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Abstract Inflammatory lung diseases like asthma bronchiale,
chronic obstructive pulmonary disease and allergic airway
inflammation are widespread public diseases that constitute
an enormous burden to the health systems. Mainly classified
as inflammatory diseases, the treatment focuses on strategies
interfering with local inflammatory responses by the immune
system. Inflammatory lung diseases predispose patients to se-
vere lung failures like alveolar oedema, respiratory distress
syndrome and acute lung injury. These life-threatening syn-
dromes are caused by increased permeability of the alveolar
and airway epithelium and exudate formation. However, the
mechanism underlying epithelium barrier breakdown in the
lung during inflammation is elusive. This review emphasises
the role of the tight junction of the airway epithelium as the
predominating structure conferring epithelial tightness and
preventing exudate formation and the impact of inflammatory
perturbations on their function.

Keywords Lung - Inflammation - Asthma - COPD - ARDS -
Tight junctions

Introduction

The surface of the airways and the alveoli is shielded by an
epithelial cell layer. This epithelium forms the first defence
line against airborne noxae and prevents invasion of the or-
ganism by infectious particles. It also traps airborne particulate
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matter and removes them from the airways. Furthermore, it
senses perturbations and orchestrates the immune response
[27].

Inflammatory lung diseases form a heterogeneous disease
entity, which subsumes infectious lung diseases, allergic re-
sponses, asthma and chronic obstructive pulmonary disease
(COPD). They significantly increase susceptibility to lung in-
jury and respiratory distress syndrome [135]. The breakdown
of the epithelial barrier is a hallmark in respiratory distress
syndromes and can be identified via the appearance of high
molecular weight serum proteins in broncho-alveolar lavage
from patients [50].

The barrier function of the lung epithelium depends on so-
called tight junctions (TJ). These heteromeric protein com-
plexes form the sealing interface between adjacent epithelial
cells [109]. The damage of TJ is the major cause of epithelial
barrier breakdown during lung inflammation. Even though
breakdown of lung epithelial barrier is life threatening, TJs
of the lung epithelium and their regulation/disturbance in
health and disease are less elaborated.

Organisation of the lung epithelium

The airways can be subdivided into a conducting and a respi-
ratory region. The conducting airways comprise the cartilagi-
nous airways from the trachea to the 10th generation of the
bronchial tree, and the non-cartilaginous airways of the small
bronchi to the terminal bronchioles until the 16th generation.
Generations 17 to 23 are considered as respiratory airways,
which finally end in the alveoli (Fig. 1a). The conducting air-
ways ensure the humidification of inhaled air, sensing of irri-
tants, trapping of inhaled particulate noxae and their removal
from the surface of airways by mucocilliary clearance. The
airways are lined by a pseudo-stratified columnar ciliated
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Fig. 1 Organisation of the airways and the airway epithelium. a The
airways are subdivided into conductive and respiratory sections. The
conductive airways contain cartilaginous and non-cartilaginous airways.
The respiratory section constitutes the respiratory airways and the alveoli.
b Scheme gives an overview of intracellular claudin (cldn) distribution in
airway epithelial cells. The claudins predominantly localised at the tight
junctions (TJ) (cldn3, 5, 8), localised at the tight junctions and the lateral

epithelium. The epithelia of the cartilaginous airways are com-
posed of glands, ciliated cells and mucus-producing goblet
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membrane (cldnl, 4), predominantly localised basolateral from the TJ
(cldn7) and localised intracellular (cldn2) are depicted. ¢ Scheme of the
alveolar epithelium. The alveolar epithelium constitutes alveolar type I
(AT-I) and type II (AT-II) cells. The tight junctions between adjacent AT-1
cells are narrower than those between AT-I and AT-II cells. The most
abundantly expressed claudins in AT-I and AT-II cells are cldn3, 4 and
18. Their abundance sequences for each cell type are given below

cells with the number of glands and goblet cells decreasing
and the number of mucus-producing club cells increasing
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from proximal to distal. In the non-cartilaginous airways, nei-
ther glands nor goblet cells are present, but an increasing num-
ber of columnar epithelial cells and club cells are found. The
respiratory airways form a transition between the conducting
part and the alveoli. They guide the inhaled air towards the
alveoli and contribute to the gas exchange. They are lined by
anon-ciliated epithelium, which is distinct from the conducting
airway as well as from the alveolar epithelium. However, with
respect to its architecture, it is more related to the conducting
airways than to the epithelium, which lines the alveolar space.
Within the respiratory section, mucus-producing cells are
sparse and are completely absent as closer the epithelium is
localized to the alveolus. The alveolar epithelium compromises
only two types of cells, alveolar type I and type II cells. Its
architecture optimises it for gas exchange.

The epithelium as a barrier between compartments

The epithelium of the conducting and respiratory airways as
well as the epithelium of the alveoli constitutes a barrier that
separates the air-filled compartment of the respiratory system
from the aqueous interstitial compartment. This separation of
both compartments from each other is a major task of the
airway epithelium; yet, at the same time, the epithelium also
has to manage a regulated exchange of solutes and water be-
tween these compartments. Two main transport pathways
across the epithelium—trans- and paracellularly—are well
established. The transcellular transport pathway depends on
the polarised distribution of ion channels and transporters
localised in the apical and basolateral membrane. Upon re-
sorption, Na* enters the cell via apically localised epithelial
sodium channels and is released into the interstitium via
basolaterally localised Na*/K*-ATPase. Paracellular transport
runs through the extracellular compartment between the later-
al membranes of neighbouring epithelial cells. It depends on
diffusion processes, which are driven by chemical and elec-
trochemical gradients across the epithelial cell layer. This
paracellular transport is controlled by heteromeric protein
complexes, which are formed at cell-cell interfaces at the api-
cal side of the lateral membranes between adjacent cells.
These complexes are called tight junctions (TJ) and seal the
lateral space at its apical side. Despite the importance of
sealing the epithelium, TJs must confer a certain permeability
to ensure a sufficient exchange and transport across the epi-
thelium. The permeability of TJs depends on the protein com-
position and can be adjusted to be permeable for solutes of
different charges, sizes and water [45, 70]. TJs are composed
of occludin and various claudins with the claudin composition
being the main regulator of tight junction permeability
(permselectivity) [71, 109]. Claudins are proteins with four
membrane spanning domains (tetraspanins) and constitute a
unique protein family consisting of 27 members [42]. A loss

of TJ permselectivity in the airways results in an un-controlled
leakage of high molecular weight proteins and water into the
airways, which finally results in the formation of alveolar
oedema and respiratory distress syndrome.

Although knock-down of individual claudins in mice so far
revealed rather mild lung phenotypes [30, 64, 75, 78, 126],
implicating that the lung can compensate the loss of claudin
function to a certain extent, some knockout strains developed
an increased susceptibility to acute lung injury [64, 75, 78]
indicating the importance of claudins and TJ function as a risk
factor in developing acute lung injury and respiratory distress
syndrome.

Tight junctions of airway epithelia

The epithelia of the conducting and respiratory airways are
optimized to maintain its specific functions and so is the
claudin composition of the TJ (Fig. 1b). Immunohistological
experiments revealed that the epithelia of cartilaginous and
non-cartilaginous airways is positive for cldnl, cldn2, cldn3,
cldn4, cldn5, cldn7 and cldn8 [24, 62, 63, 66]. However, the
intracellular localisation of these claudins differs. Cldn2 is
localised in intracellular stores rather than in apico-lateral TJ
complexes [62]. In contrast, cldn3, cldn5 and cldn8 were de-
tected exclusively in TJ complexes [24, 66], and cldnl and
cldn4 localise throughout the lateral membranes as well as to
the apico-lateral TJ complexes [24]. Cldn7 localises at the
lateral membranes basolateral of the TJ complex [24].

Tight junctions of the alveolar epithelium

The alveoli form sacks at the most distal parts of the airways.
They are lined by the alveolar epithelium (Fig. 1¢), which is
part of the diffusion barrier across which the gas exchange
occurs. To this end, the main surface of the alveolar epithelium
forms an extremely thin cell layer with a unique architecture
[26, 138]. Two cell types constitute the alveolar epithelium,
the squamous alveolar type I (AT-I) cells and the cuboidal
alveolar type II (AT-II) cells. The lateral contact between ad-
jacent AT-I cells is sealed by a narrow band formed by TJ
complexes. In contrast, the lateral contact between adjacent
AT-T and AT-II cells is formed and sealed by a much broader
TJ complex [138]. The cell type specificity of TJ morphology
is reflected by heterogeneity of claudin expression in alveolar
epithelial cells. Both alveolar epithelial cell types express
cldn3, cldn4 and the splice variant cldn18-1 most abundantly
[36, 74, 132]. Their phylogeny places cldn3 and cldn4 into the
class of classical claudins, whereas cldn18 is a member of the
so-called non-classical claudin family [72]. However, the
claudin expression pattern differs between AT-I and AT-1I
cells. Cldnl18 transcripts account for 56%, cldn3 transcripts
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for 31% and cldn4 transcripts for 10% of all claudin tran-
scripts in AT-I cells. AT-1I cells exhibit a different quantitative
sequence. In this cell type, 67% of all claudin transcripts are
cldn3 transcripts, 23% are cldn4 transcripts and only 7% of the
claudin transcripts encode for cldn18 [74]. These claudins are
all elevated in bronchio-alveolar lavage 24 h after acute lung
injury [61] underscoring their dominant expression especially
within the alveolar epithelium.

Caludins of the alveolar and airway epithelium
Cldn3

Cldn3 modifies paracellular permeability upon oxidative
stress in gastric epithelia [44] and upon exposure to the in-
flammatory factors TNF-« in submandibular glands [88].
Cldn3 was demonstrated to reduce paracellular permeability,
when overexpressed in Madin-Darby canin kidney cells [90].
Based on these studies, cldn3 can be accounted to the group of
sealing claudins. However, in cultivated alveolar epithelial
cells, cldn3 increases paracellular permeability and opposes
the sealing effect of cldn4 [91].

Cldn4

Overexpression studies revealed cldn4 as a claudin that de-
creases paracellular permeability [22, 89, 145]. A sealing
function of cldn4 was also demonstrated in cldn4 knockout
mice (64). These mice demonstrated an increased susceptibil-
ity to hypoxia and ventilator induced Iung injury and an in-
creased solute permeability of the alveolar epithelium without
altering its transepithelial electrical resistance [64]. During
early stages of acute lung injury, cldn4 becomes up-regulated,
possibly to limit lung oedema formation [144]. A role of cldn4
in compensatory alveolar fluid clearance is further supported
by the observation that increased cldn4 protein levels are as-
sociated with increased alveolar water resorption [105].
Hence, cldn4 has sealing function in the alveolar epithelium
that is necessary for volume homeostasis of the alveolar liquid
layer.

Cldn18

Four different splice variants were identified for murine
cldn18. The variants cldn18-1 and cldn18-2 are generated by
alternative splicing of the first coding exon. Alternative splic-
ing of the fourth and fifth coding exon results in the variants
cldn18-1.1 and cldn18-1.2 as well as in cldn18-2.1 and
cldn18-2.2. Cldn18-1 variants are predominantly expressed
in the lung whereas cldn18-2 variant expression is found pre-
dominantly in the stomach [94]. Cldn18 knock-down mice
showed a fairly mild phenotype. Cldn18 knockout disturbs
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TJ formation in the alveolar epithelium which is in line with
an increase in paracellular permeability [75, 78]. Despite dis-
turbed barrier function, alveolar liquid volume homeostasis
was stable and susceptibility to ventilator-induced lung injury
was even reduced in knockout animals. These mild effects are
possibly due to increased water and ion transport capacities
and a compensatory elevation of cldn4 expression levels [78].
Therefore, cldn18-1 plays a role in TJ organisation and may
also have a sealing function in alveolar epithelia.

Cldn1

Cldnl is ubiquitously expressed along the airway epithelium
[62, 63]. It confers sealing properties to TJ [24, 56, 87].
Phosphorylation at its N-terminal domain by MAP kinases
enhances cldnl’s sealing properties [37]. Cldnl does not lo-
calise exclusively at the TJ but throughout the lateral mem-
branes [24, 62], which hints that cldn]l may also regulate cell-
cell attachment between adjacent epithelial cells. This agrees
with the observation that cldn1 supresses tumour invasion and
metastasis [19] and is involved in modulating migration of
A549 cells [111].

In accordance with the sealing properties of cldnl, in-
terfering with cldnl abundance decreases tightness of air-
way epithelia. Protein kinase D3 impairs epithelial barrier
function in airway epithelia via cldnl down-regulation
[17]. Activation of protease-activated receptor 2 (PAR2)
transiently down-regulates cldnl expression and decreases
epithelial permeability with a similar time course [95]. In
contrast, thymic stromal lymphopoietin (TSLP) [85] and
peroxisome prolifertator-activated receptor (PPARYy) [96]
both increase cldnl expression and improve tightness of
human nasal epithelia.

Cldn2

Cldn2 introduces a high permeability for cations into TJ [8,
38, 57, 149]. It is the only claudin described so far that also
forms paracellular pores for water [106, 141]. The pathway
of water flux across airway epithelia is a matter of debate.
Studies by the Verkman group, employing genetic knock-
down of aquaporins, revealed a minor contribution of the
transcellular, and therefore TJ independent pathway, on
transepithelial water transport in the lung [83, 84, 114,
130, 131], suggesting a major contribution of TJ-
dependent paracellular water flux to overall transepithelial
water flux. However, other studies found that perturbations
of aquaporin activity disturb transepithelial water transport
and volume homeostasis in the airways [2, 32, 35, 113,
127], suggesting that TJ-independent water transport path-
ways through aquaporins contribute significantly to fluid
transport across the airway epithelium. A more recent
study now suggests that both processes occur in a different
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manner, where basal water transport activity is dominated
by a paracellular pathway, whereas a compensatively in-
creased water resorption is predominantly carried by an
aquaporin-dependent transcellular pathway [110]. In air-
way epithelial cells, cldn2 localises in intracellular stores
rather than at the TJs [62] and is regulated by TNF-« [86].
However, its specific role in airway epithelial cells remains
elusive.

Cldn5

Cldn5 expression depends on lung developmental stage.
During the canalicular stage, alveolar epithelial cells express
cldn5 [63], which agrees with cldn5 expression of primary
cultivated foetal alveolar cells [28]. The healthy alveolar epi-
thelium expresses low levels of cldnS [74]. The airway epi-
thelium expresses cldn5 independently of developmental
stage [24, 62, 63]. Paracellular epithelial permeability in lung
epithelia increases with increasing cldnS expression [24, 34,
132, 134]. This is accompanied by an increased susceptibility
to oedema formation and lung injury as it was observed in
lung for patients and Iung epithelia after chronic alcohol in-
gestion [34, 41, 112].

NFkB is a major regulator of cldn5 in the lung. Inhibition
of basal NFkB activity in airway epithelial cells increases
cldn5 expression in the absence of inflammation [134]. This
is in line with the observation that TNF-«, which activates the
classical NFkB signalling pathway, down-regulates cldn5
promotor activity [11, 18]. Indeed, increased TNF-« levels
attenuate cldn5 expression in a mouse model of acute lung
inflammation [86]. Overall, NFkB-dependent reduction of
cldn5 seems to improve epithelial barrier function during lung
inflammation and seems to be beneficial with respect to epi-
thelial function. Contrary to that, virus infection-induced lung
injury is associated with decreased cldn5 expression levels
[10, 54, 79]. In the lung, cldn5 expression is also observed
in endothelial cells of blood vessels [63], and Cldn5 is dem-
onstrated to protect endothelial barriers from LPS-induced
leakage.

It is not yet clear whether this dualism of cldn5 function
in the lung is due to different effects of cldn5 on endothe-
lial and epithelial cell-cell interfaces, due to different reg-
ulatory mechanisms involved or simply due to differences
in the underlying damage. However, because of this dual-
ism, it is difficult to judge which effect dominates in the
lung during inflammation.

Cldn7

IFN-y enhances cldn7 expression and the transepithelial elec-
trical resistance in submandibular glands [1]. This highlights
cldn7 as a sealing claudin at first sight. However, studies ad-
dressing the permeability properties of cldn7 revealed a more

complex function of cldn7 on TJ permeability.
Overexpressing cldn7 in the porcine kidney, epithelial cell line
LLC-PKI1 resulted in an increased transepithelial electrical
resistance via reducing paracellular CI” permeability while
forming a Na* pore. While cldn7 confers ion or charge selec-
tive pores to the TJ and reduces the overall permeability for
ions, it increases the permeability of TJ to uncharged mole-
cules [6]. Silencing of cldn7 expression in LLC-PK1 reduces
transepithelial resistance and increases paracellular
permselectivity for Na* over C1™ [51]. These results agree with
the results from the above-cited cldn7 overexpression experi-
ments [6]. However, when cldn7 was silenced in Madin-
Darby canine kidney cells (MDCK), the transepithelial resis-
tance decreased and paracellular permselectivity for CI in-
creased over that for Na* [51]. This indicates that the effect
of cldn7 on TJs depends on its cellular background.
Phosphorylation of cldn7 within its C-terminal, intracellular
domain via WNK4 kinase modulates cldn7 permeability. It
instead promotes paracellular ion permeability and increases
CI' permselectivity of TJ [124]. Possibly, differences in post-
transcriptional protein modification explain the variability in
cldn7 function observed within different cell types.

No lung phenotype is described for cldn7 knockout mice so
far [30, 125]. However, cldn7 knockout resulted in renal salt
wasting and chronic dehydration [125] which underscores the
pivotal role of cldn7 in transepithelial ion transport.

Cldn7 knockout affects expression of its lateral adhesion
complexes by down-regulation of the epithelial adhesion mol-
ecule EpCAM [73] in case of intestine-specific inducible
knockout strains [122] or in case of non-organ specific knock-
out strains via down-regulation of integrin-o2 [30]. Only in
the later case, the mucosal architecture of intestinal epithelium
was massively disturbed due to cldn7 knockout [30]. In air-
way epithelia, cldn7 localises throughout the lateral mem-
brane of epithelial cells [24]. Possibly, organisation of lateral
adhesion junctions between epithelial cells is one of the major
tasks of cldn7 in the airways. This hypothesis is strengthened
by the observation that cldn7 regulates cell attachment by
interacting with integrin-31 in human lung cancer cells [82].

Cldn8

Cldn8 augments tightness of TJ[9, 60, 150] by selectively reduc-
ing paracellular permeability to monovalent and divalent cations
[150] as well as to protons, ammonium ions and bicarbonate
[150], whereas CI” permeability of TJ remained unaffected.
Therefore, cldn8 increases permselectivity of TJ for CI. Cldn8
interacts with cldn4, and cldnS8 is required to localise cldn4 at the
TJs in MDCK cells [52]. This led to the conclusion that both
claudins are required for paracellular CI" permselectivity.
Cldn8 mediated sealing of TJ to Na* parallels Na* absorption in
human colon cells [52], and hence, it is proposed that cldn8 aug-
ments sodium resorption by preventing paracellular leakage of
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Na". Investigation of cldn§ function in the lung is rather sparse.
Immnunohistochemical experiments revealed that cldn8 local-
ises along conductive and respiratory airway epithelia, where it
accumulates apico-laterally at the TJs [66]. In the alveolar epithe-
lium, cldn§ staining revealed a faint and cytoplasmic staining in
some alveolar type Il cells [66]. In the airway epithelium, cldn8 is
up-regulated by glucocorticoids but not by mineralocorticoids
[66]. It is required for recruitment of occludin to the TJs, and
thereby, it confers sealing properties and Cl permselectivity to
the TJ [66].

The airway epithelium during inflammation

The airway epithelium constitutes the first cell layer that gets
into contact with inhaled noxae and has to impede impending
injuries. However, it also comprises an ideal structure to sense
inhaled noxae (Fig. 2). Human bronchial epithelial cells were
recently identified as a source of cytokines in the lung, and
therefore, the airway epithelium was proposed as a sensor of
airborne noxae [27]. Bacterial and viral infections induce
TNF-«, IL-1«, IL-13, IL-6, IL-8 and IL-18 [21, 77, 101,
115, 143]. In addition, allergic agents such like cationic pep-
tides [21], proteolytic active [12, 29, 58, 59, 68, 117] as well as
non-proteolytic allergens [98] induce the release of IL-6, IL-8,
granulocyte macrophage colony-stimulating factor (GM-
CSF) and monocyte chemotractant protein 1 (MCP-1). The
response to proteolytically active allergens involves store-
operated Ca®* entry in epithelial cells [58, 59], and it should
be noted that bacterial exotoxins also activate store-operated
Ca®* entry [128]. Other factors, which belong to danger-
associated molecular patterns (DAMP), like adenosine [117],
prostaglandin [20] or histamine [120], initiate IL-1(3, IL-6, IL-
8 and GM-CSF production and release. Further, stimuli for
chemokine release from airway epithelial cells are inhaled
air pollutants [47, 119] and cold [108]. More recent investiga-
tions revealed airway epithelial cells as a source of IL-25, IL-
33 and thymic stromal lymphopoieitin (TSLP). This subset of
cytokines is released by airway epithelial cells upon viral [15],
bacterial [33] and fungal infection [48] as well as a result of
allergen stimulation [23, 53, 65, 93, 97, 102].

These epithelial responses are important for recruiting im-
mune cells and orchestrating their complex interaction at the
side of airway perturbation. A balanced inflammatory re-
sponse is a requisite to successfully protect lung from damage.
However, damage of tissue depends on an overwhelming in-
flammatory response.

Tight junctions and asthma

Asthma is a complex disorder, which involves environmental
interactions and chronic inflammation of the airways.
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According to its immunology, asthma can be subdivided into
two major types, the T helper type 2 cells high (Ty2-high) and
the T helper type 2 cells low (Ty2-low) endotype [116].

Ty2-high endotype is initiated directly via IL-25 and IL-33
released by epithelial cells or indirectly via stimulation of
innate lymphocytes type 2 [80]. A third initiation pathway acts
via TSLP stimulation of dendritic cells, which attenuate T2
polarisation. Neither TSLP, IL33 nor IL23 impairs airway
epithelial barrier [107]. T2 and ILC2 cells recruit eosino-
phils, and, via induction of B cells, also mast cells and baso-
phils. Thus, Ty2-high endotype is characterised by enrich-
ment of eosinophils, basophils and mast cells [104]. The ac-
cumulation of these immune cells results in a typical chemo-
kine pattern, called Tyy2-pattern, with high levels of IL-4, IL-5
and IL-13.

Ty2-low endotype is initiated via IL-13, TGF-3 and IL6,
which induce recruitment of neutrophils via stimulation of IL-
17 release from T helper cells type 17 (T17). An enrichment
of neutrophils characterises this asthma endotype [104]
(Fig. 2).

Especially, the TH2-high endotype is involved in exacer-
bations and also suggested to increase epithelial damage in
asthma patients.

Ty2-driven TJ damage: 1L-4/IL13

IL-4 and IL-13 directly interfere with TJ. In Calu3 cells, IL-4
induces disassembly of TJ molecules [100], IL-4 and IL-13
increase paracellular permeability in human bronchial epithe-
lial cells [107, 118], in sinosonal epithelial cells [142] and in
air-liquid interface cultivated paranasal sinus mucosa cells
[16]. Although IL-4 and IL-13 show similar effects on TJ in
these airway epithelial cell models, depending on the investi-
gated model, they act via different pathways. In Calu3 epithe-
lia, IL-4 is reported to activate an EGFR-dependent
MAPK/ERK1/2 pathway [100], whereas in human bronchial
cell derived epithelia IL-4 as well as IL-13 act via the Janus
kinase/signal transducer and activator of transcription (JAK/
STAT) pathway [107], most likely via binding to the same
receptor, namely heteromeric IL-13Ro/IL-4Rx receptor
[139]. Indeed, both receptor subunits have an overlapping
expression pattern in lung epithelia. IL-4Rx as well as IL-
13R« both were detected in human bronchial epithelial cells
in vitro and in vivo [4, 46, 129, 133, 139]. IL-13R«x expres-
sion levels are increased in bronchial biopsy specimens from
asthma patients which probably confers increased bronchial
sensitivity to Ty2 cytokines [69].

The effect of IL-4 and IL-13 on claudin expression pattern
differs between the investigated epithelia. Epithelial brush
samples from asthma patients with high IL-13 levels and IL-
13-exposed human bronchial epithelial cells showed de-
creased cldnl8.1 levels [118]. In mouse, lung IL-13 reduces
cldn18 while increasing cldn4 expression [118]. In another
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Fig. 2 Overview of the
dominating immune response
activating pathways.
Perturbations of the airway
epithelium initiate the release of
cytokins directly from epithelial
cells. TSLP, IL-25 and IL-33
activate T helper cell type 2
(Ty2)-driven inflammation,

allergens, PAMPS/DAMPS, poulutants, bacterrial & viral infection, injury

e

which is dominated by
eosinophils (eos). This response
results in an enrichment of 1L-4,
IL-13 and IL-5. Especially IL-13
and IL-4 are the dominating
factors, which damage the
epithelium during Ty;2-driven
inflammation. Neutrophil
response dominates the Ty2-low
inflammation. It becomes
activated via neutrophil
recruitment by cytokines either
directly released from epithelial
cells or indirectly via activation of
T helper cell type 17 (Ty17) cells.
1C2 innate lymphoid cell type 2,
baso basophil, DC dendritic cell,
mac macrophage, mast mast cell,
neu neutrophil

IL-17

-

TNF-a

human bronchial epithelial cell model, IL-13 and IL-4 are
reported to reduce protein density at the TJ without causing
major changes in cldnl, cldn2, cldn3 and occludin protein
levels [107]. Sinonasal epithelia from patients with allergic
fungal rhino sinusitis, which display high Ty2 cytokine levels,
showed increased levels of cldn2 which most likely contrib-
utes to the tight junction leakiness [16]. Overall, IL-4 and IL-
13 have high potential to damage TJ in airway epithelia.

TJs in early lung inflammation, COPD and acute
lung injury

Neutrophil enrichment in lung is a hallmark of early lung
inflammation, COPD and acute lung injury. Elevated levels
of neutrophils are a major criterion to distinguish COPD from
asthma [3]. The recruitment of neutrophils is driven via direct
perturbation of epithelial cells. Airborne insults such like cig-
arette smoke, diesel dusts, bacterial infection and allergens
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IL 25
7“’ IL-33
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1
I— - —
|
|
|
|
|
IL-13 L4 =~
y

IL-13 /IL-4 / IL-5 <

induce the release of chemokines IL6, IL8, TNF, IL-1, GM-
SCF, MCP-1 from airway epithelial cells [12, 20, 21, 29, 47,
58, 59, 68, 77, 98, 101, 115, 117, 119, 120, 143]. Release of
these cytokines either recruit neutrophils directly [140] or in-
duce IL-17 release from Ty17 cells [137]. The outcome of
neutrophil enrichment is a cytokine profile, which is dominat-
ed by TNF-«, IL-1p3, IL-6, 1L-17, IL-18, IL-32 and TGF-f3
[14] (Fig. 2).

Especially, TNF- plays a major role in perturbing tight
junctions in airway epithelia. TNF-« acts via NFkB, which
is considered as a major regulator of tissue inflammation [99].
In mammals, the NFkB family consists of five transcription
factors, p50, p52, REL, RELA and RELB, which form either
hetero- or homodimers. In the resting stage, NFkB dimers
bind proteins of the NFkB inhibitor family IkB. Activation
of NFkB signalling induces expression and release of pro-
inflammatory factors such like IL-1, IL-2, IL-6, IL-8 G-CSF,
GM-CSF, TNF-«, TNF{ and IFN-p [40]. This pro-
inflammatory effect of NFkB is also demonstrated for airway
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epithelial cells [43, 67, 103, 121, 147, 148]. Activation of
NFkB by TNF-« follows the canonical or classical activation
pathway, which involves NEMO, IKK« and IKK 3 mediated
phosphorylation of IkB and its subsequent dissociation from
the p50 complex [99]. The activation of the canonical or clas-
sical NFkB pathway increases paracellular permeability for
instance in intestinal barrier [5] and in retinal endothelia
[13]. Also, in airway epithelia, TNF-& down-regulates
paracellular epithelial barrier function [25]. The genetic mod-
ulation of TNF-« in mice revealed that TNF-o negatively
regulates tight junction proteins, namely cldn2, cldn4, cldn5
and ZO-1 in the lung, which results in increased alveolar per-
meability [86]. Activation of NF«kB also induces a pro-
inflammatory response, and thus, it induces the production
and release of a variety of proinflammatory factors, which
potentially interferes with TJ integrity. However, NFkB has
the ability to modulate TJ permeability directly. Even in the
absence of inflammation, inhibition of constitutive basal
NF«kB activity in human airway epithelial cells causes an up-
regulation of cldnS expression, disturbs TJ organisation and
increases paracellular permeabilty [134]. Furthermore,
neutralising antibodies for IL-6 and IL-8 did not hamper
TNF-o-induced perturbations of TJs in human airway epithe-
lial cells [43]. Thus, TNF-« has the potency to perturb TJ
function directly via NFkB without further need of any para-
or autocrine mechanisms.

Interfering with the transcriptional control of TJ proteins is
not the only pathway involved in TNF-«-mediated disruption
of TJs. TNF-« also interferes with intracellular localisation of
TJ proteins, even of those which expressional level remains
unaffected [25]. In human colon epithelial cells, TNF-« in-
duces disassembly of TJ supposedly via src-kinase mediated
modulation of protein turnover at the TJ [7]. Also, in human
airway epithelial cells, src-kinase inhibition attenuates
TNF-o-induced TJ disruption and restores at least partly in-
tracellular localisation of TJ proteins [43].

The pivotal role of the TNF-o/NF«B pathway on lung epi-
thelial barrier function is underscored by the fact that inhibition
ofthe signalling pathway reduces the risk ofacute lung injury in
models of inflammatory lung diseases [146, 151, 152].

TJs and respiratory failure

Breakdown of airway epithelial barrier function is a diagnostic
marker for respiratory distress syndrome and lung injury [50]. It
indicates TJ breakdown to be causative in developing this life-
threatening lung failure. Inflammation is a major factor, which
predisposes patients to lung injury and respiratory distress syn-
drome[135]. However, experiments in knockout mice for several
tight junction proteins revealed that those animals developed
only mild lung phenotypes but they showed an increased
susceptibility for lung injury [64, 75]. Besides barrier function,

@ Springer

decreased fluid resorption across the airway epithelium is an
additional susceptibility factor for lung injury and respiratory
distress syndrome and worsens the clinical outcome in patients
[136]. Airway and alveolar epithelia compensates for alveolar
oedema formation or elevated apical surface liquid volumes by
up-regulating active ion resorption [31, 39,49, 55,92, 123] or via
increasing transcellular water permeability [ 110] to facilitate flu-
id clearance.

However, the permselectivity of TJ is considered as a pre-
requisite for a resorptive fluid transport across epithelia [76],
and indeed, TJ perturbation by cldn4 down-regulation is asso-
ciated with a decreased alveolar fluid clearance [105]. Given
this evidence, it is conclusive that an increase of transepithelial
transport could not sufficiently compensate lung oedema for-
mation in the presence of TJ damage. Indeed, up-regulation of
transepithelial transport capacity alone did not sufficiently
compensate exudate formation in a mouse model of LPS-
induced lung injury. Instead, exudate clearance and lung
symptoms significantly improve, when transepithelial trans-
port capacity was increased in combination with a restoration
of TJ tightness [81]. Therefore, elucidating mechanisms of TJ
breakdown during lung inflammation or identifying protective
mechanisms that prevent inflammatory TJ damage will help to
prevent lung injury or respiratory distress syndrome in pa-
tients with lung inflammation.

Concluding remarks

Inflammatory lung diseases constitute a broad spectrum of
diseases. They are a major risk for life-threatening lung injury
and respiratory distress syndrome [135]. The up-to-date ther-
apeutic approaches focus on resolving inflammation.

Formation of lung oedema and exudates causes respiratory
distress, and more recent studies demonstrated that TJ damage
does not only cause exudate formation but also attenuates its
clearance [81, 105]. Therapeutic strategies that attenuate TJ
damage during inflammation and/or support TJ restoration
will improve clinical outcome of patients. Elaborating the
function of TJ and their molecular regulation in the lung will
enhance our understanding of the lung epithelium itself and
will help to develop novel strategies to treat patients with
inflammatory lung diseases.
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