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Abstract Mitochondria are organelles that play a central role
in cellular metabolism, as they are responsible for processes
such as iron/sulfur cluster biogenesis, respiration and apopto-
sis. Here, we describe briefly the various protein import path-
ways for sorting of mitochondrial proteins into the different
subcompartments, with an emphasis on the targeting to the
intermembrane space. The discovery of a dedicated redox-
controlled pathway in the intermembrane space that links pro-
tein import to oxidative protein folding raises important ques-
tions on the redox regulation of this process. We discuss the
salient features of redox regulation in the intermembrane
space and how such mechanisms may be linked to the more
general redox homeostasis balance that is crucial not only for
normal cell physiology but also for cellular dysfunction.
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Introduction

Mitochondria are subcellular organelles with a distinct struc-
ture and are involved in a variety of cellular processes, which
include, but are not limited to, energy production, apoptosis
and iron/sulfur cluster assembly (Fig. 1). These organelles are
characterised by the presence of two membranes of different
composition: the outer membrane (OM) and the inner

membrane (IM). The presence of these twomembranes allows
the formation of two aqueous subcompartments within the
mitochondria, which are the intermembrane space (IMS) and
the matrix. Each one of these compartments is characterised
by a specific set of proteins that carry out specialised func-
tions. The majority of these proteins are encoded in the nucle-
ar genome and synthesised in the cytosol, making it necessary
for the mitochondria to possess mechanisms through which to
import all the proteins required for the correct function of the
organelle (Neupert 1997). During the import process, the in-
coming proteins are targeted to their correct location within
the organelle by utilising a series of different import pathways.

General import pathways

The majority of mitochondrial preproteins are encoded in the
nucleus and translated in the cytosol, before being imported
into mitochondria (Neupert 1997). In order for the import
process to bemore efficient, these precursor proteins are main-
tained in an unfolded state in the cytosol, through association
with a series of different chaperones. The targeting of mito-
chondrial precursor proteins is influenced by targeting se-
quences found within the preprotein. This is typically an N-
terminal presequence—or, matrix targeting sequence
(MTS)—which will target the preprotein to the matrix unless
it also contains further targeting information. The MTS is
normally an amphipathic α-helix with positive charges on
the one side of the helix and hydrophobic residues on the
other. This presequence is usually (but not always) cleaved
after import through the function of the mitochondrial-
processing peptidase (MPP) (Braun and Schmitz 1997).
Many mitochondrial preproteins additionally contain an inter-
nal targeting sequence, which can affect the route of import of
the precursor and in which mitochondrial compartment it will
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eventually end up. The two main general import translocases
of mitochondria are the translocase of the outer membrane
(TOM) complex of the outer membrane and the translocase
of the inner membrane (TIM23) complex of the inner mem-
brane (Fig. 2)

Outer membrane complexes

The TOM (translocase of the outer membrane) complex is the
general route of entry for all mitochondrial precursor proteins
(Fig. 2a). It aids in the release of binding cytosolic factors
from the preproteins as well as their correct folding upon entry
into the IMS. It has seven components, which can be split into
two main groups. Tom20, Tom70 and Tom22 make up the
receptors that interact with cytosolic substrate proteins, with
Tom20 and Tom70 being the main receptors. Each one of
these two proteins has a distinct preference for certain sub-
strate proteins, but they are also able to compensate one an-
other’s function to a certain extent (Neupert and Herrmann
2007). Both are anchored to the outer membrane by their N-
terminal domains, thus exposing hydrophilic domains to the
cytosol where they can interact with the incoming substrates.
Tom20 contains a binding groove for the hydrophobic resi-
dues of theMTS (Abe et al. 2000), whereas Tom70 recognises
the internal targeting sequences of preproteins (Chan et al.
2006). Tom22 differs from the other two in that it exposes a
negatively charged N-terminus to the cytosol, and its C-
terminus to the IMS (van Wilpe et al. 1999). The other main
group of TOM complex components are the ones that make
up the pore. Tom40 is the central component of the pore and

contains a binding region for mitochondrial preproteins
(Neupert and Herrmann 2007; Shiota et al. 2015). Tom5,
Tom6 and Tom7 are also part of the pore, though non-
essential for the function of the TOM complex unless all three

�Fig. 2 Mitochondrial import pathways. Incoming proteins interact with
cytosolic chaperones (Hsp70/Hsp90) and enter the mitochondria through
the general entry gate, the translocase of the outer membrane (TOM)
complex. a Protein import into the outer membrane of mitochondria.
Once the precursors are localised in the intermembrane space (IMS),
they interact with the mitochondrial chaperone translocase of the inner
membrane (TIM9/10) complex and are targeted to the sorting and
assembly machinery (SAM) complex for insertion into the outer
membrane. This pathway is followed by β-barrel proteins. The less
well-studied mitochondrial import pathway (MIM) may be responsible
for the insertion of single- or multi-spanning α-helical outer membrane
proteins, in a mechanism that remains unknown. b Protein import into the
inner membrane of mitochondria. In the IMS, the precursors interact with
the mitochondrial chaperone (TIM22) complex and are inserted into the
inner membrane. c Protein import into the matrix. Proteins that are des-
tined to the innermost compartment ofmitochondria follow themitochon-
drial chaperone (TIM23) pathway. The presence of a positively charged
N-terminal MTS guides the protein through the TIM23 complex, with the
translocation being facilitated by the presequence translocase-associated
motor (PAM) complex. After the protein has been imported into the ma-
trix, the mitochondrial processing peptidase (MPP) cleaves the MTS and
the mature protein is released. d Protein import into the mitochondrial
intermembrane space. In the IMS, proteins that contain bipartite
presequences follow a variation of the TIM23 pathway known as a
Bstop-transfer .̂ The precursors are partially translocated into the matrix
and become arrested at the TIM23 pore due to the presence of a hydro-
phobic region. Through the action of the MPP and the inner membrane
protease (IMP), the protein is released into the IMS. Proteins that contain
cysteine residues interact with the oxidoreductase Mia40, which is re-
sponsible for the introduction of disulfide bonds, therefore trapping them
in the IMS

Fig. 1 Mitochondria are
involved in a series of different
cellular processes. These include
physiological cellular functions,
such as respiration and metabolic
regulation, essential chemical
processes, such as iron/sulfur
cluster biogenesis and oxidative
folding, as well as signalling
mechanisms involving molecules
such as calcium and reactive
oxygen species. Mitochondria
also play an important role during
disease and cellular dysfunction
and are responsible for the
initiation of apoptosis. The figure
is a schematic of mitochondrial
structure and is not drawn to scale

b
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subunits are deleted (Dietmeier et al. 1997; Dekker et al. 1998;
Sherman et al. 2005).

The TOM complex is also involved in the insertion of
proteins into the outer membrane of mitochondria. However,
this process requires other membrane complexes, such as the
sorting and assembly machinery (SAM) complex for β-barrel
proteins (Fig. 2a). Mitochondria and chloroplasts are the only
eukaryotic organelles which contain these β-barrel proteins—
porin and Tom40, for example—most likely due to their
shared lineage from prokaryotic cells (Neupert and
Herrmann 2007). Sam50 is the main component of the SAM
complex and is highly conserved. It has two domains: an IMS-
exposed N-terminal region which is hydrophilic, and a C-
terminal domain which forms its β-barrel structure. Sam35
and Sam37 are two other subunits which make up the struc-
ture, though only Sam50 and Sam35 are essential for viability
(Wiedemann et al. 2003; Chan and Lithgow 2008). Outer
membrane protein precursors interact with the TOM complex
and move through its pore to the IMS. Small Tims are then
able to bind to these preproteins and guide them to the SAM
complex, through which they are inserted into the outer mem-
brane (Höhr et al. 2015).

One last, rather distinct, import pathway of the outer mito-
chondrial membrane is the MIM (mitochondrial import) com-
plex involving the mitochondrial import protein 1 (Mim1).
This protein was found to be important in the import of both
single- and multi-spanningα-helical outer membrane proteins
and facilitates their more efficient integration into the outer
membrane (Fig. 2a) (Becker et al. 2008, 2011; Popov-
Celeketić et al. 2008; Papic et al. 2011). More recently, the
protein Mim2 was also found to be a component of this par-
ticular complex and absence of this protein leads to impaired
mitochondrial protein import, morphological defects in mito-
chondria, while also creating problems in the correct assembly
of the TOM complex (Dimmer et al. 2012; Neupert 2015).

Inner membrane complexes

The import of inner membrane proteins, such as the solute
carrier family and membrane-embedded Tims (Tim17,
Tim22 and Tim23), relies on the TIM22 pathway (Fig. 2b)
(Neupert and Herrmann 2007). The substrates of this pathway
share structural similarities in that they all expose both their N-
and C-termini to the IMS. The TIM22 pathway relies on three
protein complexes: the TOM complex, small TIM complexes
and the TIM22 translocase itself. Small Tims, i.e. Tim8, Tim9,
Tim10, Tim12 and Tim13, contain twin CX3C motifs, and
form hetero-oligomeric complexes which are soluble in the
IMS and associate with the TIM22 complex (Kovermann
et al. 2002; Vergnolle et al. 2005). Of these, Tim9, Tim10
and Tim12 are encoded by essential genes in Saccharomyces
cerevisiae and are involved in the recognition of substrates.
The TIM22 complex itself is made up of Tim22, Tim54 and

Tim18. Tim22 forms the core of the complex, and is homol-
ogous to both Tim23 and Tim17 of the TIM23 complex
(Sirrenberg et al. 1996). Tim54 and Tim18 are accessory pro-
teins, with Tim54 being non-essential (Kerscher et al. 1997;
Kovermann et al. 2002).

At the beginning of the TIM22 import pathway, the cyto-
solic chaperone Hsp70 guides the carrier protein precursors to
the receptors of the TOM complex (Komiya et al. 1997).
These preproteins pass though the TOM complex and form
translocation intermediates interacting with the Tim9–Tim10
complex in the IMS. This small TIM complex protects the
hydrophobic regions of the preprotein to prevent its aggrega-
tion in the IMS (Truscott et al. 2002; Koehler 2004; Webb
et al. 2006). The carrier protein precursors are then delivered
to the TIM22 complex and inserted into the inner membrane
in a reaction that is dependent on the inner membrane poten-
tial, where they are able to form dynamic dimers (Dyall et al.
2003). Tim23 import is similar to the import of carrier pro-
teins, but uses the non-essential Tim8–Tim13 complex to
chaperone the preprotein in the IMS instead (Paschen et al.
2000).

TIM23 (translocase of the inner membrane) facilitates the
translocation of all matrix preproteins, as well as some that are
destined for the inner membrane and the IMS (Fig. 2c). The
TIM23-dependent matrix import pathway is powered both by
the membrane potential of the inner membrane and ATP hy-
drolysis, and, under high oxidative metabolism activity, its
substrates can compose up to 20 % of the total cellular pro-
teins (Neupert and Herrmann 2007). The TIM23 complex has
two main groups of components: the membrane channel and
the import motor. Tim23 and Tim17 make up the core of the
membrane channel complex, and both proteins expose N-
terminal domains to the IMS (Donzeau et al. 2000). The N-
terminal domain of Tim23 contains a coiled-coil domain for
dimerisation and substrate binding (Bauer et al. 1996), and its
N-terminus stretches to the outer membrane (Donzeau et al.
2000). Tim17, on the other hand, exposes a much shorter N-
terminal domain with conserved, negative residues, and is
thought to be involved in the gating of the channel (Meier
et al. 2005). Tim50, another component of the channel, is
anchored to the inner membrane by its N-terminus, and ex-
poses a domain able to interact with preproteins into the IMS
(Geissler et al. 2002). The final component of the channel,
Tim21, is non-essential but interacts with the IMS domain of
Tom22 (Chacinska et al. 2005; Mokranjac et al. 2005).

The PAM (presequence translocase-associated motor)
complex is required for further import of preproteins into the
matrix, after their N-terminal MTS has been transferred across
the inner membrane by the membrane potential (Fig. 2c).
Tim44 is the main component of the motor, and is a hydro-
philic matrix protein attached to the inner membrane. It also
contains a hydrophobic pocket to which substrates—guided
by Hsp70—can bind (Josyula et al. 2006). Hsp70, the matrix
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chaperone protein, contains an N-terminal ATPase domain
and C-terminal substrate-binding domain, and cycles between
ADP- and ATP-bound states via the nucleotide exchange pro-
tein Mge1. The ATP-bound form is recruited by Tim44 into
the import motor structure (Young et al. 2004; Bukau et al.
2006). Finally, Tim14 and Tim16 are DnaJ-like proteins that
regulate the binding of substrates to Hsp70.

IMS-specific import pathways

All proteins that are resident within the IMS are encoded by
nuclear genes and become synthesised in the cytosol. As such,
in order to reach their final destination, they can follow spe-
cific pathways that allow for their translocation across the
outer mitochondrial membrane and their retention in the
IMS. The two most well-characterised classes of IMS proteins
are (1) proteins that contain bipartite presequences and (2)
proteins that depend on Mia40 for their import.

Bipartite presequences are N-terminal targeting signals that
consist of two distinct regions: an N-terminal mitochondrial
targeting signal (MTS) followed by a hydrophobic region
reminiscent of a transmembrane domain. This particular im-
port pathway is known as the stop-transfer pathway (Fig. 2d),
as the presence of the hydrophobic region stops the transloca-
tion of the protein through the inner mitochondrial membrane
(Glick et al. 1992). Just like in the case of the TIM23 pathway,
the MTS presequence is cleaved off by MPP. The next step
involves the action of an intermembrane space protease (e.g.
IMP or Pcp1), which will remove the hydrophobic sorting
signal and lead to the release of the protein in the IMS
(Nunnari et al. 1993; Esser et al. 2002; McQuibban et al.
2003). In this pathway, ATP hydrolysis is not required and
the import of proteins can be powered solely by the membrane
potential, which is sufficient to engage the preprotein in the
TIM23 translocase.

A distinct pathway exists for IMS proteins that contain Cys
residues. The existence of an oxidative folding pathway had
been proposed based on the demonstration of the presence of
internal disulfides in vivo for the small Tim proteins (Curran
et al. 2002; Lu et al. 2004). The key component for this path-
way, which is known as the MIA (mitochondrial import and
assembly) pathway, is the Mia40 protein (Fig. 2d) (Chacinska
et al. 2004; Naoé et al. 2004; Hell 2008). Mia40 is an oxido-
reductase and acts as a disulfide donor protein for imported
precursors. The TIM23 complex anchors Mia40 to the inner
mitochondrial membrane by its N-terminus, and leaves its C-
terminus exposed to the IMS, allowing Mia40 to interact with
its substrates (Chatzi et al. 2013). Mia40 is responsible for the
introduction of disulfide bonds to the preproteins, resulting in
their folding and trapping within the IMS (Chacinska et al.
2004; Gabriel et al. 2007; Sideris and Tokatlidis 2010). The
detailed molecular mechanism of this process will be de-
scribed later in the text. Substrates for the MIA pathway

contain either twin CX3C or CX9C motifs that associate with
the hydrophobic binding cleft of Mia40. These substrates then
interact with the conserved CPC motif of Mia40, in which the
second cysteine residue forms a mixed disulfide intermediate
with the substrate protein (Banci et al. 2009). As previously
mentioned, CX3C proteins include the small Tims, which
function as chaperone protein complexes aiding movement
of membrane proteins through the IMS (Sirrenberg et al.
1996; Koehler et al. 1998). Other Mia40 substrates, such as
the COX proteins which contain twin CXC9 motifs, are often
involved in stabilising or assembling the mitochondrial respi-
ratory chain (Herrmann and Hell 2005; Chatzi and Tokatlidis
2013). More recent work has shown that the import of certain
proteins, such as Atp23, and Mrp10 into the IMS and Tim22
into the inner membrane, is dependent on Mia40, but this
occurs through an interaction that does not require any of their
cysteine motifs (Weckbecker et al. 2012; Wrobel et al. 2013;
Longen et al. 2014).

Erv1, the second component of the MIA pathway, is a
flavin adenine dinucleotide (FAD)-linked sulfhydryl oxi-
dase. Erv1 is unique in that it shares no structural similarity
to other Mia40 substrates (Chatzi and Tokatlidis 2013), but
contains three conserved cysteine pairs (C30/C33,
C130/C133 and C159/C176) (Hofhaus et al. 2003). The
first cysteine pair acts as the shuttle disulfide interacting
with Mia40 (Lionaki et al. 2010), and the third as a struc-
tural disulfide. The structural disulfide is the one
recognised during the import process of Erv1 by Mia40
(Terziyska et al. 2009), whilst complete folding of Erv1
also requires FAD binding (Kallergi et al. 2012). Once
properly folded, Erv1 has a critical role in the electron
transfer process underpinning the oxidative folding path-
way. In particular, the electrons are removed from Mia40
through the N-terminal redox active CX2C motif (distal or
shuttle motif) and are transferred to the FAD-proximal
CX2C motif of Erv1. From there, they are transferred onto
the FAD molecule itself, which is responsible for the shut-
tling of the electrons either directly to molecular oxygen—
in a reaction that leads to the production of hydrogen per-
oxide (H2O2)—or through cytochrome c and the respirato-
ry chain to oxygen, a process which produces H2O (Farrell
and Thorpe 2005; Ang and Lu 2009; Bien et al. 2010;
Banci et al. 2011). There are alternative final electron ac-
ceptors in this process, namely the cytochrome c heme
lyase Ccp1 (Dabir et al. 2007). Additionally, the process
also operates under anaerobic conditions, but whether there
are other proteins in addition to Mia40 and Erv1 involved
in this case is not yet understood. Although Erv1 does not
have the capacity to oxidise the substrates on its own, it has
been proposed to function as part of a ternary complex
together with Mia40 in vivo (Stojanovski et al. 2008).
Further reconstitution studies with purified components
will provide valuable insights into the detailed mechanism.
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Redox regulation

The MIA pathway stands out from the other import pathways
in mitochondria as it is the only one that results in a chemical
modification of the precursor through the formation of intra-
molecular disulfide bonds. This property raises the question of
how the redox regulation circuitry that controls the cellular
redox state is linked to the function of the MIA machinery.
In more general terms, there have been a number of studies
that suggest a role for small redox active molecules, such as
H2O2 and glutathione (GSH), in the oxidative folding process
(Fig. 3). These factors are an important part of the cellular
redox homeostasis and can modulate oxidative stress condi-
tions within the cellular environment.

All organisms are exposed to reactive oxygen species
(ROS) as part of their normal growth cycle. These ROS,
which include H2O2, the superoxide anion (O2

−) and the hy-
droxyl radical (OH−), are either a result of physiological cel-
lular processes or an effect caused by the exposure of cells to
radical-generating compounds. The production of these mol-
ecules within the cell can lead to a series of effects, including,

but not limited to, the modification of DNA, lipid peroxidation
and protein oxidation (Morano et al. 2012). As such, oxidative
stress frequently leads to cell death and can be the causative
factor in the ageing process, as well as in a number of different
diseases (Gutteridge and Halliwell 2000; Grant 2008).

In order for the cells to protect themselves from the dam-
aging effects of ROS, they have developed a series of different
mechanisms which are able to detoxify the cell and restore
redox homeostasis. Such processes include (1) the transcrip-
tional and translational regulation of genes encoding antioxi-
dant enzymes, and (2) the post-translational modification of
proteins involved in physiological cellular processes (Grant
2008).

A prime example of transcriptional regulation of proteins in
response to oxidative stress is the activation of the transcrip-
tion factor Yap1 in S. cerevisiae. Yap1 (Yeast AP-1) is a pro-
tein that belongs to the bZIP family of transcriptional regula-
tors and was initially found to be essential in the response of
yeast cells to oxidants (including H2O2 and diamide), as well
as certain heavy metals such as cadmium (Schnell and Entian
1991; Kuge and Jones 1994; Wu and Moye-Rowley 1994).

Fig. 3 Cellular redox regulation. Cells have a series of different
mechanisms to combat the effects of redox imbalance. These can be
divided into two categories: small molecules, such as H2O2 and
glutathione, which act like signals and are important for the initiation of
the redox response; and proteins, which are able to detect alterations in the
levels of reactive oxygen species (Gpx3, Sod1), the GSH:GSSG ratio

(glutaredoxin system) as well as in the redox state of proteins
(thioredoxin system). The structures shown were obtained from the
PDB website (http://www.rcsb.org/pdb/home/home.do) and are the
following: thioredoxin pathway—Trx1 (PDB code: 2N5A),
glutaredoxin pathway—Grx2 (PDB code: 3CTF), Gpx3 (PDB code:
3CMI) and Sod1 (PDB code: 1SDY)
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Through GFP-tagging of the Yap1 protein, it has been shown
that, under normal conditions, the protein localises in the cy-
toplasm. However, upon treatment of the yeast cells with di-
amide, the protein rapidly accumulates in the nucleus where it
activates a number of genes involved in the oxidative stress
response (Kuge et al. 1997). This accumulation in the nucleus
under oxidative stress conditions was found to be dependent
on the redox regulation of the nuclear export signal (NES) of
Yap1. More specifically, redox signals are able to block the
export of Yap1 from the nucleus through the modification of
the NES (Kuge et al. 1997, 1998; Delaunay et al. 2000). What
is particularly interesting in this case is that themodification of
the NES differs depending on whether the response was
caused by H2O2 or by diamide. In the case of elevated levels
of H2O2, it is the formation of an intramolecular disulfide
bond between C303 and C598, which masks the NES of
Yap1 (Delaunay et al. 2000, 2002).When the cells are stressed
with diamide, we have the formation of different disulfide
bonds within the C-terminal cysteine-rich domain (c-CRD)
(C598, C620 and C629), which again leads to a masking of
the NES of the protein and allows for its retention in the
nucleus (Kuge et al. 2001).

The activation of Yap1 by H2O2 is not a direct process.
Instead, the presence of an additional protein, Gpx3, is
required (Fig. 3). Glutathione peroxidase 3 (Gpx3), also
known as Hyr1 (hydroperoxide resistance 1) or Orp1 (ox-
ygen receptor peroxidase 1) (Delaunay et al. 2002), acts
as the sensor of the levels of H2O2 within the cell and is
the protein responsible for the introduction of the intra-
molecular disulfide bond of Yap1. Upon exposure to
H2O2, Gpx3 C36 becomes sulfenylated and is able to
form a transient mixed disulfide intermediate with Yap1
C598. The formation of this intermediate is essential for
the oxidation and subsequent activation of Yap1
(Delaunay et al. 2002; Paulsen and Carroll 2009).

On the other hand, the post-translational modification of
proteins is another way through which cells can respond to
oxidative stress, which is true of the oxidative inhibition of
proteins involved in glycolysis (Grant 2008). Under specific
oxidative stress-inducing circumstances, the cells are able to
inhibit a series of glycolytic enzymes, including glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH), which, in turn,
inhibit glycolysis and lead to the activation of the pentose
phosphate pathway (Ralser et al. 2007). Under these condi-
tions, glucose 6-phosphate dehydrogenase (G6PDH) and 6-
phosphogluconate dehydrogenase (6PGDH) are activated,
leading to the production of NADPH (Slekar et al. 1996;
Morano et al. 2012). The generation of NADPH through this
process is especially important, because it acts as the main
source of reducing potential for most redox regulatory en-
zymes, including the two main pathways that control the cel-
lular redox homeostasis: the thioredoxin and glutaredoxin sys-
tems (Grant 2008; Morano et al. 2012).

Thioredoxins and glutaredoxins are small oxidoreductases,
with conserved structural similarity, particularly in the region
of their active sites (Fig. 3). These active sites are
characterised by the presence of two conserved cysteine resi-
dues, which are indispensable for the function of these pro-
teins. They are thought to play an important role in several
cellular processes, including protein folding and repair.
Despite their functional similarities, these two classes of pro-
teins differ in the way in which they are regulated: the inactive
disulfide-bonded forms of thioredoxins are recycled through
the function of thioredoxin reductases and NADPH, while
glutaredoxins are recycled by NADPH indirectly, through
the transfer of electrons to GSH via the activity of glutathione
reductases (Glr) (Holmgren 1989; Trotter and Grant 2002;
Wheeler and Grant 2004).

The yeast S. cerevisiae contains 3 thioredoxins (Trx1, Trx2,
Trx3) and 2 thioredoxin reductases (Trr1, Trr2). Of these pro-
teins, Trx1, Trx2 and Trr1 comprise the cytosolic thioredoxin
pathway, while Trx3 and Trr2 make up a complete thioredoxin
pathway which is resident within the mitochondrial matrix
(Pedrajas et al. 1999; Miranda-Vizuete et al. 2000; Trotter
and Grant 2005). The latter is thought to function in order to
protect the cell against the oxidative stress generated during
respiration (Pedrajas et al. 1999; Greetham et al. 2013). The
redox states of the two distinct thioredoxin pathways were
found to be maintained independently of one another, while
cells that were lacking both systems were viable (Trotter and
Grant 2005).

Yeast also contains 8 glutaredoxins (Grx1-8), as well as a
single glutathione reductase (Glr1). The cytosolic Grx1 and
Grx2 are the most well characterised concerning their role in
the oxidative stress response and have been found to be dis-
pensable under normal aerobic growth conditions (Luikenhuis
et al. 1998). Grx3 and Grx4 have been found to localise in the
nucleus and seem to play an important role in the intracellular
trafficking of iron (Mühlenhoff et al. 2010). Grx5 is also as-
sociated with cellular iron metabolism and, more specifically,
the biogenesis of mitochondrial [4Fe-4S] cluster assembly in
the mitochondrial matrix (Rodríguez-Manzaneque et al.
2002). Grx6 and Grx7 have not been extensively
characterised, but are resident in the ER and Golgi and are
thought to play a role in the regulation of the oxidative state
of sulfhydryls in the early secretory pathway (Mesecke et al.
2008; Izquierdo et al. 2008). Grx8 was identified as another
glutaredoxin-like protein (Mesecke et al. 2008), but a study of
this protein showed that it is unlikely to act as an oxidative
stress defence mechanism (Eckers et al. 2009).

In addition to the two systems described above, yeast cells
also contain a series of other mechanisms to combat the ROS
that are produced, including catalases and superoxide
dismutases. The former play a role in the cellular response to
H2O2 and can be found in the peroxisomal and mitochondrial
matrices (Cta1) and the cytosol (Ctt1). The latter are involved
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in the detoxification of O2
− and can be found in the cytosol

and IMS (Sod1), as well as in the mitochondrial matrix (Sod2)
(Morano et al. 2012).

Disulfide bond formation in the bacterial periplasm,
the ER and the mitochondrial IMS

The process for the formation of disulfide bonds in cysteine-
containing proteins has been extensively described for the
cellular compartments that are known to allow the formation
of these covalent bonds: the periplasm of bacteria, the endo-
plasmic reticulum (ER) and, most recently, the mitochondrial
IMS (Fig. 4). What is particularly interesting about these three
compartments is that they are separate from the site of trans-
lation (cytosol) and contain a series of different chaperones,
through which the folding and formation of disulfide bonds
can occur. The proteins that are targeted to these three com-
partments are synthesised in a reducing environment, which

contains machineries, such as the thioredoxin and
glutaredoxin systems, to block the formation of disulfide
bonds and keep the proteins reduced (Herrmann and Riemer
2014). Once the proteins have reached their final destination,
they interact with the resident chaperones of each compart-
ment, are recognised by the relevant organellar oxidative fold-
ing machinery and thus obtain their final, folded form.

Regulation in the bacterial periplasm

Proteins that are targeted to the periplasm of bacterial cells are
synthesised in the cytosol and become transported across the
cytoplasmic membrane either through the classical secretory
(Sec) pathway (Collinson et al. 2015) or through the twin-
arginine translocation (Tat) pathway (Palmer and Berks
2012). Specifically, in Escherichia coli, the vast majority of
unfolded proteins become secreted into the periplasm through
the Sec pathway, while a much smaller number of proteins are

Fig. 4 Summary of the components for disulfide bond formation in the
bacterial periplasm, the endoplasmic reticulum (ER) and the
mitochondrial intermembrane space (IMS). Each of the compartments
where oxidative folding occurs is highlighted in dark blue. All three
compartments have a similar layout and contain proteins with
comparable functions. The main difference is present in the last

column. The only compartment with a well-characterised reductive
system is the periplasm. The ER has no known reductive pathway. In
the IMS, the recent localisation of Grx2 and Trx1/Trr1 gives rise to a
series of new questions concerning the characterization of a reductive
pathway in this particular compartment
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dependent on the Tat pathway and are transported across the
membrane in a folded state (Merdanovic et al. 2011).

As the proteins are secreted through the Sec translocase in
an unfolded state, they have to fold after targeting to the peri-
plasm. This folding process cannot occur in the same way as it
does in the cytosol, due to the lack in the periplasm of ATP and
ATP-dependent chaperones like the members of the Hsp60,
Hsp70 and Hsp90 families (Herrmann and Riemer 2014).

The periplasm itself is a highly changeable environment
due to the presence of porins in the outer membrane and the
direct exposure to the ever-changing extracellular environ-
ment. Due to the absence of classical chaperones that could
help maintain the correct structure of the periplasmic proteins,
the majority of proteins in this compartment utilise another
protein-stabilising mechanism, namely the introduction of di-
sulfide bonds, to retain their folding and functionality.

The system responsible for the introduction of disulfide
bonds in the bacterial periplasm is the Dsb system (disulfide
bond formation). The two main components of the Dsb sys-
tem are the oxidoreductase DsbA and the sulfhydryl oxidase
DsbB (Bardwell et al. 1991, 1993). DsbA contains a catalyt-
ically active CX2C motif, which, when oxidised, is able to
catalyse disulfide bond formation. During this process, the
disulfide bond in the DsbA active site is transferred to the
substrate through the formation of a transient mixed disulfide
intermediate. As a result, DsbA itself becomes reduced and is
recycled through the function of DsbB. In a similar manner to
DsbA, DsbB also contains a cysteine pair within its active site,
which, when oxidised, is able to transfer the disulfide bond to
DsbA. DsbB itself becomes re-oxidised via a charge transfer
with the quinone co-factor and the electrons are shuttled via
this co-factor to the respiratory chain or other terminal oxi-
dases (Bader et al. 1999; Kadokura and Beckwith 2010). The
introduction of disulfide bonds in this manner is a process that
can occur either co- or post-translationally.

In parallel to the DsbA/DsbB system, there are two other
components of the Dsb system, DsbC and DsbD, that consti-
tute the reductive/isomerisation branch of the pathway and
operate in the same compartment. These proteins are involved
in the recognition and correction of non-native disulfides and
are especially important as they provide a critical quality con-
trol activity during the oxidative folding process (Shevchik
et al. 1994; Missiakas et al. 1995). Such a mechanism is es-
sential because non-native disulfides can form relatively eas-
ily, when two cysteine residues that are not normally present
as disulfide-bonded come into proximity of one another dur-
ing the folding process and become oxidised.

The recognition of the wrongly-folded protein occurs via a
large partially hydrophobic pocket that is formed through
homo-dimerisation of DsbC. This brings the substrate into
proximity with the active CX2C motif of DsbC, which inter-
acts with the non-native disulfide and removes it. This process
can only occur if the active site cysteine motif of DsbC is

present in a reduced state. This is maintained through the
function of a fourth protein, DsbD. DsbD itself is mem-
brane-bound, with two domains (α and γ) soluble in the peri-
plasm and one domain (β) anchored within the cytoplasmic
membrane. The maintenance of DsbD in a reduced—and thus
functional—state occurs through a continuous electron flow
that is dependent on the cysteine residues in the three domains
of DsbD. More specifically, the bacterial cytoplasmic
thioredoxin system is responsible for the reduction of the cys-
teine residues in theβ-domain and, from then on, the electrons
flow to the catalytic cysteine residues in the α-domain via the
ones that are present within the γ-domain (Collet et al. 2002).

Regulation in the endoplasmic reticulum (ER)

Just as in the case of the bacterial periplasm, proteins that are
destined for the ER are synthesised in the cytosol and are
transported through the ER membrane via the Sec translocon.
During translocation, as well as after complete entry into the
ER, they interact with a number of different chaperones and
folding factors that enable them to become properly folded
and functional (e.g. members of the Hsp70 and Hsp90 fami-
lies) (Anelli and Sitia 2008). Alternatively, the correct folding
of cysteine-containing proteins is achieved though the func-
tion of protein disulfide isomerases (PDIs). PDIs are oxidore-
ductases that contain thioredoxin-like domains with character-
istic CX2Cmotifs in their active sites. There are 5 members of
the PDI family in yeast and 20 in mammals, with the most
well characterised being the mammalian PDI (Hatahet and
Ruddock 2009; Benham 2012).

During the oxidation reaction, PDI acts as an electron ac-
ceptor in the thiol–disulfide exchange reaction and this pro-
cess leads to the introduction of a disulfide bond in the sub-
strate (Oka and Bulleid 2013). From PDI, the electrons are
then transferred to the FAD-containing sulfhydryl oxidase
Ero1 (ER Oxidoreductin 1) and, finally, to molecular oxygen,
in a process that is dependent on the cysteine residues of Ero1
(Gross et al. 2006; Baker et al. 2008).

The oxidative folding pathway in the ER is not without
fault and, as such, it is possible that non-native disulfide bonds
will also be formed, just as happens in the bacterial peri-
plasm. This is where the mechanism differs quite significantly
from the periplasmic one. PDI can actually catalyse
isomerisation of non-native to native disulfides, as it can act
as an electron donor and reduce the non-native disulfide bonds
(Oka and Bulleid 2013). This is a process that can be per-
formed by certain members of the PDI family. A good exam-
ple of one such member is ERdj5 (endoplasmic reticulum
DnaJ homology 5), which contains a thioredoxin-like domain
with a relatively low reduction potential, thus making it a
better reductase than oxidase (Bulleid and van Lith 2014).

There has been extensive work in recent years in order to
understand the mechanisms through which disulfide bonds
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can become reduced in the ER. However, such mechanisms
have remained elusive and we can only speculate onwhat may
be happening. The two most prevalent hypotheses are based
on the oxidation of NADPH by either a glutathione or
thioredoxin reductase.

The first hypothesis assumes the existence of an ER-
localised glutathione reductase that could reduce the GSSG
found in the ER. However, as no such protein has yet been
found, it has also been hypothesised that the regulation of
GSH levels in the ER could also be achieved through the
transport of GSH and GSSG between the cytosol and the
ER, with the reduction of GSSG happening in the cytosol.
This seems more unlikely, due to the fact that the ER mem-
brane seems to be impermeable to GSSG (Bánhegyi et al.
1999; Bulleid and van Lith 2014).

The second hypothesis is also based on the idea that PDI
can be recycled through the function of either an as yet un-
known ER-localised thioredoxin reductase or the existing cy-
tosolic one. In the case of a putative ER-localised protein, the
reduction process would be relatively simple, with the
thioredoxin reductase utilising NADPH to directly reduce
PDI. On the other hand, it has been hypothesised that an elec-
tron shuttle similar to the one operating in the bacterial peri-
plasm could be acting to transfer electrons from reduced
thioredoxin in the cytosol to a membrane-anchored protein
similar to DsbD and, finally, to PDI (Bulleid and van Lith
2014).

Regulation in the mitochondrial IMS

The third cellular compartment known to allow the formation
of disulfide bonds in cysteine-containing proteins is the mito-
chondrial IMS. As the IMS has a rather restricted volume, it
was initially thought that this compartment only contained
around 12 proteins (Martin et al. 1998). However, recent de-
tailed analyses of the yeast S. cerevisiae IMS proteome using
high-resolution mass spectrometry identified 51 proteins in
this compartment, most of which have also been verified bio-
chemically (Vögtle et al. 2012). Another study, in which the
authors have attempted to characterise the human IMS prote-
ome using ratiometric APEX tagging, was able to identify 127
IMS proteins, including 16 proteins that had not previously
been found to localise to mitochondria (Hung et al. 2014).

Just like the bacterial periplasm, the IMS is devoid of any
proteins of the major ATP-dependent chaperone families (e.g.
Hsp60, Hsp70, Hsp90). However, the IMS houses the ATP-
independent small TIM chaperone system that allows the
targeting and insertion of OM and IM membrane proteins
(Petrakis et al. 2009). This system is functionally equivalent
to the periplasmic membrane protein chaperones SurA and
Fkp (Alcock et al. 2008) and, although the proteins have no
homology at the level of their amino acid sequence, they share
a common substrate binding recognition pattern. Additionally,

there are cases of very specialised chaperone proteins, such as
Ccs1 (Suzuki et al. 2013; Varabyova et al. 2013) which is
thought to interact specifically with Sod1 and drive its import
into the IMS, as well as the heme lyases, which play a role in
the import of cytochrome c (Nargang et al. 1988).

Another factor that seems to play a role in the folding of
protein in the IMS is the AAA protease Yme1 (Schreiner et al.
2012). This protein is anchored to the inner mitochondrial
membrane and its functional domains are exposed to the
IMS. It has been shown that Yme1 plays an important role
in the folding and prevention of aggregation of IMS proteins,
such as Cox2 (Fiumera et al. 2009). Cells that lack Yme1
display abnormal mitochondrial morphology (Campbell and
Thorsness 1998), which could be explained by the aggrega-
tion of the components of the MICOS complex (Schreiner
et al. 2012).

The system responsible for the introduction of disulfide
bonds in the IMS is the MIA machinery. As explained above,
the two main components of this machinery are the essential
proteins Mia40 and Erv1, which have distinct roles. Mia40 is
the oxidoreductase responsible for the introduction of the di-
sulfide bonds into the substrate proteins (Terziyska et al. 2009;
Tienson et al. 2009; Banci et al. 2009), while the sulfhydryl
oxidase Erv1 is, in turn, responsible for the recycling ofMia40
to its active, oxidised state (Baker et al. 2008; Ang and Lu
2009; Lionaki et al. 2010).

Mia40, although functionally equivalent to the two oxido-
reductases analysed earlier (DsbA in bacteria and PDI in the
ER), does not contain any thioredoxin-like fold, which is a
salient feature of the bacterial and ER systems. Instead, its
structure is characterised by two important structural ele-
ments: a redox active CPC motif, which can readily switch
between an oxidised and a reduced state, and which is posi-
tioned directly on top of a shallow hydrophobic cleft where
binding of the substrates occurs (Banci et al. 2010). Substrate
proteins are able to interact with Mia40 through binding at the
hydrophobic cleft. These two structural elements underpin a
two-step ‘sliding docking’mechanism that has been proposed
to account for the oxidative folding process (Sideris et al.
2009; Banci et al. 2010). In the first step (‘sliding’), the sub-
strates are accommodated by the binding cleft via non-cova-
lent, primarily hydrophobic interactions engaging the hydro-
phobic targeting signal of these preproteins (Sideris et al.
2009; Milenkovic et al. 2009; Longen et al. 2009; Sideris
and Tokatlidis 2010). This first step allows the cysteine resi-
dues of the substrate protein to come into close proximity and
directly juxtapose to the oxidised cysteines of the CPC motif
of Mia40. In the second step (‘docking’), a transient disulfide
intermediate is formed between the second Cys of the CPC
motif of Mia40 and the docking Cys of the substrate. A nu-
cleophilic attack by the partner substrate cysteine creates the
intramolecular disulfide bond on the substrate, thus leaving
the Mia40 CPC motif in a reduced state. Mia40 thereby
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transfers its disulfide to the substrate protein, assisting its fold-
ing and consequent retention within the IMS (Sideris and
Tokatlidis 2010; Banci et al. 2010). As Mia40 itself becomes
reduced in this process, it requires re-oxidation of the CPC
motif in order to become functional again. This is the role that
is fulfilled by Erv1. Just like DsbB and Ero1 (in the periplasm
and ER, respectively), Erv1 binds FAD, to which it shuttles
the electrons that arise from the interaction of the redox active
CX2C motif at the N-terminus of Erv1 with Mia40, a process
which leads to the re-oxidation of Mia40 (Lange et al. 2001).
Once the electrons are in the FAD domain of Erv1, they are
then transferred to molecular oxygen either directly or via
cytochrome c and cytochrome c oxidase (Farrell and Thorpe
2005).

Contrary to PDI, Mia40 has not been shown to have any
isomerisation activity in vivo. There have been studies that
show an interaction between glutathione and Mia40, which
leads to a semi-oxidised redox state of Mia40. As this is rem-
iniscent of the redox state of PDI family members in the ER, it
was thought that Mia40, in its reduced state, might be able to
act as a reducing oxidoreductase (Riemer et al. 2009). The
only evidence that Mia40 may act as a reductase comes from
an in vitro reconstitution setup, in which Mia40 was shown to
have the capacity to reduce the substrate protein Cox17, albeit
at a much poorer rate than PDI or DsbA (Koch and Schmid
2014a, b).

It is not actually known what happens to Mia40 substrates
with incorrectly formed disulfide bonds. Until now, there had
been no proof that a reductive system works within the IMS.
However, two recent publications have identified the putative
presence of two known cytosolic reductive pathways in the
IMS: the thioredoxin pathway and the glutaredoxin pathway
(Vögtle et al. 2012; Kojer et al. 2015).

In the updated yeast IMS proteome, Vögtle and coworkers
were able to identify the presence of Trx1 and its partner Trr1
in the IMS (Vögtle et al. 2012). The discovery of a complete
thioredoxin pathway in this particular compartment is inter-
esting as they are proteins that could play an important role in
the redox regulation of the IMS. The thioredoxin pathway has
been very well described in the cytosol and plays an important
role in the maintenance of proteins in a reduced, non-disulfide
bonded state. Oxidised substrates are recognised by Trx1 and,
through the formation of a mixed disulfide intermediate, Trx1
itself becomes oxidised. Trx1 is recycled by interacting with
Trr1 and Trr1 itself becomes reduced by utilising electrons
from NADPH (Trotter and Grant 2005). Thus, it is possible
that, in the IMS, the two proteins are involved in the recogni-
tion and breakage of incorrect disulfide bonds and could work
together with the components of the MIA machinery in order
to ascertain the correct folding of the cysteine containing pro-
teins of this particular compartment.

A recent study by the Riemer group showed that the IMS
seems to harbour glutaredoxin activity, carried out mainly by

Grx2 (Kojer et al. 2015). Grx2 is a dually localised protein,
which is produced in two forms: a shorter form which is local-
ised in the cytosol, and a more elongated form which is
targeted to the mitochondrial matrix (Porras et al. 2006,
2010). The authors suggested that a small fraction of the
shorter cytosolic form of Grx2 is imported into the IMS and
is able to influence the redox state of IMS proteins through the
control of the glutathione pool of this particular compartment.
They found that altering the levels of Grx2 in the IMS leads to
a shift in the redox state of Mia40, making it present in a
primarily reduced state, thus indirectly affecting the import
and folding of Mia40-dependent substrates (e.g. Atp23 and
Ccs1) (Kojer et al. 2015). Interestingly, Grx2 was not identi-
fied in the yeast IMS proteome study (Vögtle et al. 2012), a
fact that can possibly be attributed to the very low levels
present in the IMS, as hypothesised by Kojer et al. (2015).

No homologues for Trx1, Trr1, Gpx3 and Grx2 were de-
tected in the human IMS proteome, but what is quite intrigu-
ing is that, within this list, we can find proteins such as the
peroxiredoxins PRDX3 and PRDX4, as well as the
thioredoxin-domain containing protein TXNDC12, which
hint at the putative presence of a reductive mechanism in the
human mitochondrial IMS (Hung et al. 2014).

Perspectives

The great number of mitochondrial protein import compo-
nents raises important questions about their evolutionary con-
servation. The majority of the fundamental molecular ma-
chines that ensure correct targeting and sorting to the organelle
are conserved among higher eukaryotes. However, a combi-
nation of bioinformatics analyses and biochemical character-
isation in different species revealed that the mitochondrial
protein import machines either have identifiable ancestral ho-
mologues in the bacterial endosymbiont or have derived in
evolution independently from a bacterial origin. An example
of the former is the porin-like Tom40 channel and of the latter
the family of small Tim proteins. A detailed description of the
evolutionary origin has been discussed in recent excellent re-
views (Hewitt et al. 2014).

In this review, we have focused on the mechanistic and
regulatory aspects of the protein biogenesis system in the
IMS. Given the links of this system to redox regulation and
possibly other regulatory cues in the cell, it is apparent that
dysregulation of mitochondrial protein biogenesis will have
links to the physiology of the cell. One of the future challenges
in the field will be to establish these links in human cells and
animal disease models of neurodegeneration, cancer and dia-
betes in which mitochondrial homeostasis is of paramount
importance.

The protein import process into mitochondria has been
thought for a long time to be a constitutive process. Recent
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work, however, has demonstrated that this is not the case and
that phosphorylation modulates mitochondrial import at both
the level of import components and some preproteins them-
selves (Schmidt et al. 2011; Rao et al. 2011). It is currently
unclear whether other types of post-translational modifications,
such as thiol modifications, may also play a similar regulatory
role. The presence of the redox-regulated protein import and
folding process involving the MIA pathway puts the IMS at
centre stage in the network of redox homeostasis in cells. The
coordination of the oxidative branch with a putative reductive
branch of the pathway is critical for quality control and main-
taining the redox balance in this compartment. Clearly, further
work is needed to address the mechanistic details of these pro-
cesses, and will require the identification of all the important
players (small redox active molecules and proteins) and their
interactions. In this respect, it will be of particular interest to
dissect the changes induced on the IMS proteome in response
to different types of oxidative and reductive cellular stress. As
our understanding of the ramifications of the redox-regulated
oxidative import and folding in the IMS matures, it will be
exciting to discover new pathways for the targeting of important
molecular players to this compartment.
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