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Abstract

Multidirectional interactions among the immune, endocrine, and nervous systems have been 

demonstrated in humans and non-human animal models for many decades by the biomedical 

community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune 

interactions can be conceptualized using a series of feedback loops, which culminate into distinct 

neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, 

which can in turn reciprocally modulate behavior. For example, the behavioral aspects of 

reproduction, including courtship, aggression, mate selection and parental behaviors can impinge 

upon neuroendocrine-immune interactions. One classic example is the immunocompetence 

handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits 

important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-

immune pathways can promote the development of altered behavioral states, such as sickness 

behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an 

active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore 

this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been 

relatively underappreciated in comparative species. The field of ecoimmunology, while 

traditionally emphasizing the study of non-model systems from an ecological evolutionary 

perspective, often under natural conditions, has focused less on the physiological mechanisms 

underlying behavioral responses. This review summarizes neuroendocrine-immune interactions 

using a comparative framework to understand the ecological and evolutionary forces that shape 

these complex physiological interactions.
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No longer are we confined to considering solely what happens in the brain 

following the injection of immune modulators, or what happens in the immune 

system after interfering with neurotransmitter or neuroendocrine systems. Instead, 

the questions of what evolutionary advantages or disadvantages a response confers 

to an organism have become important considerations.

-Michael Harbuz (1993). “Neuroendocrine-immune 

interactions” Trends in Endocrinology and Metabolism

Introduction

The quote above is significant because it emphasizes the foresight that the late Michael 

“Mick” Harbuz possessed as a young biomedical researcher while contributing to the 

nascent field of psychoneuroimmunology (PNI). He realized that evolutionary forces are 

important in shaping crosstalk between the brain and neuroendocrine system. As integrative 

and comparative physiologists, we often take for granted that organisms coordinate multiple 

physiological systems to meet the demands of everyday life, as well as adjust to unexpected 

environmental and social challenges. There is an implicit assumption that crosstalk between 

different physiological systems is the norm, rather than the exception. Several decades ago, 

this was not so. In fact, it was rare to consider integration of multiple physiological systems 

when investigating a core physiological problem. Many scientists were invested in their own 

“research silos,” which prevented them from navigating outside their area(s) of expertise 

(and comfort level). Although barriers were continually being broken down by advances in 

some fields, such as pyschoneuroimmunology (also referred to as 

pyschoneuroendocrinology), many scientists were reluctant to “look outside the box” (Ader, 

2000; Ader and Cohen, 1981). Several disciplines did not receive significant integration with 

each other until more recently. The modern integrative biologist, now more so than ever, is 

faced with the challenging task of understanding multiple physiological and genetic systems 

of organisms using such disciplines as endocrinology, neuroscience, animal behavior, 

immunology, biomechanics and bioengineering, genetics and genomics, and cell and 

molecular biology.

This synoptic approach is greatly amplified by studying organisms in their natural 

environment. Given that coordination between multiple physiological systems is complex to 

understand in a controlled laboratory setting, assessing the role of extrinsic and intrinsic 

factors in shaping these functional interactions adds an even greater challenge and layer of 

complexity. For example, environmental threats, such as predation and storms, can alter the 

circuitry of neuroendocrine-immune-behavior “supersystems” by activating the “fight-or-

flight” response, which triggers the hypothalamic-pituitary-adrenal (HPA) axis and 

sympathetic nervous system to release glucocorticoids and catecholamines from the adrenal 

glands, respectively, into the circulation. These hormones, in turn, regulate the immune 

system through suppression, enhancement, or redistribution of immune cells throughout the 

body (Dhabhar, 2002; Dhabhar and McEwen, 1999; Martin, 2009). Assuming that these 

different responses by the immune system optimize survival, the mechanisms underlying the 

effect of glucocorticoids are certainly not uniform, and vary in relationship to the magnitude 
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and duration of the stressor, as well as the life-history stage, early-life experiences, and 

behavior of the stressed animal.

Neuroendocrine-Immune (NEI) interactions

It is becoming increasingly apparent that the endocrine system and its myriad connections 

with the nervous system are regulated by input from the immune system and vice versa 

(Figure 1). Survival of an organism is predicated upon the ability of cells, tissues, and organs 

to communicate with each other to maintain homeostasis and to carry out important life-

history functions, such as reproduction, growth, migration, molt, etc.. A primary component 

of this web or nexus of interactions is mode of communication in the form of bioregulatory 

signals: neurotransmitters, classical blood-borne hormones, and cytokines/chemokines. The 

other necessary components are the receptors that bind to these chemical mediators at target 

cells, tissues, and organs. Importantly, the existence of this type of crosstalk is critically 

dependent upon this dynamic relationship. Crosstalk is effectively eliminated when either 

signal or receptor is absent. Modulation of the response can occur at the level of signal 

production or at the level of receptors. Moreover, these bioregulators and receptors are not 

tied to one physiological system. For example, immune cells are responsive to hormonal and 

neural stimulation, and have the capacity to produce endocrine secretions and 

neurotransmitters, while endocrine cells possess receptors for cytokines and 

neurotransmitters (Besedovsky and del Ray, 1996; Raison et al., 2002). Conversely, 

microglia from the CNS is well known to secrete cytokines that have widespread effects 

upon neuroinflammatory responses in the brain and behavior (Streit et al., 2004). Moreover, 

a variety of endocrine cells are responsive to soluble cytokines/chemokines, which allows 

for fine-tuning of other physiological processes during immune challenge (Blalock, 1994a; 

Petrovsky, 2001). Previous separation of these three distinct systems has largely been a 

semantic issue; now there is evidence of complete integration of NEI interactions in variety 

of vertebrate and invertebrate taxa (Adamo, 2006; Ader and Cohen, 1981; Bilbo and Klein, 

2012; Demas et al., 2010; Demas and Carlton, 2015; Engelsma et al., 2002; Kaiser et al., 

2009; Ottaviani, 2011).

Recognition of NEI interactions began with biomedical research that occurred in the early 

twentieth century, starting with basic neuroendocrine interactions. Four decades of 

neuroimmunological research by Hugo Besodovsky and colleagues provided firm support of 

cross-talk between neuroendocrine and immune systems (Besedovsky and del Ray, 1996). In 

1975, Robert Ader and Nicholas Cohen demonstrated behavioral conditioning of the 

immune system in rats (Ader and Cohen, 1975), which provided strong evidence that the 

nervous system can directly affect immune functioning. Edwin Blalock further proposed an 

immunoregulatory role for the brain and a sensory function (coined “the sixth sense”) for the 

immune system (Blalock, 1994b). Taken together, a solid body of research has categorized 

NEI interactions, but has yet to gain traction by comparative and integrative physiologists.

NEI crosstalk in vertebrate and invertebrates animals is a recent area of investigation that has 

started to garner attention from a comparative perspective (Demas et al., 2010; Demas and 

Carlton, 2015). Although this comparative approach has largely focused upon vertebrates, 

recent research on invertebrates in this field has exploded. Some of the important insights 
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that have been highlighted in previous reviews are that vertebrates and invertebrates share 

analogous mechanisms for coordinating NEI interactions and homeostasis (Adamo, 2006, 

2008; Demas et al., 2010), and the seemingly disparate fields of PNI and ecoimmunology 

can benefit from each other (Demas and Carlton, 2015). Specifically, ecoimmunology is an 

integrative field that involves understanding the proximate and ultimate factors that regulate 

variation of immunity within ecological and comparative contexts (sensu Demas and Nelson, 

2012). In contrast, PNI is the study of interactions between physiological processes and the 

nervous system and immune systems, with particular emphasis upon human health and 

disease (Ader, 2000). Importantly, PNI can inform ecoimmunologists about the mechanistic 

underpinnings of the brain and immune system, whereas ecoimmunology can provide 

insight to PNI by examining NEI interactions in free-living organisms, illuminating life-

history and energetic tradeoffs, and exploring integration with disease ecology and 

epidemiology (Demas and Carlton, 2015).

The purpose of this review is to emphasize NEI relationships from ecological and 

evolutionary perspectives, and to assess the effect of behavior in interacting with NEI 

circuits. First, we introduce terminology that will assist us in understanding the complexity 

of these interactions. NEI feedback loops are key regulators of homeostasis. Collectively, the 

actions of NEI circuitry upon organismal physiology, morphology, and behavior produce a 

collective NEI phenotype. Second, we evaluate the importance of behavior in shaping NEI 

interactions in wild populations. The role of behavior in mediating NEI interactions is rooted 

in the fields of psychoneuroimmunology/psychoneuroendocrinology (Dantzer and Kelley, 

2007; Demas and Carlton, 2015). Lastly we focus on three areas of research that have 

attracted significant interest in the fields of ecoimmunology and PNI: (1) HPG axis and 

immunity, (2) modulation of sickness behavior, and (3) metabolic signals and immunity. Of 

course, there are many other interesting aspects of NEI dynamics that we will not have the 

opportunity to review (e.g. gut-microbe interactions, maternal effects, etc.). The upcoming 

special edition “Neuroendocrine-Immune Interactions: Implications for Integrative and 

Comparative Physiologists” in Hormones & Behavior will showcase these topics from 

experts in the field.

NEI circuits

Homeostasis is the ability of organisms to maintain internal stability even in the face of 

environment change. NEI feedback loops act to maintain homeostasis through negative 

feedback-- effector molecules produced from NEI cascades feed back to inhibit their own 

production. In contrast, positive feedback involves an unstable process where the product 

stimulates the NEI cascade to generate more product, leading to runaway amplification. In 

some cases, to halt the amplified cycle, the feedback loop is broken by induction of a change 

in state that diverges from homeostasis. Understanding these two types of feedback are 

critical for understanding most physiological feedback loops, including NEI interactions.

At a basic level, a simple circuit is a closed path through which signals flow. A basic 

electrical circuit includes (1) a voltage source (battery), (2) the load (the work done by the 

circuit; e.g., turning on a light bulb), and (3) a conductive path (route through which 

electrons move). Importantly, a closed circuit forms a loop (e.g., from negative side to 
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positive side of the voltage source). Do NEI circuits behave in a similar fashion to electrical 

circuits? On the one hand, the major components observed in an electrical circuit are also 

seen in NEI circuits. For example, endocrine, immune, and/or neural cells that produce 

various bioregulatory signals (hormones, cytokines, neurotransmitters) act as the voltage 

source. Similarly, the cumulative physiological effect resulting from receptors binding to 

these chemical signals (release of another bioregulator, signal transduction, and/or 

physiological effect; e.g., muscle contraction) would represent the load. The conductive path 

would either be local (autocrine, paracrine) or blood-borne (endocrine) whereby chemical 

signals traverse to reach target cells/tissue. On the other hand, modeling feedback loops 

using electrical circuits is quite complicated (but certainly achievable) and involves the use 

of additional components of a circuit (transistors, resistors, and capacitors). Modeling of 

NEI feedback loops using advanced electrical engineering concepts could increase our 

understanding of biological feedback systems, but is certainly beyond the scope of this 

review.

For the sake of simplicity, we distill NEI interactions into two broad types of circuits: (1) 

long loop interactions, and (2) local interactions (Besedovsky and del Ray, 1996). Long loop 

interactions entail processes that involve signaling across multiple organ systems. For 

example, an immunogen that stimulates the immune system leads to production of pro-

inflammatory cytokines from various immune cells (e.g., macrophages), that in turn affect 

distant neuroendocrine structures. In contrast, local interactions involve NEI dynamics that 

occur within the same tissue or organ (e.g., brain, immune organ). A salient comparison 

involves the effect of peripheral versus local glucocorticoids upon immune function. In 

developing zebra finch (Taeniopygia guttata), corticosterone is the major circulating 

glucocorticoid. However, in thymic tissue, cortisol is the predominant glucocorticoid 

(Schmidt et al., 2009, 2010; Schmidt and Soma, 2008; Taves et al. 2016a), which suggests 

that local steroids may produce different effects from those of systemic steroids. In neonatal 

and postnatal mice, local concentrations of corticosterone are elevated in thymus, liver, 

spleen, and/or brain relative to circulating levels (Taves et al. 2015). Lymphoid-derived 

corticosterone is not produced de novo from cholesterol, but regenerated from adrenal 

metabolites (Taves et al. 2016b), which does not alter circulating levels since inactive 

metabolites (11-deoxycorticosterone) with little glucocorticoid activity are used. Conversely, 

this regeneration mechanism permits higher glucocorticoid concentrations to accrue locally 

that would otherwise passively track circulating levels. Local elevation of glucocorticoids 

regulates selection of immunocompetent T-cells, while systemic levels are low to 

presumably minimize the detrimental effects of chronic glucocorticoid exposure during 

development (Taves et al. 2015). Taken together, the relationship between glucocorticoids 

and immune function is altered depending upon which NEI circuit is employed (long-loop 

(peripheral) versus local circuit).

Understanding the dynamics of NEI circuits can provide key insights upon whole 

organismal processes. Importantly, long loop and local interactions work together to regulate 

homeostasis. Major inputs into the overall circuit include environmental factors, social 

interactions, as well as pathogens, whereas primary outputs include immunological 

responses and hormonal and behavioral changes (Figure 2). Local NEI interactions occur 

within brain as well as autocrine/paracrine interactions within various immune tissues. 
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Dysregulation in any of these circuits can lead to pathology and increased susceptibility to 

disease (Bilbo and Klein, 2012; Jara et al., 2006; Masek et al., 2003; Petrovsky, 2001). 

Alternatively, we argue that some alterations in NEI circuits are not necessarily detrimental, 

but can derive potential fitness benefits in certain environmental and social contexts (see 

below).

A theoretical framework for examining NEI interactions is bow tie architecture (Ottaviani, 

2011; Ottaviani et al., 2008). This involves conceptually modeling a wide variety of stimuli 

that are converted into fine-tuned responses by passing through or “fanning into” a core 

integrating center, termed the “knot.” Although limited by evolutionarily conserved elements 

that are mostly immutable, the knot is able to integrate a wide range of stimuli (e.g., 

immune, social, physical, hormonal, etc.) and convert them into fine-tuned biological 

responses that “fan out” from the knot and feedback to various physiological parameters. 

The advantage of this approach is the identification of core elements that are highly 

conserved, and thus less likely to change within and between individuals, populations, and 

species. It should be noted that the bowtie method is purely conceptual and does not 

necessarily identify precise circuitry and pathways that are necessary to understand specific 

NEI interactions. Nonetheless, comparing multiple methods of conceptualization using a 

combination of NEI circuits and bow tie modeling will undoubtedly enhance our 

understanding of the evolution of complex NEI interactions.

NEI phenotypes

We can define the NEI phenotype as the collective actions of NEI feedback loops in 

regulating the physiology, morphology, and behavior of an organism. The concept of distinct 

and predictable NEI interactions towards pathogenic challenge or environmental/social 

factors has led to the hypothesis that multiple NEI phenotypes occur within populations 

(Nazar et al., 2015). The classic example of NEI phenotypes involves Lewis and Fischer 

(F344) rats. These two inbred strains exhibit opposing susceptibility to autoimmune disease 

and tumors, which have been linked to altered HPA axis function (Sternberg et al., 1989; 

Stohr et al., 2000). Specifically, Lewis rats display heightened Th1-pro-inflammatory 

responses, are more vulnerable to inflammatory and autoimmune dysfunction, and exhibit 

lower baseline glucocorticoid levels than Fisher rats (Sternberg et al., 1989; Stohr et al., 

2000). Female Sprague-Dawley rats apparently differ in their immune and endocrine 

responses to inflammatory challenge depending upon which vendor they originate from 

(Bodnar et al., 2015). Similar dichotomies in NEI phenotypes have been reported in captive 

birds (Japanese Quail, Coturnix coturnix). Quail with the lowest corticosterone profiles 

exhibited heightened inflammatory responses, reminiscent of Lewis rats whereas “Fischer-

like” quail displayed the opposite response (Nazar et al., 2015). In a healthy population of 

humans, baseline epinephrine output (but not cortisol or sex hormone concentration) 

correlated inversely with pro-inflammatory cytokine production, and two phenotypes of low 

vs. high-responders could be identified (Elenkov et al., 2008).

The lingering questions that remain for integrative and comparative physiologists involve 

NEI phenotypes in wild populations. Does selection favor certain NEI phenotypes over 

others in different environmental or social settings? How flexible are NEI interactions in 
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general? Do NEI phenotypes in some cases constrain the evolution of behavior/personality? 

And how best do we characterize and measure NEI phenotypes? How are NEI phenotypes 

related to individual variation in disease susceptibility and exposure rates? For example, do 

superspreaders (individuals that disproportionately spread disease through increased 

transmission/infectiousness) have altered NEI phenotypes compared with other members of 

the population? Do NEI phenotypes within individuals change according to season, sex, or 

lifespan? Tackling these types of questions is important for understanding NEI interactions 

from ecological and evolutionary perspectives.

If we focus on single physiological systems for a moment, then there is ample evidence of 

plasticity within endocrine, immune, and neural systems. For example, among wild 

populations, there is clearly variation in HPA axis responsiveness within species (Romero, 

2002; Wingfield et al., 1997; Wingfield and Romero, 2001; Wingfield et al., 1992), as well 

are their being immunological differences across populations (Adelman et al., 2010, 2013; 

Ardia, 2007; Matson, 2006; Møller et al., 2006; Owen-Ashley et al., 2008). However, 

evidence for life-history variation in NEI interactions (in this case, between glucocorticoids 

and immunity) is scant. In house sparrows (Passer domesticus), glucocorticoid treatment 

suppresses cell-mediated immunity in birds inhabiting temperate, but not tropical, regions 

(Martin et al., 2005). In a reciprocal NEI interaction, plasma glucocorticoid level following 

bacterial lipopolysaccharide challenge is higher in Siberian hamsters (Phodopus sungorus) 

adapted to short day lengths (winter-like conditions) versus long day lengths, suggesting a 

photoperiodic effect (Carlton and Demas, 2015a). In tree lizards, corticosterone suppresses 

wound healing only during periods of energy limitation, implying a reorganization of the 

NEI circuit when resources are abundant (French et al., 2007). Among wild male Norway 

rats (Rattus norvegicus), there is variability in circulating testosterone and corticosterone 

levels depending upon whether an animal is wounded and/or infected with Seoul virus 

(Easterbrook et al., 2007). This pathogen increases aggression in male hosts, which leads to 

increased salivary transmission through wounding during male-to-male combat. These 

studies suggest that NEI interactions are not static and exhibit plasticity to accommodate 

changes in the environment.

In addition, the timing and duration of NEI interactions are important caveats to consider. 

Again, we use the well-studied example of glucocorticoids and immunity to illustrate this 

point. Stress-induced elevation in glucocorticoids can significantly alter virtually every 

component of immune function- cellular proliferation, cytokine production, antibody 

production, and innate immune defenses, but timing is critical (Dhabhar, 2002; Martin, 

2009). Acute exposure to a stressor has been shown to actually enhance some aspects of 

immunity. Mice exhibit enhanced delayed type-hypersensitivity when subjected to 2 h of 

stress compared with unstressed controls (Dhabhar and McEwen, 1999). This effect is 

attributed to glucocorticoids because adrenalectomy abolishes the immunoenhancing effect, 

and replacement with glucocorticoids reinstates it (Dhabhar, 2002; Dhabhar and McEwen, 

1999). Therefore, caution is warranted when evaluating NEI interactions at different 

temporal scales.
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NEI circuits and behavior

If NEI circuits involve precise regulation from multiple physiological systems, then one can 

make the prediction that NEI phenotypes will tend to coincide with specific behaviors. It is 

also well known that behavior can influence transmission of disease, as well as susceptibility 

to infection by altering host physiology (Hawley et al., 2011). Importantly, these two effects 

can exhibit covariation since many aspects of reproductive and social behavior of hosts are 

regulated by endocrine mediators, such as androgens and glucocorticoids, that can, in turn, 

regulate interactions between behavior and physiology (Hawley et al., 2011). Behavioral 

changes, such as flight-or-fight responses or social defeat, result in immune modulation and 

simultaneous changes in endocrine profiles (Bailey et al., 2007; Dhabhar, 2002). However, 

linkages of these physiological responses to corresponding alterations in contact rates and 

disease resistance is often lacking. Conversely, stimulation of the NEI circuit by infection or 

immunogens can produce stereotypical and adaptive changes in behavior that are 

collectively termed sickness behavior (discussed below). In addition, maternal immune 

challenge can also affect personality of offspring and predisposition to disease (Butler et al., 

2012; Grindstaff, 2016; Khan et al., 2014). Thus, behavior affects NEI interactions and vice 

versa (Fig. 2.). These relationships have been clearly delineated by PNI since its inception in 

the early 1980s (Ader and Cohen, 1981), but a comparative perspective has been noticeably 

lacking.

Laboratory mice (Mus musculus) are social animals and have been used as a model to 

demonstrate behavioral effects upon NEI interactions. Males that are aggressive towards 

conspecifics exhibit higher serum levels of corticosterone, a slower rate of parasite 

clearance, and develop peak parasitemia earlier compared with less-aggressive males 

(Barnard et al., 1993), indicating that a high social status may carry costs in terms of 

increased susceptibility to disease. Alternatively, mice that are subjected to repeated social 

defeat exhibit increased anxiety behavior, enhanced cytokine secretion, and enhanced 

detection and clearance of pathogens (Bailey et al., 2007; Kinsey et al., 2007; Powell et al., 

2009).

Using a comparative genomics approach, house mice (Mus musculus), stickleback fish 

(Gasterosteus aculeatus), and honey bees (Apis mellifera) exposed to a territorial intrusion 

exhibit a similar upregulation in NF-kappa-β, a transcription factor responsible for initiating 

a pro-inflammatory response (Rittschof et al., 2014) as well as altered neuroendocrine 

signaling of Egr1, a transcription factor sensitive to gonadotropin secretion in the brain 

(Yang et al., 2007). These findings suggest that in species where social behavior has 

independently evolved, the effect of social stimuli upon genetic factors that mediate immune 

and neuroendocrine responses is highly conserved.

It should also be noted that immune-behavior interactions can occur in the absence of 

infection. Although pro-inflammatory cytokines, such as IL-1 and TNF, are typically 

associated with development of an inflammatory response (Ashley et al., 2012; Medzhitov, 

2008), there is increasing evidence that these cytokines play a role in mediating 

physiological and behavioral processes in healthy animals. For example, cytokine secretion 

is tied to biological rhythms and the sleep/wake cycle (Opp, 2005), and experimental sleep 
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loss leads to the induction of a pro-inflammatory response in brain and peripheral tissues 

(Ashley et al., 2016; Dumaine and Ashley, 2015; Faraut et al., 2012). Whether such an 

inflammatory response is adaptive (at the least in the short term) remains to be seen. A 

modest increase in IL-1 protein levels is associated with learning in rats, but excessive levels 

can inhibit learning and memory (Williamson et al., 2011). On a chronic level, pro-

inflammatory cytokines lead to the development of a variety of mood disorders in humans, 

including depression (Dantzer, 2009). The role of cytokines in mediating “normal” 

behaviors is poorly understood, and virtually unexplored in free-living animals.

HPG axis and immunity

Sex differences in immunity abound in the medical literature and have long been recognized 

as important contributions to variation within and among species (Klein, 2000a, b; Klein et 

al., 2015). One of the more controversial hypotheses debated among behavioral ecologists 

and evolutionary biologists is the immunocompetence handicap hypothesis (ICHH), which 

was formulated by Ivar Folstad and Andrew Karter (Folstad and Karter, 1992). This 

hypothesis employs NEI interactions to explain how some sexually-selected traits in male 

vertebrates are honestly enforced. These interactions involve pleiotropic effects of the 

steroid hormone testosterone upon physiology and morphology. On the one hand, 

testosterone putatively suppresses the immune system in an obligate fashion (the cost or 

handicap). On the other hand, testosterone acts to enhance the quality of some sexually-

selected traits important for female choice (the benefit). High-quality males can “afford” to 

endure the obligate costs of immunosuppression because they possess genes with high 

resistance (or tolerance) to infection. In contrast, low-quality males lacking these genes are 

thus unable to withstand testosterone-induced immunosuppression, which enforces honesty. 

This “double-edged sword” highlights the bidirectional effects of testosterone upon male 

physiology, morphology, and behavior. This relationship can be visualized using an NEI 

circuit (Fig. 3a).

Several years later, it was realized that the obligate nature of immunosuppression by 

testosterone could be evaded if a mutant evolved resistance to testosterone-induced 

suppression of immunity. In response, the original hypothesis was revised to posit that 

immunosuppression by testosterone is an adaptive response to permit reallocation of 

resources from immunity to development and maintenance of costly sexual ornaments 

(Wedekind and Folstad, 1994). Despite this revision, a number of shortcomings in ICHH 

have been identified. First, many sexually-selected traits in males are not dependent upon 

androgens (Owens and Short, 1995). Second, immunosuppression occurs in some species, 

but not others, so the immunosuppressive effect is quite variable (Hasselquist et al., 1999; 

Roberts et al., 2004, 2007). Third, in studies that employ the use of Silastic implants to 

chronically elevate circulating levels of testosterone, baseline glucocorticoids are also 

increased, suggesting a potential indirect effect of immunosuppression by stress hormones 

(Casto et al., 2001; Evans et al., 2000; Owen-Ashley et al., 2004). In addition, the effect of 

testosterone upon the immune system may be indirectly mediated by energetic state 

(Alonso-Alvarez et al., 2007; Demas, 2004; Ruiz et al., 2010). The original ICHH circuit can 

be modified to accommodate connections between the HPG and HPA axis, as well as a role 
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for energy availability in mediating tradeoffs between immunity and sexual signaling (Fig. 

3B).

Another common criticism of the ICHH is that it only applies to vertebrates, since 

invertebrates lack the ability to produce testosterone. However, trade-offs between 

invertebrate immunity and sexual signaling are similar to those seen in vertebrates. Thus, 

other hormones produced by invertebrates could perform the same function as testosterone 

by reducing immunity while enhancing sexual signaling, and a number of studies have had 

mixed success in discovering such an analogous hormone. For example, juvenile hormone 

can promote traits important for dominance and sexual signaling while decreasing 

immunocompetence, and ultimately survival (Contreras-Garduño et al., 2009; Gonzalez-

Tokman et al., 2012; Rantala et al., 2003). Although seemingly acting like testosterone, 

juvenile hormone is produced by both sexes whereas testosterone is the major sex hormone 

of male, but not female, vertebrates. Thus, this difference raises the question whether sexual 

signaling and immunity of females are affected in the same way as males by juvenile 

hormone secretion. Other studies have proposed that melanin, a pigment, is a potential 

candidate to mediate the tradeoff between immunity and sexual signaling. In damselflies 

(Calopteryx splendens), melanin is used for sexual signaling but also regulates immunity 

(Cotter et al., 2008; Siva-Jothy, 2000). Lastly, it has been proposed that reliability of some 

exaggerated traits is regulated by sensitivity to insulin/IGF signaling pathways during 

growth, such that honest signaling is a byproduct of the growth mechanism, as shown in 

male rhinoceros beetles, Trypoxylus dichotomus (Emlen et al., 2012; Warren et al., 2013). 

Taken together, these studies demonstrate the importance of NEI interactions in shaping the 

evolution of secondary sex characteristics in invertebrates and vertebrates to permit the 

assessment of the reliability of a potential partner’s health and genetic resistance to 

parasites.

Acute phase response and sickness behavior

Host response to a pathogenic threat involves not only an assortment of cellular and humoral 

responses that include proliferation of lymphocytes, heightened monocyte trafficking, and 

increased cytokine and antibody production, but also a highly coordinated suite of 

physiological and behavioral alterations that allow hosts to cope with and eventually 

overcome infection (Adelman and Martin, 2009; Ashley and Wingfield, 2012; Dantzer and 

Kelley, 2007; Hart, 1988, 1990). Physiological changes include activation of the HPA axis, 

suppression of the HPG axis, reduced intestinal motility, fever, and acute phase protein 

release from the liver (Ashley and Wingfield, 2012; Dantzer, 2001; Dunn and Swiergiel, 

1998; Hart, 1988; Kent et al., 1992; Maier and Watkins, 1998). Together, this altered 

physiological state is often termed the acute phase response (APR) to infection. In addition, 

the APR is accompanied by nonspecific behavioral symptoms that were historically 

considered maladaptive byproducts of infection: anorexia (reduction in food intake), adipsia 

(reduced thirst), reduced activity and soporific behavior, increased slow-wave sleep, 

anhedonia (inability to experience pleasure), hyperalgesia (decreased threshold to perceiving 

pain), general withdrawal from social activities and exploratory behavior, decreased libido, 

depression, and a disinterest in grooming behavior (for reviews, see (Adelman and Martin, 

2009; Ashley and Wingfield, 2012; Kent et al., 1992). In rodents, the APR decreases food 
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intake, but not food hoarding behavior (Aubert et al., 1997; Durazzo et al., 2008), which 

suggests that immediate energy needs are decoupled from perceived future demands during 

an infection.

The idea that sickness behavior represents an actual host defense rather than a weakened 

host state was first eloquently demonstrated by Matt Kluger and colleagues in the 1970s 

(Kluger, 1979; Kluger et al., 1975). When infected with bacteria, ectothermic animals raise 

body temperature by seeking out warmer microclimates. Kluger et al. discovered that desert 

iguanas (Dipsosaurus dorsalis) treated with bacteria had higher survival rates in warm than 

cool environments, suggesting that behavioral thermoregulation of fever has adaptive value 

(Kluger et al., 1975). In 1988, Benjamin Hart provided strong evidence that sickness 

behavior is an adaptive host behavioral strategy that redirects energy to fever and immune 

defenses at the expense of other behaviors, such as reproductive, social, and foraging 

behaviors (Hart, 1988).

This type of NEI circuit involves a series of local and long-loop interactions that begin with 

detection of an antigen by the immune system (Fig. 4). Recognition occurs when Toll-like 

receptors on macrophages and dendritic cells bind to pathogen-associated molecular patterns 

(PAMPs), which are conserved moieties on the surface of microbes. Activated immune cells 

release pro-inflammatory cytokines, most notably IL-1β, IL-6, and TNF-α. These cytokines 

promote recruitment of immune cells locally, but also signal the brain and liver that infection 

(or injury) is occurring through neural and endocrine pathways. In response, the brain 

induces metabolic, hormonal, and behavior changes, such as fever, sickness behavior, 

activation of the HPA axis, and suppression of the HPG axis. Glucocorticoids released from 

the adrenals act as a brake on immune system activation to prevent the APR from causing 

excessive damage to the body (Besedovsky and del Ray, 1996; Munck et al., 1984). In 

addition, glucocorticoids increase gluconeogenesis and lipolysis, which mobilizes energy 

that can be diverted to the immune system for fighting infection. The status of energy stores 

becomes more important as immune activation progresses and is conveyed through 

metabolic hormones, such as leptin and ghrelin (Carlton et al., 2012). Lower energy stores 

can lead to the termination of sickness behavior; otherwise, survival is drastically reduced 

once body mass (and energy stores) decreases below a minimum threshold (Ashley and 

Wingfield, 2012; Carlton and Demas, 2015a).

A growing number of studies have demonstrated that animals modulate the expression of 

sickness behavior according to different life-history and environmental contexts that include 

season, latitude, sex, age, and parental demands (for review see (Ashley and Wingfield, 

2012). For example, there is seasonal modulation of the sickness response after bacterial 

lipopolysaccharide (LPS) challenge in birds and mammals (Bilbo et al., 2002; Owen-Ashley 

et al., 2006, 2008; Owen-Ashley and Wingfield, 2006), although there are exceptions to this 

rule (for e.g., Hegemann et al., 2012). This variation seems to be influenced by a 

combination of proximate factors that include testosterone (in males; Ashley et al., 2009), 

melatonin (Bilbo and Nelson, 2002), glucocorticoids (Goujon et al., 1995a, b), insulin 

(Carlton and Demas, 2015b) and body condition (Carlton and Demas, 2015a; Owen-Ashley 

et al., 2006, 2008; Owen-Ashley and Wingfield, 2006), which is partially mediated by leptin 

(Carlton and Demas, 2014)- a satiety hormone produced from adipose cells. From an 
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ultimate perspective, sickness behavior represents an “opportunity cost” and thus conflicts 

with the expression of other activities important for reproductive and growth functions 

(sexual and social behavior, territorial defense, parental care, etc.; (Ashley and Wingfield, 

2012; Owen-Ashley and Wingfield, 2007). This creates an intriguing tradeoff between host 

responses to infection and future reproductive prospects that can favor modulation of the 

sickness response.

Social interactions can also influence the sickness response to LPS. If the benefit of “hiding” 

a sickness response from a potential mate outweighs the costs of losing the opportunity to 

mate, then one would predict social modulation of sickness behavior (Avistur and Yirmiya, 

1999; Lopes, 2014). Indeed, male zebra finch (Taeniopygia guttata) injected with LPS and 

exposed to a novel female mask sickness behavior; they exhibit courting behaviors and 

activation of the HPG axis similar to control-injected males (Lopes et al., 2013). In rats, IL-1 

injection suppresses mating behavior in female but not males rats, even though both sexes 

display a decrease in activity (Yirmiya et al., 1995). On balance, exposure to a receptive 

female in male mice exacerbates sickness behavior (Weil et al., 2006). Clearly, more 

research is needed to fully understand how social interactions affect modulation of NEI 

circuits.

Energetic signals and immunity

The immune system is tightly interwoven into the neuroendocrine system, sharing a 

common set of biosignaling molecules and genes. A fundamental tenet of ecoimmunology is 

that immune responses invoke energetic costs that potentially trade-off with other 

physiological processes, such as reproduction, development, growth, and sexual signaling 

(Demas and Nelson, 2012; Norris and Evans, 2000; Sheldon and Verhulst, 1996). It is 

generally accepted that a steady supply of energy is required to maintain necessary 

biological functions, and that energy is a limited resource (at least, in wild populations). 

Thus, energy available to organisms must be strategically allocated to competing 

physiological systems as well as future life-history demands (stored for later use). For 

example, a number of studies have demonstrated that immunological challenge can increase 

metabolic rate and/or lead to a decrease in reproduction and/or growth in a variety of 

vertebrate and invertebrate taxa (see Table 8.1; Demas et al., 2012). Mechanisms that 

underlie this strategic allocation of resources are poorly understood, but certainly are 

mediated by NEI crosstalk (Demas et al., 2010).

Leptin plays an important link in mediating energy homeostasis, and represents a key 

hormone that provides a signal that coordinates immune, neuroendocrine, and metabolic 

processes by conveying current energy availability (Carlton et al., 2012; Demas, 2004). 

Encoded by the ob gene, leptin is a peptide hormone produced by adipocytes that has 

anorexigenic effects upon appetite (Myers et al., 2008). In addition, leptin has well-

described effects upon immune function (reviewed by Carlton et al., 2012), reproduction 

(Caprio et al., 2001; Tena-Sempere, 2007), and development (Briffa et al., 2015; Crespi and 

Unkefer, 2014). In mammals, experimental reductions in white adipose tissue via surgical 

removal (i.e., lipectomy) of specific white adipose tissue depots impairs antibody 

production; immune function is restored following compensatory regrowth of the remaining 
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fat pads (Demas et al., 2003). Interestingly, whereas lipectomy decreases circulating leptin 

by removing the source of the hormone, restoring the leptin signal via treatment with 

exogenous leptin restores lipectomy-induced immune suppression, even in the absence of 

increases body fat (Demas and Sakaria, 2005). Collectively, these signals of energetic state, 

and not total energy per se, regulate investment in immune responses in a dynamic fashion. 

More research is needed to understand exactly how energy status is transduced into these 

energetic signals that regulate NEI interactions.

Conclusions & future directions

The study of NEI interactions has great potential to increase our understanding of how three 

major systems of the body coordinate activities to regulate homeostasis in the face of 

environmental and social changes. Probably the most obvious example of this integration is 

the stress response, which plays a critical role in mediating behavior, immunity, and 

physiology. The HPA and SNS axes are closely tied to the immune system, but our 

understanding of the constraints and advantages created by these tripartite interactions is still 

in its infancy.

One of the more pressing needs of this integrative field is interpreting the role that NEI 

interactions and cumulative output (referred to as NEI phenotypes) play in mediating 

susceptibility, resistance, and tolerance to disease. Do NEI phenotypes contribute to disease 

dynamics? Does one NEI phenotype reinforce or alter behavior (e.g., dominance) that 

increases the exposure rate to various pathogens as opposed to others? Do NEI phenotypes 

change over time, such as across life-history stages, and in response to disease? Is recovery 

from an infection contingent upon NEI phenotype? Understanding and managing the 

complexity of the interactions among neural, endocrine, and immune interactions will 

provide a significant challenge to predicting disease dynamics at an individual and 

population level. If the plasticity of these interactions is measured and understood, then our 

ability to predict disease outbreaks and identify management options could be enhanced. 

Finally, on a theoretical level, it would be useful to explore from an evolutionary standpoint 

how tightly-regulated physiological feedback loops are subject to selective pressures, such as 

global environmental change and emerging infectious diseases.
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Highlights

• Neuroendocrine-immune (NEI) interactions can be viewed as circuits 

and phenotypes

• Behavior can impinge upon NEI interactions and vice versa

• Studies are reviewed that reveal a comparative framework to NEI 

interactions
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Figure 1. 
Neuroendocrine-immune interactions involve multi-directional crosstalk that is mediated by 

extrinsic (environmental, social factors) and intrinsic (resistance/tolerance to disease, 

homeostasis and allostatic load, reproductive status, behavior) factors. First-order 

interactions involve 1.) direct interactions between the nervous and immune systems (e.g., 

sympathetic innervation of immune tissue, activation of microglia or specific nuclei in brain 

from cytokines, 2.) endocrine-immune interactions (e.g., hormonal regulation of immunity, 

cytokine/chemokine activation of endocrine cells), and 3.) classic interactions between the 

nervous and endocrine systems (e.g., activation and modulation of hypothalamic-pituitary 

units, neuromodulation by hormones). 4.) Second-order interactions involve all three 

systems interacting to produce a physiological effect(s). These sustained interactions involve 

a high degree of coordination to generate complex neuroendocrine-immune phenotypes.
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Figure 2. 
Prototype of a neuroendocrine-immune (NEI) circuit. The circuit represents a flow of signals 

and is defined by local (blue arrows) and long-loop (black arrows; multi-system) interactions 

that are altered according to extrinsic inputs (environment, social factors, pathogens). 

Primary outputs include immune responses, hormone secretions, activation of the peripheral 

nervous system, and behavioral alterations. Importantly, behavior can act as an input or 

output in the circuit. The white box encloses systems involved specifically with NEI 

interactions from the rest of the body. Adapted from Besdovsky and Del Ray (1996).
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Figure 3. 
Conceptual model of (A) original ICHH hypothesis from Folstad and Karter (1992) and 

reconfigured as a (B) NEI circuit, which takes into account the organization and 

interconnections that occur among neural, endocrine, and immune systems. These 

interactions promote the regulation of the production of sexually-selected traits at the 

expense of suppressed immune function through direct (T) and indirect (glucocorticoids, 

energy availability). Dotted lines represent negative feedback effects.
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Figure 4. 
NEI circuit depicting the acute phase response (APR) to infectious challenge. During an 

APR, the HPG axis is typically suppressed, whereas the HPA axis is activated. 

Glucocorticoids produced from the adrenals regulate energy stores as well as the immune 

system. The behavioral output of the APR circuit is expression of sickness behavior.
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