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Summary

Claudins are discovered to be key players in renal epithelial physiology. They are involved in 

developmental, physiological and pathophysiological differentiation. In the glomerular podocytes, 

claudin-1 is an important determinant of cell junction fate. In the proximal tubule, claudin-2 plays 

important roles in paracellular salt reabsorption. In the thick ascending limb, claudin-14, -16 and 

-19 regulate the paracellular reabsorption of calcium and magnesium. Recessive mutations in 

claudin-16 or -19 cause an inherited calcium and magnesium losing disease. Synonymous variants 

in claudin-14 have been associated with hypercalciuric nephrolithiasis by genome wide association 

studies (GWAS). More importantly, claudin-14 gene expression can be regulated by extracellular 

calcium levels via the calcium sensing receptor. In the distal tubules, claudin-4 and -8 form 

paracellular chloride pathway to facilitate electrogenic sodium reabsorption. Aldosterone, WNK4, 

Cap1 and KLHL3 are powerful regulators of claudin and the paracellular chloride permeability. 

The lessons learned on claudins from the kidney will have a broader impact on tight junction 

biology in other epithelia and endothelia.
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Introduction

The tight junction (TJ) is composed of a series of direct membrane contacts of adjacent 

cells in polarized epithelia (16). The known integral membrane proteins of the tight junction 

include occludin (21), the Junctional Adhesion Molecules (JAMs) (13), and the claudins (19, 

22). Freeze-fracture electron microscopy has revealed the tight junction as a branching and 

anastomosing reticulum of “fibrils” or “strands” on the P fracture face (31). These fibrils 

have been demonstrated to be partly composed of integral membrane proteins directly 

involved in cell-cell interactions.

Claudins are the key integral membrane proteins of TJs and are 21–28 kDa proteins that 

consist of four transmembrane (TM) domains, two extracellular loops (ECL1 and 2), amino- 

and carboxyl-terminal cytoplasmic domains, and a short cytoplasmic turn (38). Claudins cis 
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associate within the plasma membrane of the cell into dimers, or higher oligomeric states. 

These associations are followed by trans interactions between claudins in adjacent cells, and 

additional cis interactions to assemble claudin oligomers into TJ strands. The cis interaction 

can involve a single type of claudin (homomeric interaction) or different types of claudins 

(heteromeric interaction); further the trans interaction can operate in a homotypic or 

heterotypic mode (23). Studies have shown that claudin-4, -5, -8, -11 and -14 selectively 

decrease the permeability of cations (4, 11, 85, 91, 96), specifically to Na+, K+, H+ and 

ammonium, while claudin-2 and -15 increase cation permeability (20, 86). These and other 

studies have led to the model of claudins forming the paracellular channel, a novel class of 

channels of 4–7 Å in diameter and oriented perpendicular to the membrane plane to join two 

extracellular compartments (81, 87).

Bowman’s Capsule

Glomerulus is the filtering unit of the kidney. The whole glomerulus is bounded by a bowl-

like enclosure called Bowman’s capsule that is formed by a layer of squamous epithelia 

called parietal epithelial cells (PECs) (61). The inner core of the glomerulus a highly 

intricate and specialized microvascular bed that is formed by glomerular endothelial cells 

(GECs) (64). Intimately wrapped as a monolayer around glomerular capillaries are stellate-

shaped cells called visceral epithelial cells, or podocytes.

Parietal Epithelial Cells (PECs)

PECs resemble squamous epithelial cells, with a small cell body size ranging in thickness 

from 0.1 to 0.3 µm, increasing to 2.0–3.5 µm at the nucleus (73). Adjacent PECs adhere to 

the underlying Bowman's basement membrane and express the TJ proteins in normal rat, 

mouse, and human glomerulus (90) (Figure 1). Among the claudin subtypes, claudin-1 is 

expressed in the TJs of PECs and is therefore regarded as a marker of PECs (47, 66) (Figure 

2). Claudin-1 staining was positive from the S-phase onward in both PECs and podocytes 

but persisted in mature PECs only (60). ZO-1 staining was first detected in both cell types in 

the S-phase, with increased staining intensity noted during the capillary loop phase. Staining 

for ZO-1 persisted in the normal adult PEC and podocyte (70). Claudin-2, a cation-

permeable claudin isoform predominantly expressed in the proximal tubule, has also been 

reported to be expressed in the parietal epithelium (66).

PECs are thought to limit filtered proteins ‘escaping’ into the peri-glomerular space. The 

inter-cellular TJs between PECs, together with the underlying Bowman’s Basement 

membrane, serve as a second barrier to urinary filtrate (14). TJs are disrupted in 

experimental anti-glomerular basement membrane (GBM) disease, accompanied by reduced 

levels of TJ proteins claudin-1, ZO-1, and occludin. In an attempt to determine the 

biological consequences of these changes, Ohse and colleagues performed an in-vivo 

permeability assay using different-sized labeled tracers (60). After experimental induction of 

glomerulonephritis, the permeability to tracers similar in size to albumin was increased 

between adjacent PECs. The macromolecule tracers can be observed leaking into the space 

between the parietal epithelium and the underlying basement membrane of Bowman’s 

capsule, as well as the extraglomerular space (60). The roles of PECs in podocyte 

Gong and Hou Page 2

Pflugers Arch. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regeneration, crescent formation and focal segmental glomerulosclerosis are under intense 

investigation (2, 6, 77, 78, 89).

Podocytes

The podocyte is a highly specialized, terminally differentiated epithelial cell with unique 

morphological and functional features in the Bowman's capsule of the kidneys that wrap 

around capillaries of the glomerulus (72). Podocytes are important for the maintenance of 

the glomerular filter in the kidney and its malfunction is central to many glomerular 

diseases. In immature glomeruli, the presumptive podocytes are connected by apically 

localized TJs, which form between podocytes near their apical surfaces during the comma 

and S-shape stages of glomerular formation (65). As podocytes enter the subsequent 

capillary loop stage, they begin to establish their characteristic complex cell architecture 

including transformation from a columnar epithelium toward a highly arborized cellular 

morphology and developing elaborate foot processes that interdigitate with processes from 

neighboring podocytes (62). At this stage, their cell junctions relocate more basally and are 

transformed from TJs into slit diaphragm (SD) (Figure 3). The mechanism of apical 

junctional complexes migrating basolaterally between these cellular projections and 

converting into the SD complex between foot processes is not fully understood. The first 

hypothesis proposes that immature podocytes disassemble their temporary TJs and reconnect 

via filopodia-like protrusions that eventually transform into foot processes (51). 

Alternatively, they might remain attached at their lateral faces throughout their maturation 

and remodel their TJs into SDs while the progressive spreading of podocytes causes 

cytoplasmic projections that mature into foot processes (51).

SDs are usually considered to represent a modified TJ because they derive from the tight 

junctional complexes during glomerular development (18). The morphology of SDs is 

apparently different from that of TJs. The intercellular space bridged by the SD is 30 to 40 

nm wide, which is to our knowledge the widest intercellular contact known to date (32). TJs 

are the closest known contacts between adjacent cells which obliterate the intervening 

intercellular space (40). In spite of the structural difference between them, the SDs and TJs 

do share a set of similarities. Like the TJs which restrict paracellular ion permeability, SDs 

serves as the exit port for primary urinary filtrate and is now well recognized as essential in 

the selective retention of high-molecular-weight plasma components such as albumin (72). 

In addition, both junctions participate in the regulation of apicobasal polarity and cell 

growth, differentiation, and dedifferentiation (3, 5, 54, 56, 62, 74).

Under nephrotic conditions, SDs frequently dislocate or disappear, and the TJs reappear in 

lieu of SDs between the retracted podocyte foot processes. Farquhar and colleagues first 

recognized the presence of TJs in the residual slits with both thin-section EM and freeze-

fracture EM (10, 15). Using several techniques including fractionation, 

immunofluorescence, and immunoelectron microscopy, TJ proteins such as JAM-A, 

occludin, coxsackievirus and adenovirus receptor (CAR) and ZO-1 have been found in the 

SD of the mature podocyte (18, 70). The TJs scaffold protein ZO-1 is essential for the 

normal interdigitation of foot processes and the formation of SD. Lack of ZO-1 triggers 

early-onset proteinuria with podocyte effacement with the progressive development of 
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glomerulosclerosis (45). Several claudins have been detected in the glomerulus of adult 

mouse kidneys. With transcriptional profiling, Doné and colleagues have found that 

claudin-3 was the only gene significantly upregulated in nephrin knockout mouse podocytes, 

which was normally absent in glomeruli (12). Claudin-1, which is primarily expressed at TJs 

of the glomerular parietal epithelium in healthy mouse kidneys, has been found profoundly 

upregulated in podocytes from animals with diabetic nephropathy (35) (Figure 2). Using a 

podocyte specific transgenic approach, Gong and colleagues have shown that induction of 

claudin-1 in mature podocytes caused SD to TJ transition, accompanied by profound 

proteinuria (28). Gong’s data attest to a new concept that SD and TJ are interchangeable 

during development and nephrotic diseases.

Proximal tubule

The proximal tubule is a leaky nephron segment, with transepithelial resistance of < 10 

Ω•cm2 (9). The predominant claudins expressed in the proximal tubule are claudin-2, 

claudin-10 and claudin-17 (47, 52) (Figure 2). Claudin-2 functions in vitro as a cation 

selective paracellular channel (95). Genetic ablation of claudin-2 in mouse kidneys caused 

defects specific to the proximal tubule, indicating decreases in proximal tubular reabsorption 

of salt and calcium (57). While the claudin-2 knockout animals showed normal renal 

metabolism of salt when fed with normal salt diet, high salt infusion to these animals 

uncovered a mechanism compatible with salt reabsorption defects in the proximal tubules 

(57). Ex vivo perfusion of the proximal tubules from the claudin-2 knockout mice showed a 

marked decrease in paracellular ion conductance and selectivity (PNa/PCl) (57) (Figure 4A). 

Pei and colleagues tried to provide a physiologic explanation of claudin-2’s role in 

maintaining renal energy efficiency by rationalizing a compensatory mechanism through the 

transcellular Na-K-2Cl transport activity in the thick ascending limb of Henle (63). They 

hypothesized that reduction of paracellular salt reabsorption in the proximal tubule may lead 

to increased transcellular salt reabsorption in the downstream tubules at the expense of 

higher oxygen consumption. Such additional energy consumption will trigger renal tubular 

injury under ischemic conditions (63).

Whether the proximal tubule retains a paracellular water permeation pathway has long been 

controversial. Genetic knockout of Aqp1 in mice only caused a 50% reduction in renal water 

reabsorption rate, indicating an alternative water permeation pathway (71). In vitro in 

transfected MDCK cells, claudin-2 appeared to increase transepithelial water permeation 

dependent upon not only osmotic pressure gradient but also Na+ concentration gradient 

across the epithelial monolayer (67). Seemingly compatible with this hypothesis, in ex vivo 

perfused proximal tubules from claudin-2 knockout mice, the transepithelial reabsorption of 

volume was reduced compared to normal proximal tubules (57). However, the concept of 

tight junction making a water permeation pathway has been challenged by Spring and 

colleagues who, employing an advanced optical approach, have demonstrated that the water 

flow rate in the lateral intercellular spaces of MDCK cells are negligible beneath the tight 

junction (at least for bicellular tight junction) (50).

Claudin-10 and -17 are also expressed in the proximal tubule. The claudin-10 gene encodes 

two alternatively spliced isoforms of claudin-10 proteins – 10a and 10b, which differ in the 
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first extracellular loop domain (88). Breiderhoff and colleagues show that in the proximal 

tubule claudin-10a is the expressed isoform and unaffected by the KSP-Cre knockout, 

whereas claudin-10b is expressed in thick ascending limb of Henle’s loop and almost 

completely abolished in the knockout (7). Claudin-10a functions as an anion channel while 

claudin-10b as a cation channel (88). The in vivo role of claudin-10 in the proximal tubule 

has not been addressed but its role in the thick ascending limb has become increasingly clear 

as a regulator of calcium and magnesium transport (vide infra). Studies of claudin-17 in 

several cell models indicate that it functions as an anion pore (52). Thus, claudin-10 or -17 

could mediate the paracellular Cl− transport in the late proximal tubule where Cl− 

reabsorption is primarily paracellular and driven by its concentration gradient (48).

Thick ascending limb of Henle’s loop

The thick ascending limb of Henle’s loop is a particularly important nephron segment for 

reabsorbing calcium and magnesium via the paracellular pathway. The driving force for 

reabsorbing these divalent cations is the lumen positive electrical potential difference. This 

potential is generally considered to be a result of two additive mechanisms: (1) transcellular 

reabsorption of NaCl through the apical Na-K-2Cl co-transporter coupled with K+ secretion 

through the apical K channel, gives rise to a spontaneous positive charge to the apical 

membrane (8); (2) dilution of the luminal fluid through constant NaCl reabsorption creates a 

diffusion potential through the cation selective tight junction (33), which can add up to 

30mV to the total luminal potential difference (34) (Figure 4B).

The major claudin species expressed in the thick ascending limb of Henle’s loop are 

claudin-10, -14, 16 and -19 (Figure 2). Simon and colleagues first discovered that mutations 

in claudin-16 caused a rare autosomal recessive disease – familial hypomagnesemia with 

hypercalciuria and nephrocalcinosis (FHHNC; OMIM: 248250) (75). From the FHHNC 

patients carrying normal claudin-16 alleles, Konrad and colleagues identified a second locus 

harboring mutations in the claudin-19 gene (49). Hou and colleagues have generated the 

claudin-16 and -19 null mouse models and demonstrated that the loss of function in either 

claudin can cause FHHNC, compatible with its recessive transmission pattern (41, 44). More 

importantly, claudin-16 and -19 physically interact (42), and loss of one claudin from the 

tight junction can cause the other to be endocytosed from the plasma membrane (41). In 

both mammalian and insect cell membranes, recombinant claudin-16 and -19 proteins form 

a stable cis-dimer (27). Co-expression of claudin-16 and -19 into polarized epithelial cells 

can confer significant cation selectivity (PNa/PCl) to the tight junction (27, 42). In ex vivo 

perfused thick ascending limbs from the claudin-16 knockdown mice, the cation selectivity 

of tight junction is profoundly impaired (44). Will and colleagues using a global knockout 

approach have revealed a more selective decrease in relative divalent cation permeability 

including Ca++ and Mg++ in perfused thick ascending limbs (92).

A recent genome wide association study has identified claudin-14 as a major risk gene for 

hypercalciuric nephrolithiasis (83). The common, synonymous variant (rs219780[C]) is 

predicted to have 1.64-time greater risk of developing the disease in homozygous carriers 

compared to noncarriers (83). Gong and colleagues have found that the claudin-14 protein 

interacts with claudin-16 and inhibits its permeability in vitro (26). Transgenic 
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overexpression of claudin-14 in mouse kidneys generated renal defects featured by 

uncontrolled loss of calcium and magnesium (25). More intriguingly, claudin-14 gene 

expression can be regulated by extracellular calcium changes induced by either serum 

calcium alterations or calcimimetic drugs such as cinacalcet via the calcium sensing receptor 

(25, 26). MicroRNAs (miR-9 and miR-374) are the key second messengers for this process 

(24).

Claudin-10 appears to play an opposite role to claudin-16 and -19 in the thick ascending 

limb of Henle’s loop. Kidney specific deletion of claudin-10 in mice generated serum 

electrolyte imbalances of hypermagnesemia, allegedly due to hyperabsorption of magnesium 

in the thick ascending limb of Henle’s loop (7). The paracellular sodium permeability in 

perfused thick ascending limbs from claudin-10 knockout animals mysteriously decreased, 

accompanied by relative increases in paracellular calcium and magnesium permeabilities 

(7). According to Hebert and colleagues (36, 37), the paracellular Na+ reabsorption in the 

thick ascending limb of Henle’s loop accounts for around 50% of total transepithelial Na+ 

reabsorption. The reduction in paracellular Na+ reabsorption in claudin-10 knockout kidneys 

may have led to a compensatory increase in the transcellular component such as the 

NKCC2/ROMK activity, which is reflected by the pronounced increase in the lumen-

positive furosemide-inhibitable spontaneous potential (Vte) (7). The increase in Vte may also 

contribute to hyperabsorption of divalent cations such as Ca++ and Mg++. Milatz and 

colleagues have recently proposed a new hypothesis to reconcile the renal phenotypes of 

claudin-10 knockout mice with claudin-16 or -19 knockout mice. Milatz et al found that the 

TJs in thick ascending limbs possessed a mosaic expression pattern separating claudin-10 

from the claudin-16/-19 complex (55). Furthermore, TJs from the medullary thick ascending 

limb dominated by claudin-10 appear to favor Na+ over Mg++ whereas TJs from the cortical 

thick ascending limb dominated by claudin-16 favor Mg++ over Na+ (55). These results 

would suggest an axial heterogeneity in thick ascending limb paracellular permeability to 

various cations.

Aldosterone sensitive distal nephron

The aldosterone sensitive distal nephron comprises the distal convoluted tubule, the 

connecting tubule and the collecting duct. It is the last nephron segment made of tight 

epithelia with transepithelial resistance of > 100 Ω•cm2 (58, 59). While the tight junction 

function in the distal convoluted tubule is not well studied, the paracellular pathway in the 

connecting tubule and the collecting duct has become increasing clear as an important route 

for Cl− reabsorption, in addition to the well-established transcellular pathway made of the 

Cl−/HCO3
− exchanger - pendrin. The paracellular Cl− pathway is essential to maintain 

electrical coupling with the electrogenic Na+ reabsorption that takes place via the epithelial 

sodium channel on the luminal membrane (69) (Figure 4C). The claudins making the 

paracellular Cl− pathway were found by Hou and colleagues to include claudin-4 and -8 

(43), both of which were predominantly localized in the connecting tubule and the collecting 

duct (47) (Figure 2). Claudin-4 knockout in mouse kidneys caused significant increases in 

urinary NaCl excretion; the animals developed hypochloremia and low blood pressure, 

consistent with systemic loss of extracellular fluid volume (30). The claudin-8 knockout 

mice phenocopied the claudin-4 knockout mice in many ways including renal loss of salt 
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and volume but developed more severe hypotension (29). The phenotypic similarity between 

claudin-4 and claudin-8 null animals could derive from the molecular interaction between 

these two molecules (43). Fujita and colleagues showed that deletion of claudin-4 in mouse 

kidneys impaired the TJ localization of claudin-8 (17). Gong and colleagues have 

demonstrated that loss of claudin-8 in mice can render claudin-4 delocalization from the 

tight junction of the collecting duct cell (29). Claudin-7 is also expressed in the aldosterone 

sensitive distal nephron. Genetic ablation of claudin-7 made experimental mice develop 

severe renal salt wasting phenotypes and hypovolemia, which eventually led to acute renal 

failure (82). Nevertheless, it is difficult to conclude that claudin-7 directly contributes to the 

paracellular Cl− pathway, because both overexpression and knockdown of its expression in 

LLC-PK1 cells paradoxically reduced Cl− permeability (1, 39).

Mineralocorticoids such as aldosterone can regulate the paracellualr pathway in the 

collecting duct. For example, aldosterone reduces paracellular Na+ permeability in the inner 

medullar collecting duct, suggesting the need to limit the paracellular backleak of Na+ in 

face of salt and volume losses (68). In the cortical collecting duct, on the other hand, 

aldosterone rapidly (< 1hr) increased the Cl− permeability of the paracellular pathway 

through claudin-4 hyperphosphorylation, in line with its primary role to couple with the 

electrogenic Na+ reabsorption (53). The electrical coupling itself can be regulated by a 

proteinase known as Cap1 (channel activating proteinase 1). Cap1 was first discovered as a 

stimulator of the epithelial sodium channel from a functional screening assay (84). Recently, 

Gong and colleagues have shown that Cap1 is also able to regulate the trans-interaction of 

claudin-4 and the paracellular Cl− permeability in the collecting duct cells (30). WNK4 and 

its pseudohypoaldosteronism type II (PHA-II) causing mutations have been found to 

augment the paracellular Cl− permeability in the collecting duct, presumably through 

hyperphosphorylation of claudin-4 or -7 (46, 93). These studies would suggest a role of the 

paracellular pathway in PHA-II pathogenic mechanisms. Consistent with such a concept, 

claudin-8 has been shown to be a direct substrate of the KLHL3 ubiquitinase, another causal 

gene of PHA-II (29). The dominant PHA-II mutation in KLHL3 impaired the claudin-8 

binding, ubiquitination, and degradation (29).

Perspective

Structural basis of claudin interaction

The crystal structure of claudin-15 monomer has provided critical information of how the 

extracellular loop domains are folded to expose the electrostatic interaction sites and create 

potential ionic permeation pores (79). A major unresolved question is how claudin 

monomers are polymerized to form a high-order structure of the tight junction strand. 

Several prevailing models all point to the antiparallel arrangement owing to claudin cis-

interactions (27, 80). Nevertheless, no real experimental evidence could provide meaningful 

structural determination of such a high-order structure. Recent development in the cryo-EM 

technique has suggested an alternative approach to address this important question. Cryo-

EM is in fact better suited to resolve high molecular weight complexes such as virions (76) 

or spliceosomes (94).
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Single-channel conductance of paracellular channel

Due to the leaky currents through the cell-cell boundaries, the traditional patch clamp 

technique may become less suitable to isolate the tight junction specific conductance. The 

concept of “ion scanning” turns out to be ideal for recording the paracellular conductance 

(98). While the ion scanning techniques have several major limitations including low signal 

gain and contaminating transcellular currents, an important improvement has been proposed 

by Zhou and colleagues to utilize two coordinated patch clamps to neutralize the apical 

currents during the paracellular conductance scanning (97). Such an approach may 

eventually resolve the technical difficulty of tight junction recording.

Claudin expression at single cell level

Milatz’s seminal discovery of the mosaic expression pattern of claudin-10 and claudin-16 in 

the thick ascending limb (55) has triggered important new thinking of how tight junction 

may be regulated through combinatorial claudin expression. Such cellular heterogeneity of 

claudin expression may exist in other epithelia or endothelia and have important physiologic 

functions. Modern technique of single-cell RNA sequencing will allow addressing this 

knowledge deficiency of claudin expression mosaics. It will be also important to study how 

such gene expression mosaics is regulated on cell and organ levels and what role the mosaics 

may play in physiology and pathology.

Claudin and cell junction alteration

The role of glomerular claudins, particularly in podocytes, has become increasingly 

important. Gong and colleagues first demonstrated that transgenic introduction of claudin-1 

to the mouse podocytes, a claudin normally absent from mature podocytes, can induce cell 

junction alteration, i.e. slit diaphragm to tight junction transition (28). This study also attests 

to the concept that single claudin molecule is sufficient to trigger the ultrastructural changes 

in the cell junction involving hundreds of proteins. The physiologic and pathologic 

significance of such ultrastructural transition will be a major new research direction.
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Figure 1. 
Structure of tight junction in parietal epithelial cells. The parietal epithelial cells (PEC) are 

flat cells and the tight junctions (arrow) are found at points of close apposition between the 

lateral membranes. US: urinary space; IS: interstitial space; BBM: Bowman’s basement 

membrane. Bar: 500nm.
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Figure 2. 
Expression profile of claudin genes along the nephron of the kidney. Note that different 

nephron segments express a unique combination of claudin genes, which may underlie the 

specific transport functions of these segments. BC: Bowman’s capsule; PT: proximal tubule; 

TL: thin limb; TAL: thick ascending limb; DCT: distal convoluted tubule; CD: collecting 

duct; Pod: podocyte; PEC: parietal epithelial cell. Note: the claudin-1 gene is only expressed 

in podocytes under nephrotic condition.
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Figure 3. 
Freeze fracture electron micrographs showing the replica of fractured podocytes from both 

the perpendicular view (A) and the parallel view (B) relative to the glomerular basement 

membrane. In A, arrow indicates the slit diaphragm as protein particles anchored on the E-

face of the fractured membrane and arrowhead indicates the slit diaphragm protein particles 

on the P-face of the fractured membrane. In B, arrow indicates the slit diaphragm as zipper-

like structure. GBM: glomerular basement membrane; Ft: foot process. Bar: 500nm. 

Adapted from reference (28).
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Figure 4. 
Scheme of coupled transcellular and paracellular transport pathways in the proximal tubule 

(A), the thick ascending limb (B) and the collecting duct (C). A, in the proximal tubule, Na+ 

is absorbed through the Na+/H+ exchanger (NHE3) and the Na+/glucose co-transporter 

localized in the luminal membrane and secreted into the basolateral side through the Na+/

K+-ATPase and the Na+/HCO3
− cotransporter (NBC). Additional Na+ can permeate through 

the tight junction (TJ) via the claudin-2 channels. B, in thick ascending limb (TALH), Na+, 

K+ and Cl− are absorbed through the luminal membrane Na+/K+/2Cl− cotransporter 

(NKCC2); Na+ is secreted into the basolateral side via the Na+/K+-ATPase; Cl− is secreted 

into the basolateral side via the chloride channel ClCkb/barttin; K+ is recycled into the 

luminal side through the renal outer medullary potassium channel (ROMK). Due to the 

continuous reabsorption of NaCl, a NaCl gradient develops from basolateral to luminal 

sides. The tight junction is permeable to Mg++ and Ca++ through the claudin-16 and -19 

channels. C, in the collecting duct, Na+ is absorbed through the epithelial sodium channel 

(ENaC); Na+ is secreted into the basolateral side via the Na+/K+-ATPase; K+ is secreted into 

the luminal side via the renal outer medullary potassium channel (ROMK). Because of the 

unilateral Na+ absorption, a lumen-negative potential develops, which drives Cl− absorption 

through the tight junction via claudin-4 and -8 channels.
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