described viruses in more than one bat species, even belonging to different

bat genera. The virus BatGHV-1 was the most remarkable case, being detected in four different

bats (Eptesicus serotinus, Myotis nattereri, Pipistrellus pipistrellus and P. nathusii). Razafindrat-

simandresy et al. also reported the detection of the same herpesvirus in two bats of the same

genus Eidolon, with distinct distribution areas [6]. On the other hand, our study shows that

more than one herpesvirus could be hosted by same bat species. Nearly half of the bats tested

Betaherpesviruses and Bats Parallel Evolution
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(12/27) were associated with two or more herpesviruses, being the species Miniopterus schrei-
bersii and Tadarida teniotis the most important contributors to the list of novel herpesviruses

detected with four different viruses. This is not surprising, since it is well-known that

vertebrate often host more than one herpesvirus. Although, some species are particularly note-

worthy because of the number of viruses they can host. For example, humans, with eight dif-

ferent herpesviruses known to date, the rodent Bandicota indica, can also harbor eight viruses,

four betaherpesviruses and four gammaherpesviruses [32], and the common chimpanzee Pan
troglodytes, presenting five different cytomegaloviruses [33].

Phylogenetic relationships within the novel bat herpesvirus sequences detected in the Ibe-

rian bats tentatively assigned to the Betaherpesvirinae subfamily showed that most of them

group in a monophyletic clade, further subdivided into three well-supported subclades match-

ing three of the families of bats included in the study (Vespertilionidae, Miniopteridae and

Molossidae). Our results are largely congruent and sustain the hypothesis of a parallel evolution

of herpesviruses and their natural host species [34]. Besides the main subdivisions, our phylo-

genetic reconstructions show a deep split into a clade corresponding to the betaherpesviruses

found in the bat genus Myotis and a clade containing the rest of the viruses found in the rest of

the vespertilionid bats. This subdivision is again matching the phylogenetic reconstruction of

the evolutionary relationships of bats. In fact, the genus Myotis shows both morphological and

molecularly unique characteristics. Despite having been included traditionally in the subfamily

Vespertilioninae, they are at present allocated their own subfamily Myotinae [35]. Furthermore,

the supported internal grouping of the viruses found in the large Myotis myotis (MmyoBHV1)

and in M. escalerai (MescBHV2) against the rest of the Eurasian Myotis, mirrors again the evo-

lutionary reconstruction within the genus Myotis that separates this clade [36]. Likewise, the

analysis clearly distinguishes the two viruses hosted by the two cryptic species M. mystacinus
(MmysBHV1) and M. alcathoe (MalcBHV1) that were only recently separated with molecular

techniques [37]. Interestingly, the already known virus TrBHV1 found in the Asian vesperti-

lionid Tylonycteris robustula clusters into the Myotis group in the DS2-based phylogenetic

analysis. This may represent a rare event of spill-over between bats, although a more compre-

hensive analysis, including other parts of the genome and taxa, are needed to have a more

complete picture of this relationship. Another well-supported cluster includes the potentially

novel viruses NlasBHV1, NleiBHV1, PpipBHV2 and PkuhBHV1, whose specific hosts are all

bats belonging to the well-differentiated tribe Pipistrellini within the vespertilionid bats.

Remarkably, the new viruses RferBHV2 and RhipBHV1, detected in Rhinolophus ferrume-
quinum and R. hipposideros respectively, cluster together with the already known virus

RfBHV1 detected in another R. ferrumequinum captured in China in a clade clearly apart from

all the other bat betaherpesviruses, and closely related to viruses belonging to the genus Roseo-
lovirus. The internal topology showed by our phylogenetic reconstruction within this clade is

in accordance with the distinction of two Roseolovirus lineages already described by Staheli

et al. [38]. One, containing the human viruses HHV6A and HHV6B, and the primate homo-

logs PanHV6 and MneHV6 (provisionally termed roseolo1 lineage), and the second group,

that includes the human virus HHV7 and their simian homologs MneHV7, PtroHV7,

PpanHV7 and GgorHV7 (provisionally termed roseolo2 lineage). A putative third roseolo

lineage would be constituted by the bat-hosted herpesviruses, linked to the base of the Roseolo-
virus clade within a long phylogenetic branch and with relatively low amino acid sequence

identity when compared with the type virus HHV6A (Table 3). RferBHV2, RhipBHV1 and

RfBHV1 would represent the only non-primate roseolo viruses reported to date, together with

SuHV2. This virus is frequently known as porcine cytomegalovirus and shows in our recon-

structions an uncertain position according to the individual markers but it has been recently

claimed as a member of the genus Roseolovirus [39] as it appears in our combined phylogeny.
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Interestingly, rhinolophid bats are the only hosts for these viruses where no other virus belong-

ing to the sister group of bat betaherpesviruses has been detected on them. Again, this finding

is in total congruence with the evolutionary history of bats. In fact, rhinolophids show unique

morphological and functional characteristics (eg. unique Doppler based echolocation system)

and recent classifications [40] support the hypothesis that they branched off from the rest of

Chiroptera at the origin of the group’s diversification, back in the Eocene about 50 million

years ago [41]. Together with the fruit bats Pteropodidae, rhinolophids constitute along with

their closest relatives families of echolocating bats (Hipposideridae, Megadermatidae, Rhinopo-
matidae and Craseonycteridae), the distinct suborder Yinpterochiroptera. Therefore, it would

not be a surprise to find other roseolo-related viruses within this group of bat families too.

In relation to the Pteropodidae family, and despite the fact that we could only recover their

partial sequences of the terminase gene, the possible novel betaherpesviruses RaegBHV1 and

RaegBHV2 found in the fruit bat Rousettus aegyptiacus cluster apart from the other viruses in

our phylogenetic reconstruction. This suggests a possible new group corresponding to the fruit

bats family. Nevertheless, this point needs confirmation with extra sampling or additional

markers. Interestingly, these fruit bats viruses fall within the rest of bat-hosted betaherpes-

viruses and do not group near the roseolo-related viruses as it would be expected according to

the evolutionary relationships of bats. Our topologies also connect the miniopterid bat beta-

herpesviruses (subclade II) as a sister group of the molossid bat betaherpesviruses (subclade

III) when it is known that Miniopteridae bats are more related to the Vespertilionidae [42].

This is probably just an apparent contradiction since all three bat families are actually closely

related. The inclusion of viruses from a wider representation of the extant nineteen bat families

will surely help clarify the evolutionary relationships between the groups of betaherpesviruses.

In fact, this study has shown that the phylogenic reconstruction of the beherpesviruses

retrieves families, many of the major groups within families, and even relationships at the

intra-generic level known among bats. However, an issue that is still open is the question to

what extent the relationships between bat-hosted betaherpesviruses will match the evolution-

ary relationships between the bats themselves. In any case, our phylogenies indicate that at

least two different transfer events occurred in the evolutionary story of bat betaherpesviruses

and at the origin of bats diversification. Since then, speciation events have followed those of

their bat hosts with very few successful spill-overs between host species.

Unfortunately, the inference of phylogenetic relationships between the bat herpesviruses

tentatively placed in the Gammaherpesvirinae subfamily was very limited because the

sequences obtained of the fragment of the DNA polymerase -the most used gene in novel her-

pesviruses description- were too short for a reliable analysis. Still, several possible novel viruses

were partially characterized, and the alignment of the terminase gene allowed some hypothesis

about their phylogenetic relationships. The topology, nevertheless, was poorly solved and the

bat-hosted novel viruses were scattered, without showing any monophyletic grouping along

the shallow structure found in the tree, even at a family level. These results could be expected

since it is well known that the Gammaherpesvirinae is the most complex of the three subfami-

lies of mammalian herpesviruses. In fact, Gammaherpesvirinae presents a high number of dis-

tinct deep lineages, particularly among the viruses belonging to the genus Rhadinovirus which

apparently do not belong to any of the currently defined genera [43]. To further illustrate the

complexity of the gammaherpesviruses phylogenetic relationships, different divergent lineages

of viruses have also been found in other mammalians orders, such as Primates [44], or Artio-
dactyla [45, 46], indicating that gammaherpesviruses and their hosts evolved in a much more

loose and complex way than other herpesviruses.

All in all, the significant number of possible novel bat herpesviruses described in the present

study adds important information to our understanding of the evolution of the herpesviruses,
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particularly, to the Betaherpesvirinae subfamily. Specifically, our findings support the recogni-

tion of a new genus comprising all betaherpesviruses found in bats, assuming that new charac-

terization data will be further available in the future to come. Additionally, and based on the

topologies provided, bat betaherpesviruses seem to have evolved in a species-specific parallel

evolution mode together with their hosts.
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