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ABSTRACT Lyme disease (LD), the most prevalent tick-borne illness in North Amer-
ica, is caused by Borrelia burgdorferi. The long-term survival of B. burgdorferi spiro-
chetes in the mammalian host is achieved though VlsE-mediated antigenic variation.
It is mathematically predicted that a highly variable surface antigen prolongs bacte-
rial infection sufficiently to exhaust the immune response directed toward invariant
surface antigens. If the prediction is correct, it is expected that the antibody re-
sponse to B. burgdorferi invariant antigens will become nonprotective as B. burgdor-
feri infection progresses. To test this assumption, changes in the protective efficacy
of the immune response to B. burgdorferi surface antigens were monitored via a su-
perinfection model over the course of 70 days. B. burgdorferi-infected mice were
subjected to secondary challenge by heterologous B. burgdorferi at different time
points postinfection (p.i.). When the infected mice were superinfected with a VlsE-
deficient clone (ΔVlsE) at day 28 p.i., the active anti-B. burgdorferi immune response
did not prevent ΔVlsE-induced spirochetemia. In contrast, most mice blocked
culture-detectable spirochetemia induced by wild-type B. burgdorferi (WT), indicating
that VlsE was likely the primary target of the antibody response. As the B. burgdor-
feri infection further progressed, however, reversed outcomes were observed. At day
70 p.i. the host immune response to non-VlsE antigens became sufficiently potent to
clear spirochetemia induced by ΔVlsE and yet failed to prevent WT-induced spiro-
chetemia. To test if any significant changes in the anti-B. burgdorferi antibody reper-
toire accounted for the observed outcomes, global profiles of antibody specificities
were determined. However, comparison of mimotopes revealed no major difference
between day 28 and day 70 antibody repertoires.

KEYWORDS Borrelia burgdorferi, Lyme disease, antibody response, suppression,
protective efficacy, VlsE, antibody repertoire, mimotopes

Lyme disease (LD), the most prevalent tick-borne illness in North America and
Europe, is caused by spirochetes in the genus Borrelia. Borrelia burgdorferi, the

principal human pathogen in the United States, is responsible for approximately
300,000 LD cases per year (1). LD is problematic because early diagnosis is easily missed
due to flu-like symptoms, which only transiently appear in humans during an early
stage of disease (2–5). When missed and therefore left untreated, LD becomes chronic,
presenting itself as skin lesions, arthritis, and carditis and occasionally with subsequent
nervous system involvement (6, 7). No preventable or therapeutic vaccine for humans
is currently available.

The long-term survival of B. burgdorferi spirochetes in the mammalian host is
achieved though the B. burgdorferi antigenic variation system (8). This elaborate system,
first identified on a 28-kb linear plasmid (lp28-1) of the B. burgdorferi B31 strain, is
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composed of a vlsE expression site and 15 noncoding silent cassettes. As a result of
segmental conversion from the cassettes into the vlsE gene, variants of the VlsE
(variable major protein-like sequence expressed) surface lipoprotein are generated (9,
10). The vls-mediated variation of VlsE is absolutely required for persistence in mice as
murine antibody clears the vls-deficient B. burgdorferi clone or the B. burgdorferi clone
with nonswitchable VlsE (sVlsE, for static VlsE) (11–17). Besides VlsE, however, B.
burgdorferi expresses numerous other surface (lipo)proteins that, in contrast to VlsE, are
invariant (18). Antibody developed to non-VlsE surface antigens can protect mice from
B. burgdorferi infection when variable VlsE is absent (17).

Two potential, not mutually exclusive, mechanisms of vls-mediated avoidance have
been proposed (13, 17, 19–21). The first is vls-mediated masking whereby VlsE may
physically shield B. burgdorferi surface antigens from antibody. The second is VlsE-
mediated immune suppression (17, 22). As an immunodominant surface lipoprotein
(23), VlsE may be directly or indirectly involved in suppression of the host antibody
response. A mathematical model that considers the interplay between bacterial patho-
gens with an antigenic variation system, the immune response, and immune exhaus-
tion may support the latter (24). Specifically, the model predicted that antigenic
variation of dominant antigens of Trypanosoma or Plasmodium falciparum prolongs
infection sufficiently to allow the immune response against invariant antigens to
become exhausted. This exhaustion was predicted to occur before the immune re-
sponse to invariant antigens could control infection. It is therefore plausible that,
during B. burgdorferi infection, the antibody response to invariant (non-VlsE) surface
antigens is suppressed via direct or indirect involvement of highly variable VlsE
proteins. In this case, it is expected that antibody to invariant surface antigens will
become inefficient in clearing vls-deficient B. burgdorferi clones. The central hypothesis
that this study attempts to test states that the protective efficacy of the antibody
response to B. burgdorferi non-VlsE surface antigens declines as B. burgdorferi infection
progresses.

A recently developed superinfection model (25) was utilized to assess whether the
protective efficacy of the host antibody changes over the course of B. burgdorferi
infection. Furthermore, an approach involving random peptide phage display libraries
(RPPDL) and next-generation sequencing (NGS) was undertaken to compare specifici-
ties of serum antibody developed during the early and late stages of B. burgdorferi
infection. Overall, the present data show that the protective efficacy of the antibody
response to VlsE and other surface antigens does change as B. burgdorferi infection
progresses in the murine host.

RESULTS
Generation and characterization of the �VlsE Gentr clone. In order to test

whether the protective efficacy of host antibody to non-VlsE surface antigens declines
as the B. burgdorferi infection progresses, a recently developed superinfection model
was utilized (25). The experimental design involved wild-type B. burgdorferi 297 strain
(26) and B31 A3 clones with antibiotic resistance cassettes for the primary and sec-
ondary challenge (superinfection), respectively. The antibiotic resistance allowed us to
differentiate between the primary and superinfecting B. burgdorferi clones. Previously
generated B31 A3 lp25::kan (WT Kanr) and B31 A3 lp28-1 Δvls (ΔVlsE Kanr) clones were
initially chosen for the in vivo assay (16, 25). However, the use of the ΔVlsE Kanr clone
in the superinfection model represented a potential caveat. In the prior work, it was
noticed that a truncated lp28-1 plasmid was lost by B. burgdorferi spirochetes upon
their recovery from infected C3H or SCID mice (17). To overcome this, a vls-deficient
mutant that would retain an antibiotic resistance cassette in vivo had to be generated.
This was achieved by an insertion, via allelic exchange, of a gentamicin (gent) antibiotic
resistance cassette in the bbe02 locus of lp25. The lp25 plasmid is essential for murine
infectivity (12, 27), whereas inactivation of bbe02, a putative restriction modification
gene, does not result in loss of infectivity in mice (28–30). Thus, B31 A3 lp28-1 Δvls
lp25::gent (ΔVlsE Gentr), the clone that possessed both the kanamycin (kan) and
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gentamicin resistance cassettes on lp28-1 and lp25, respectively, was generated. A total
of 20 transformants were chosen for initial PCR analysis to screen for the kan gene. Five
clones were further PCR tested for the presence of all parental B. burgdorferi plasmids.
Infectivity of a ΔVlsE Gentr clone that retained the full parent plasmid profile was
verified. The ΔVlsE Gentr clone demonstrated spirochetemia in 100% of C3SnSmn.CB17-
Prkdcscid/J (SCID) and C3H/HeNHsd (C3H) mice (five animals per group) (see Table S1 in
the supplemental material). As expected, the ΔVlsE Gentr clone was not able to
establish persistent infection in C3H mice due to the lack of the vls locus (16).

Each superinfecting B. burgdorferi clone was used as a host-adapted variant. Host
adaptation allowed B. burgdorferi to presumably mimic expression of surface antigens
at levels comparable to those found during active infection at the time of challenge. For
example, VlsE expression becomes approximately 32-fold higher in mice than that
detected under in vitro growth conditions (23). To obtain host-adapted B. burgdorferi
clones, the in vitro-grown WT Kanr, ΔVlsE Kanr, or ΔVlsE Gentr clone was subcutaneously
injected into SCID mice as previously described (17, 31). Ears from the infected SCID
mice were then harvested at day 21 postinfection (p.i.). The infectivity of host-adapted
WT Kanr, ΔVlsE Kanr, or ΔVlsE Gentr was every time confirmed in C3H mice at the time
of or a few days after each superinfection (three mice per group) (Tables S2, S3, and S4).
Blood (�50 �l) and other murine tissues (bladder, heart, ear, and joint) were harvested
at days 7 and 21 postchallenge, respectively, from each control mouse. The murine
tissues were incubated in Barbour-Stoenner-Kelly II (BSK-II) medium at 35°C under 2.5%
CO2 for up to 4 weeks. The presence or absence of viable spirochetes from tissues was
confirmed by dark-field microscopy. Expectedly, blood samples from the mice infected
with either host-adapted ΔVlsE Kanr or ΔVlsE Gentr were culture positive, whereas their
bladder, heart, ear, and joint tissues were culture negative. All the murine tissues from
the control mice infected with host-adapted WT Kanr were culture positive for B.
burgdorferi spirochetes. The results demonstrated that host-adapted mutant clones of
B. burgdorferi were infectious at each superinfection.

Assessment of anti-B. burgdorferi immune response via a superinfection
model. The experimental design included 90 C3H mice that were initially infected with
the B. burgdorferi 297 strain. The infection was confirmed in all animals by culturing
murine blood and ear tissues harvested at day 7 p.i. At day 14, 21, 28, 42, 56, or 70 p.i.,
actively infected mice (five animals per group) were subjected to secondary challenge
(superinfection) by host-adapted WT Kanr, ΔVlsE Kanr, or ΔVlsE Gentr. Finally, blood and
other tissues (bladder, heart, ear, and joint) were harvested from each mouse at days
7 and 21 postsuperinfection, respectively, and then assessed for the presence of
superinfecting spirochetes via culture. Individual tissues were placed in the respective
antibiotic-containing BSK-II medium to select for the superinfecting clones. Each mouse
had an ongoing B. burgdorferi 297-induced infection, as confirmed by positive culture
of ear tissues harvested immediately prior to secondary challenge (data not shown).

At day 14 p.i., spirochetemia was established in at least 60% of the animals
superinfected with either VlsE-competent (wild type) or -deficient (ΔVlsE) clones (Table
1). At day 21 p.i., 4 out of 10 mice exhibited spirochetemia induced by ΔVlsE Kanr/ΔVlsE

TABLE 1 Spirochetemia of superinfecting Borrelia burgdorferi detected in 297-infected
C3H mice at day 7 post-secondary challenge

Day of superinfection
post-primary infection

Frequency of superinfecting clones detected in blooda

WT Kanr �VlsE Kanr �VlsE Gentr

�VlsE Kanr � �VlsE
Gentr

14 3/5 4/5 3/5 7/10
21 0/5 1/5 3/5 4/10
28 1/5 5/5 5/5 10/10
42 1/5 3/5 2/5 5/10
56 2/5 0/5 0/5 0/10
70 5/5 2/5 0/5 2/10
aValues listed correspond to numbers of cultures positive/number of cultures tested.
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Gentr (ΔVlsE hereafter), whereas 0 out of 5 mice demonstrated WT Kanr spirochetes in
their blood. Overall, no statistical difference was observed between the WT Kanr and
ΔVlsE groups at either day 14 or 21 p.i. At day 28 p.i. both VlsE-deficient clones had the
capacity to establish culture-detectable spirochetemia in 10 out of 10 mice. In contrast,
WT Kanr-induced spirochetemia was detected in only one mouse (P � 0.0037). As the
primary infection further progressed, the number of mice with ΔVlsE-induced spiro-
chetemia decreased from 50% (day 42 p.i.) to 0% (day 56 p.i.; P � 0.0163), indicating
that the immune response became more protective against the VlsE-deficient clones,
hence, non-VlsE surface antigens. The rate of WT Kanr-induced spirochetemia remained
relatively constant as superinfecting VlsE-competent spirochetes were detected in only
1 and 2 mice at days 42 and 56 p.i., respectively (Table 1). At day 70 p.i., however, 5 out
of 5 mice were blood culture positive for WT Kanr as opposed to only 2 out of 10
animals with ΔVlsE-induced spirochetemia (P � 0.0070). This observation demonstrates
that the host antibody response against the VlsE-competent WT Kanr clone was no
longer protective at this late stage. This, in turn, may suggest that, in contrast to
findings at day 28 p.i., VlsE was not the primary target of the immune response. Thus,
outcomes of secondary challenge significantly varied between VlsE-competent and
-deficient B. burgdorferi clones and were dependent on a stage of primary B. burgdorferi
infection.

In order to examine whether superinfecting B. burgdorferi clones had the capacity to
persist in superinfected mice and whether actively infected mice lacking culture-
detectable spirochetemia had completely prevented superinfection, various murine
tissues were harvested at day 21 post-secondary challenge (Table 2). As a result, no
VlsE-deficient clones were cultured from any of the tissues, suggesting that spirochet-
emic mice ultimately prevented blood-borne dissemination of superinfecting VlsE-
deficient B. burgdorferi clones. This is in contrast to WT Kanr-challenged animals whose
harvested tissues were positive for the superinfecting clone. This observation indicates
that only the VlsE-competent B. burgdorferi had the capacity to establish long-term
superinfection, which is consistent with the previous data (25). Detection of wild-type
spirochetes in tissues of mice that lacked culture-detectable spirochetemia suggests
that wild-type spirochetes were still present in the mouse blood upon secondary
challenge, but at very low numbers.

Characterization of antibody response via serology. The data showed that the
VlsE-competent and -deficient B. burgdorferi clones differ in their abilities to establish
culture-detectable spirochetemia in mice actively infected with B. burgdorferi. This
difference may be explained by variations in quantity and quality of the anti-B.
burgdorferi antibody response over the course of B. burgdorferi infection. Therefore, in
order to examine whether the antibody response was changing in strain 297-infected
mice during the entire infection period, immune sera collected from animals at days 14,
21, 28, 42, 56, and 70 p.i. were analyzed by Western blotting (Fig. 1). The sera were
blotted against whole-cell lysates of the 297, WT Kanr, sVlsE, or ΔVlsE Kanr clone and
were reactive to a number of proteins, presumably including surface-localized antigens

TABLE 2 Detection of superinfecting Borrelia burgdorferi in mouse tissues harvested at
day 21 post-secondary challenge

Day of superinfection
post-primary infection

Frequency of superinfecting clones detected in murine
tissuesa

WT Kanr �VlsE Kanr �VlsE Gentr

14 4/5 0/5 0/5
21 5/5 0/5 0/5
28 5/5 0/5 0/5
42 4/5 0/5 0/5
56 4/5 0/5 0/5
70 4/5 0/5 0/5
aTissues include ear, heart, bladder, and joint. Values correspond to numbers of cultures positive/number of
cultures tested.
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(32, 33). As expected, the lowest signal was observed in serum harvested at day 14 p.i.,
the time point at which anti-B. burgdorferi IgG antibody starts to appear in inbred
mouse strains (34). The overall antibody response became more pronounced as the B.
burgdorferi infection progressed in 297-infected mice. However, no noticeable differ-
ence could be noted for day 28 and 70 sera between the two clones (Fig. 1). In contrast
to the three B31-derived clones, one prominent band was observed in the strain 297
lane at �23 kDa. The 23-kDa band likely corresponds to outer surface protein C (OspC),
which generates a strong antibody response (35). Given that there is 78% identity
between strain 297 and B31 OspC (297-OspC and B31-OspC, respectively) amino acid
sequences, it is possible that antibodies against 297-OspC do not react well with
B31-OspC. Similarly, two additional bands in the 70- to 90-kDa range were prominent
in the 297 lane but not in the other lanes (Fig. 1).

To further characterize the anti-297 antibody response, total serum amounts of
different antibody isotypes, IgG1, IgG2a, and IgG2b, were quantified via enzyme-linked
immunosorbent assays (ELISAs) (Fig. 2). During the first month of infection, IgG1 and
IgG2b, but not IgG2a, were the dominant IgG isotypes. At a later stage of infection, day
70 p.i., the trend was reversed, indicating a shift from a Th2 to Th1 response. This
finding is consistent with previous work, which demonstrated alike a Th1/Th2 imbal-
ance in B. burgdorferi-infected C3H mice at week 5 p.i. (36).

Profiling of the antibody response via random peptide phage display libraries.
Random peptide phage display libraries (RPPDL) were utilized in the present study (37).
Although RPPDL have been widely used for mapping epitopes (38–40), the tool was
previously applied for epitope discovery of B. burgdorferi proteins by only two studies
(41, 42). The necessity to sequence individual phage clones definitely limited RPPDL
application in the past (43). The advent of next-generation sequencing (NGS), however,
has allowed RPPDL to be widely applied for generating global profiles of antibody
specificities (40).

To test whether during persistent B. burgdorferi infection antibody repertoires
change over time, the present study involved both RPPDL and NGS. For that, the
Ph.D.-7 phage library was utilized to detect any significant difference between antibody

FIG 1 Analysis of anti-B. burgdorferi 297 immune sera by Western blotting. The whole-cell lysates of the 297,
WT Kanr, sVlsE, and ΔVlsE Kanr (106 cells per lane) clones were treated with preimmune sera collected from
uninfected C3H mice (A) and anti-297 immune sera harvested from B. burgdorferi-infected C3H mice at days
14 (B), 28 (C), 42 (D), 56 (E), and 70 (F) postinfection. The blots can be compared to Coomassie blue-stained
whole-cell lysates of the 297, WT Kanr, sVlsE, and ΔVlsE Kanr clones shown in Fig. S1 (17).

Dynamics of Antibody Response against Lyme Spirochetes Infection and Immunity

January 2017 Volume 85 Issue 1 e00890-16 iai.asm.org 5

http://iai.asm.org


repertoires in immune sera collected at days 28 and 70 p.i. from individual 297-infected
mice. As a result, approximately 1.4 � 105 distinct peptide sequences were generated
from each anti-B. burgdorferi serum sample. The data analyses revealed that only 366
and 14 antibody specificities, respectively, were associated with the day 28 and day 70
serum samples. The difference between the two numbers was statistically significant,
with a P value estimated via a permutation test being below 0.25%. However, when a
multiple testing correction was applied, no significant difference in antibody reper-
toires was identified between the two time points of B. burgdorferi infection.

In order to compare anti-VlsE antibody responses between days 28 and 70 p.i.,
identified peptides were mapped to strain 297 VlsE (297-VlsE) or strain B31 VlsE
(B31-VlsE) via blastp analysis (Fig. 3). The epitope mapping against the linear B31-VlsE
structure showed no significant difference between the reactivities of day 28 and day
70 antibodies. Predicted cross-reactivity of anti-297-VlsE antibody to linear B31-VlsE is
partially consistent with the anti-VlsE antibody reactivity of LD patients (44). Microarray-
based epitope mapping demonstrated that IgG antibody of patients with chronic LD
were mainly reactive to six peptides of B31-VlsE. The immunodominant epitopes were
located within two invariable domains (VlsE residues 21 to 31, 61, 96, and 336 to 343)
and one variable domain (VlsE residues 196 and 271 to 291). Consistently, reactivity of
anti-297 antibody was predicted to invariant region 6 (IR6). IR6 has been shown to be
highly immunogenic in humans, monkeys, and mice (22, 45, 46). In addition to IR6, C3H
mice may also develop a strong antibody response to IR2 and IR4 (46). However,
reactivity to these conserved regions was not pronounced in the present study (Fig. 3).
Interestingly, IR2 and IR4 are not antigenic in humans and monkeys (46). The analysis
also predicted strong reactivity of anti-297 antibody to the C-terminal invariable
domain (amino acids 372 to 380) within the primary structure of 297-VlsE as opposed
to that of B31-VlsE. Murine antibodies were consistently developed against the
C-terminal region during the entire infection period as reactivity was detected in all
mouse sera taken at day 28 and day 70 p.i. This fully supports the previous findings that
the C-terminal invariable domain is highly immunodominant (20) but shows limited

FIG 2 Quantification of total serum antibody isotypes in B. burgdorferi 297-infected C3H mice. Three C3H
mice were subcutaneously challenged with B. burgdorferi 297 at 1 � 104 cells per mouse. Individual serum
samples were collected weekly and then assessed, as indicated, for total IgG1, IgG2a, and IgG2b isotype-
specific responses by ELISAs. d, day; pi, postinfection.
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antigenic conservation among B. burgdorferi strains (47). It was previously shown that
the C-terminal domain sequences of 11 B. burgdorferi strains were not identical to the
C-terminal sequence of the B31 strain (47). Likewise, due to a high degree of divergence
with 46% identity and 53% similarity between B31-VlsE and 297-VlsE (8), strong
antibody reactivity was predicted only to IR1 of 297-VlsE. Finally, no significant differ-
ence between the reactivities of day 28 and day 70 antibodies to the primary structures
of translated cassettes vls2 to vls16 (vls2-vls16) (9) was identified (Fig. S2).

Similar to computational mapping of VlsE epitopes, identified peptides were also
mapped to decorin-binding protein A (DbpA), decorin-binding protein (DbpB), and P35.
These B. burgdorferi surface proteins were shown to be immunogenic and afforded
protection in mice against B. burgdorferi infection (48–50). Consistently, no significant
difference in antibody reactivities to contiguous epitopes of these immunogenic
proteins was detected between day 28 and day 70 serum samples (Fig. S3).

DISCUSSION

A mathematical model previously developed as differential equations attempted to
assess how duration of a bacterial infection may influence immune responses to
variable and invariant surface antigens (24). It was calculated that antigenic variation of
dominant surface antigen lengthens a bacterial infection to the point at which the
immune response to invariant antigens becomes exhausted. In contrast, an immuno-
dominant response to variable antigen does not predictably become exhausted but is,

FIG 3 Epitope mapping of VlsE. Primary structure of B31-VlsE illustrating two direct repeats (DR1 and DR2; green) that demarcate one variable domain and two
invariable domains. Shown are also six invariable (IR; gray) and variable (VR; pink) regions (59) (A). Heat maps were generated from predicted reactivity of
anti-297 antibody to the primary structure of B31-VlsE (B) and 297-VlsE (C). Anti-297 sera were harvested from B. burgdorferi persistently infected C3H mice at
days 28 and 70 postinfection (five animals per time point). The linear B31-VlsE structure is scaled to the B31-VlsE heat map.
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rather, transiently stimulated before the relevant antigenic variant is cleared (24).
Therefore, it is possible that, during B. burgdorferi persistence, the antibody response to
invariant (non-VlsE) surface epitopes is suppressed via direct or indirect involvement of
highly variable and immunodominant VlsE proteins. If the model is correct, it is
expected that the antibody response to invariant antigens will become nonprotective
when B. burgdorferi infection is protracted in the host. To test the latter, changes in the
protective efficacy of the immune response to non-VlsE surface antigens were moni-
tored via the superinfection murine model.

In prior work, the superinfection in vivo assay demonstrated that the presence of the
vls system may influence the ability of superinfecting B. burgdorferi clones to establish
culture-detectable spirochetemia in persistently B. burgdorferi-infected mice (25). The
superinfecting ΔVlsE clone established spirochetemia in three out of five 297-infected
C3H mice, whereas wild-type spirochetes were not detected in any of five B. burgdorferi-
infected animals (25). To confirm this observation, two independent experiments that
involved isogenic VlsE-deficient clones, ΔVlsE Kanr and ΔVlsE Gentr, were reproduced in
the present study. As a result, the data demonstrated that the ΔVlsE clones consistently
exhibited the capacity to establish culture-detectable spirochetemia in 10 out of 10
animals at day 28 p.i., which statistically validates the earlier observation (25). The lack
of culture-detectable spirochetemia by a VlsE-competent B. burgdorferi clone (wild
type) consistently observed both in the previous (25) and current work suggests that,
at this stage of B. burgdorferi infection, the protective antibody response was mainly
targeting B31-VlsE variants and not the other surface antigens.

As the B. burgdorferi infection progressed, however, reversed outcomes were ob-
served (Fig. 4). At day 70 p.i., the host immune response to non-VlsE antigens became
sufficiently potent to clear spirochetemia by the ΔVlsE clone and yet failed to prevent
WT-induced spirochetemia. At day 70 p.i., superinfecting wild-type B. burgdorferi es-
tablished spirochetemia in all mice as opposed to a level of only 20% spirochetemia in
animals infected with the ΔVlsE clone. This finding indicates that, over time, the
infected mice were able to mount a more efficacious immune response against
non-VlsE surface antigens. Moreover, at this later stage, the antibody response to
B31-VlsE became inefficient, which may be accounted for by greater reactivity of a late
antibody response to nonprotective VlsE epitopes via enhanced antigen processing
(51). Furthermore, antibody reactivity to the membrane-proximal VlsE epitopes may
sharply increase from early to late LD, yet these epitopes are inaccessible on intact
spirochetes (51).

These observations taken together indicate that anti-B. burgdorferi antibody re-
sponses were quantitatively and qualitatively changing as the infection progressed

FIG 4 Dynamics of protective antibody responses directed against VlsE and non-VlsE surface antigens.
The diagram shows how the protective efficacy of antibody responses changes in C3H mice infected with
B. burgdorferi strain 297 over the course of B. burgdorferi infection. At the early stage of B. burgdorferi
infection, day 28 postinfection (p.i.), the anti-B. burgdorferi antibody response to invariant (non-VlsE)
surface epitopes (light blue) is not protective against the VlsE-deficient B31 A3 clone (ΔVlsE). The ΔVlsE
clone is able to consistently establish culture-detectable spirochetemia in strain 297-infected C3H mice
at this stage. In contrast, the anti-VlsE immune response (dark red) is sufficiently potent to block
culture-detectable spirochetemia by a VlsE-competent B31 A3 clone. As the B. burgdorferi infection
progresses, however, the immune response to non-VlsE surface epitopes becomes sufficiently strong
(dark blue) to prevent spirochetemia by ΔVlsE (day 70 p.i.). Inversely, the anti-VlsE antibody response is
no longer protective (light red) to clear culture-detectable superinfecting wild-type strain in the blood.

Rogovskyy et al. Infection and Immunity

January 2017 Volume 85 Issue 1 e00890-16 iai.asm.org 8

http://iai.asm.org


from day 28 through day 70 p.i. The antibody response became more pronounced and
Th2 skewed in 297-infected C3H mice, as demonstrated by Western blotting and ELISA,
respectively. These changes may partially account for the reversed outcomes of super-
infection for both VlsE-competent and -deficient B. burgdorferi clones between the two
time points of infection. It is also possible that, at this early stage, the antibody response
to non-VlsE antigens was transiently weakened via temporal suppression of germinal
center (GC) B cell responses (52). As early as 24 h p.i., B. burgdorferi spirochetes tend to
colonize murine lymph tissues, which results in destruction of T and B cell zones (53,
54). The affected lymph nodes remain persistently infected with B. burgdorferi spiro-
chetes (54, 55). Furthermore, germinal centers become structurally abnormal and fail to
generate long-lived plasma and B cell memory cells for months (52). Thus, the present
data indirectly support the idea that the LD pathogen requires only temporal suppres-
sion of the B cell response for fulfillment of its life cycle (52).

A possibility also exists that the observed dynamics in the protective efficacy of the
anti-B. burgdorferi antibody response were due to changes in anti-B. burgdorferi anti-
body repertoires. For example, anti-B. burgdorferi antibody developed by day 28 p.i.
could have been predominantly generated against VlsE epitopes, and, as the B.
burgdorferi infection progressed, specificities of the anti-B. burgdorferi antibody were
shifted toward non-VlsE surface antigens. To examine this possibility, global mimotope
profiles derived from day 28 and 70 serum samples were compared to each other. Since
mimotopes are peptides that may mimic both continuous and discontinuous antigens
of a different nature (e.g., proteins, polysaccharides, and lipids) (56), the global mimo-
tope comparison considered a variety of B. burgdorferi epitopes, including lipid and
carbohydrate epitopes. However, the comparison revealed no major difference in
antibody repertoires between the two time points of infection. Similarly, no significant
changes were identified between the two antibody repertoires when identified mimo-
topes were mapped against primary structures of VlsE, DbpA, DbpB, and P35 (Fig. 3; see
Fig. S3 in the supplemental material). Given, however, that many antibody epitopes of
native proteins are discontinuous (57, 58), the mapping inherently underestimated
repertoires of antibody developed to conformational epitopes of these B. burgdorferi
surface proteins. Moreover, the BLAST-based analyses of antibody repertoires missed
mimotopes that mimicked lipid and carbohydrate epitopes (43).

The present study also confirmed the previous observation that variable VlsE is a
requirement for B. burgdorferi to establish persistent superinfection (25). Despite the
variable ability of B. burgdorferi mutants to exhibit culture-detectable spirochetemia,
only the B. burgdorferi clone with the intact vls system was consistently detected in
various murine tissues harvested at day 21 postsuperinfection. In contrast, neither ΔVlsE
clone introduced at different time points of B. burgdorferi infection was recovered from
any of the tissues tested. Since B. burgdorferi is most likely required to invade the blood
to reach various host tissues, the results suggest that a cross-protective anti-VlsE
antibody response was not efficient at completely clearing the superinfecting spiro-
chetes during the early stage of the primary infection. This consistent finding reiterates
the importance of VlsE-mediated antigenic variation for persistent superinfection (25).
Thus, the mathematical model, which predicted that antigenic variation of dominant
surface antigen prolongs a bacterial infection to the point at which the immune
response to invariant antigens is exhausted (24), may not apply to the LD pathogen.
Therefore, based on the outcomes of day 70 superinfection, the tested hypothesis,
which states that the protective efficacy of antibody response to B. burgdorferi non-VlsE
surface antigens declines as B. burgdorferi infection progresses, can be rejected.

In summary, the study provides insights into a dynamic interplay between the host
immune response and Lyme spirochetes in the context of VlsE antigenic variation. The
data demonstrated that, during persistent B. burgdorferi infection, the host antibody
response to B. burgdorferi invariant surface antigens could be transiently weakened and
that, at this stage, variable VlsE might be the primary target of host immunity. Future
studies aimed at identifying how and what B. burgdorferi antigens directly or indirectly
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manipulate host responses are warranted. Acquiring such knowledge may have direct
implications in designing efficacious intervention strategies for LD patients.

MATERIALS AND METHODS
Ethics statement. The animal experimental procedures outlined in this work were performed under

a Texas A&M University-approved animal use protocol. The animals were maintained at Texas A&M
University in an animal facility accredited by the Association for the Assessment and Accreditation of
Laboratory Animal Care International (AAALAC). Texas A&M University institutional policies and guide-
lines are in full compliance with the U.S. Public Health Service policy on humane care and use of
laboratory animals.

Bacterial strains and culture conditions. B31 A3 lp25::kan (WT Kanr) and B31 A3 lp28-1 Δvls::vlsE
(sVlsE) clones were generated and characterized in prior studies (25) and were generous gifts from Troy
Bankhead (Table 3). The B. burgdorferi 297 strain and B31 A3 lp28-1 Δvls (ΔVlsE Kanr) clone, respectively,
were kind gifts from Scott Samuels and George Chaconas by way of Troy Bankhead. All B. burgdorferi
clones were cultivated in liquid Barbour-Stoenner-Kelly II (BSK-II) medium supplemented with 6% rabbit
serum (Gemini Bio-Products, CA) and incubated at 35°C under 2.5% CO2.

Mutant generation. To produce B31 A3 lp28-1 Δvls lp25::gent (ΔVlsE Gentr), the previously gener-
ated pAR15 plasmid was used to disrupt the bbe02 gene localized on lp25 (NCBI reference sequence
NC_001850.1) (25). This pJET1.2-derived plasmid contained the bbe02 target (coordinates 361 to 4130)
and the flgBp-driven gentamicin resistance gene (25). B. burgdorferi cells were electroporated according
to a previously established protocol (16). In short, a total of 25 �g of DNA was used for electroporation.
Borrelia cells were recovered at 35°C for 18 h and then diluted in 100 ml of prewarmed BSK-II medium
supplemented with 100 �g ml�1 gentamicin. The transformed cell suspension was aliquoted into 96-well
plates and incubated at 35°C for 21 days. Genomic DNA was extracted from positive cultures utilizing a
DNeasy blood and tissue kit (Qiagen, MD, USA). The insertion of a flgBp-gent cassette within the bbe02
gene was confirmed by PCR using P168/169 primers (5=-CAGTTGCGCAGCCTGAATGG-3= and 5=-AGGTG
GCGGTACTTGGGTCG-3=) as previously described (25). Finally, the plasmid profile of each PCR-positive
clone was screened as described (11).

Murine infection. Male C3H/HeJ (C3H), C3SnSmn.CB17-Prkdcscid/J (SCID), and BALB/cJ (BALB/c) mice
of 4 to 6 weeks of age were obtained from Jackson Laboratories (ME, USA). The primary infection was
performed on 4- to 6-week-old animals via subcutaneous inoculation of 1 � 104 total spirochetes in the
scapular region. The inoculum of each mutant clone of B. burgdorferi with a recombinant plasmid was
first cultured in BSK-II medium containing an antibiotic, followed by dilution (approximately 1:1,000) with
antibiotic-free BSK-II medium prior to murine infection. B. burgdorferi clones used for challenge were
passaged in vitro no more than two times.

Secondary challenge (superinfection) was performed via subcutaneous transplantation of ear tissue
(host-adapted B. burgdorferi) in the lumbar area as previously described (17, 31). In short, ear tissues were
harvested from B. burgdorferi-infected SCID mice at day 21 postinfection (p.i.) and stored at �80°C until
use. At the time of challenge ear pinnae were excised into small, circular pieces (2 mm in diameter) by
a sterile ear punch and subcutaneously inserted via a skin incision in the lumbar region (two pieces per
mouse). Given the identical sizes of ear tissues used for mouse challenges, the spirochetal loads of B.
burgdorferi mutants were presumably similar. The infectivity of host-adapted B. burgdorferi was tested on
naive C3H mice (three male mice per group). Specifically, the control mice were challenged with two ear
pieces (2 mm in diameter) derived from two pinnae of each infected SCID mouse (one tissue piece from
each ear) either at the time of or a few days after each superinfection (see Tables S2, S3, and S4 in the
supplemental material).

Generation of host-adapted B. burgdorferi clones. Each mouse challenge was confirmed by
culturing approximately 50 �l of blood aseptically drawn via maxillary bleed in 3 ml of BSK-II medium
that contained a Borrelia antibiotic cocktail (0.02 mg ml�1 phosphomycin, 0.05 mg ml�1 rifampin, and 2.5
mg ml�1 amphotericin B). Infection was monitored by culturing ear, heart, bladder, and tibiotarsal joint
tissues aseptically harvested at days 7, 21, and 28 p.i. in BSK-II medium with the antibiotic cocktail. Blood
or heart tissues were transferred into 8-ml polystyrene tubes (Becton Dickinson Labware, NJ, USA)
containing 3 ml of BSK-II medium. Tissues of bladder, tibiotarsal joint, or ear were cultured in 1.7-ml
polypropylene microcentrifuge tubes (Denville Scientific, Inc., MA, USA) with 1.0 ml of BSK-II medium. The
tissues were incubated at 35°C under 2.5% CO2 for up to 4 weeks. The presence or absence of viable
spirochetes from tissues was confirmed by dark-field microscopy.

Western blot analysis. B. burgdorferi clones 297, WT Kanr, sVlsE, and ΔVlsE Kanr were grown in BSK-II
medium to the late stationary phase. B. burgdorferi cells were counted, pelleted by centrifugation at

TABLE 3 Borrelia burgdorferi B31 clones used in the study

B. burgdorferi clone (description)

Genetic profilea
Reference or
sourcevls2-vls16 vlsE

B31 A3 lp25::kan (WT Kanr) � � 25
B31 A3 lp28-1Δvls (ΔVlsE Kanr) � � 16
B31 A3 lp28-1Δvls::vlsE (sVlsE) � � 17
B31 A3 lp28-1Δvls lp25::gent (ΔVlsE Gentr) � � This study
aAll clones lacked plasmid cp9. vls2-vls16 denotes silent cassettes of the vls locus.
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6,000 � g for 10 min at 4°C, and then washed twice with ice-cold phosphate-buffered saline (PBS). After
PBS was removed, the cells were suspended in sodium dodecyl sulfate (SDS)-polyacrylamide gel
electrophoresis sample buffer (100 mM Tris [pH 6.8], 2% SDS, 5% �-mercaptoethanol, 10% glycerol,
0.01% bromophenol blue) and incubated at 95°C for 10 min. Approximately 1 � 106 cells were loaded
onto a 15% acrylamide minigel (SDS-PAGE analysis is shown in Fig. S1). Then, resolved proteins were
transferred onto polyvinylidene difluoride (PVDF) membrane with a pore size of 0.45 �m (Bio-Rad
Laboratories, CA, USA). After the blot was blocked with 5% nonfat dry milk in PBS for 18 h at 4°C, it was
then incubated in the same solution supplemented with mouse anti-297 immune or preimmune serum
diluted 1:1,000 for 1 h. The immune serum samples were taken from 297-infected C3H mice at days 14,
28, 42, 56, and 70 p.i. At each time point blood was collected, and an equal amount of immune serum
derived from five animals per time point was pooled and filter sterilized by passage through a
0.22-�m-pore-size syringe filter. Three naive C3H mice served as a source of preimmune sera. After four
washes of 10 min each with PBS plus Tween 20 (PBST), the primary antibodies were detected using goat
anti-mouse horseradish peroxidase (HRP)-conjugated secondary antibody (Bio-Rad Laboratories, CA,
USA) diluted to 1:1,000 in Tris-buffered saline with Tween 20 (TBST) for 30 min. The blot was first washed
three times in TBST for 10 min each and then once with nano-pure water. The blots were visualized using
enhanced chemiluminescence (ECL) development.

ELISA. The immune sera were derived from 297-infected C3H mice at days 14, 28, 42, 56, and 70 p.i.
as described above. Individual serum samples were tested by ELISAs to quantitate total IgG1, IgG2a, and
IgG2b isotypes according to the manufacturer’s instructions (eBioscience, Inc., CA, USA). Serum was
diluted to 1:10,000 and plated at 4°C overnight. Samples were tested in duplicate, and each assay
included preimmune serum as a negative control.

Generating serum antibody repertoire profiles using the Ph.D.-7 random peptide library.
Twenty microliters of mouse serum and 10 �l of the Ph.D.-7 random peptide library (NEB, MA, USA) were
diluted in 200 �l of Tris-buffered saline (TBST) buffer containing 0.1% Tween 20 and 1% bovine serum
albumin (BSA) and then incubated overnight at room temperature. The phages bound to antibodies
were isolated by applying 20 �l of protein G-agarose beads (Santa Cruz Biotechnology, Inc., TX, USA) to
the phage-antibody mixture for 1 h. To eliminate unbound phages, the mixture with beads was
transferred to a 96-well MultiScreen-Mesh filter plate (EMD Millipore, MA, USA) containing a 20-�m-
pore-size nylon mesh on the bottom. Unbound phages were removed by applying a vacuum to the
outside of the nylon mesh. The beads were washed four times with 100 �l of TBST buffer per well.
Antibody-bound phages were eluted with 100 �l of 100 mM Tris-glycine buffer (pH 2.2). Then the buffer
was replaced with 20 �l of 1 M Tris buffer (pH 9.1). The eluted phages were amplified by infecting
bacteria according to the manufacturer’s instructions. Amplified phages were subjected to two additional
rounds of biopanning. Antibody-bound phages were isolated using protein G-agarose beads. DNA was
isolated via phenol-chloroform extraction and ethanol precipitation. The 21-nucleotide (nt)-long DNA
fragments coding random peptides were then PCR amplified using the following forward and reverse
primers, respectively: 5=-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
(INDEX)TGGTACCTTTCTATTCTCACTCT-3= and 5=-CAAGCAGAAGAGGGCATACGAGCTCTTCCGATCTAACAG
TTTCGGCCGAACCTCCACC-3=. The INDEX in the sequence of the forward primer indicates a 6-nt barcode,
which allows sequencing multiple libraries using a single line of the Illumina flow cell. For each mouse
serum, a distinct forward primer with unique index sequence was used. The multiplexed PCR-amplified
DNA library was then purified on agarose gel and sequenced using an Illumina HiSeq 2500 platform.

Next-generation data analysis. As a result of sequencing, a total of about 116 million DNA reads
were obtained. Reads were demultiplexed based on the barcodes. Each read contained a unique index
sequence of 6 nt in length and a 21-nt sequence coding a random peptide: 5=-(INDEX)GTGGTACCTTTC
TATTCTCACTCT(21-nt sequence)G-3=. Then the 21-nt sequences were extracted from each read between
positions 30 and 50 and translated to 7-mer peptides in the first frame (Text S1). Peptides that contained
stop codons were not included in the analysis. The average number of all peptides per serum sample was
approximately 1 � 107. The number of distinct peptides identified was approximately 1.4 � 105 per
sample. The data were then analyzed via the Python programming language (Python Software Foun-
dation [https://www.python.org]).

The strength of association between a peptide and a serum sample was measured as follows. A
peptide, P, was associated with day 28 serum if X(P), the lowest frequency of P among day 28 serum
samples, was higher than Y(P), the highest frequency of P among day 70 serum samples. The strength
of association was then measured by the size of the gap: X(P) � Y(P). Similarly, a peptide was associated
with day 70 serum samples if its smallest frequency among day 70 serum samples was higher than the
highest frequency among day 28 serum samples.

Position coverage by peptides of VlsE and other B. burgdorferi proteins. For each serum sample,
all peptides were mapped to VlsE of B. burgdorferi 297 (297-VlsE) (GenBank accession number
AB041949.1) or B31 (B31-VlsE) (GenBank accession number AAC45733.1) strains using blastp with an
identity threshold of 4 (i.e., only alignments with at least four exact amino acid matches were taken into
account). For each VlsE position X, a peptide with the amino acid matched to position X and with K
different VlsE matches contributed its frequency divided by K to the coverage of X. Overall, the coverage
of X, C(X), was computed as the sum of contributions of all peptides matched to X. Similarly, all peptides
were mapped to other B. burgdorferi surface proteins of the two B. burgdorferi strains, decorin-binding
proteins A (DbpA), DbpB, and P35.

Statistical analysis. A one-tailed Fisher’s exact test was used for comparison of mouse groups. A P
value of �0.05 was considered significantly different. The statistical significance of the difference
between the number of peptides associated with the day 28 serum and the number of peptides
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associated with the day 70 serum was measured using a permutation test. The permutation test was used
because of the comparatively small number of samples (five serum samples per time point). For each of
the possible permutations, the difference between the numbers of associated peptides was found and
compared with the actual difference.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/
IAI.00890-16.

TEXT S1, PDF file, 0.1 MB.
TEXT S2, PDF file, 1.6 MB.
TEXT S3, PDF file, 15.7 MB.
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