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Abstract

Decoding speech from intracranial recordings serves two main purposes: understanding the neural 

correlates of speech processing and decoding speech features for targeting speech neuroprosthetic 

devices. Intracranial recordings have high spatial and temporal resolution, and thus offer a unique 

opportunity to investigate and decode the electrophysiological dynamics underlying speech 

processing. In this review article, we describe current approaches to decoding different features of 

speech perception and production – such as spectrotemporal, phonetic, phonotactic, semantic, and 

articulatory components – using intracranial recordings. A specific section is devoted to the 

decoding of imagined speech, and potential applications to speech prosthetic devices. We outline 

the challenges in decoding human language, as well as the opportunities in scientific and 

neuroengineering applications.
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1. Introduction

Language has been a topic of intense investigation for many decades, within many different 

disciplinary areas, including neurophysiological, psycholinguistic and behavioral studies. 

Early work in neurolinguistics was almost exclusively derived from brain lesion studies 

(Dronkers 1996; Watkins, Dronkers, and Vargha-Khadem 2002) and from non-invasive 

neuroimaging and electrophysiological data, such as functional magnetic resonance imaging, 

positron emission tomography (see Price 2012 for a review), magnetoencephalography and 

electroencephalography (see Ganushchak, Christoffels, and Schiller 2011 for a review). 

Correspondence: Brian Pasley, University of California, Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA 94720, USA, 
bpasley@berkeley.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Brain Lang. Author manuscript; available in PMC 2020 June 01.

Published in final edited form as:
Brain Lang. 2019 June ; 193: 73–83. doi:10.1016/j.bandl.2016.06.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



These approaches have defined fundamental language components of the human brain and 

their functional significance, but generally lack either the spatial or the temporal resolution 

to investigate rapid changes in the complex cortical network underlying speech processing 

(Canolty 2007). In contrast, intracranial recordings have emerged as a powerful tool to 

investigate higher cognitive function and the complex network of speech. In particular, this 

recording technique offers an enhanced view of the spatio-temporal aspects of neuronal 

populations supporting language (Lachaux et al. 2012).

Substantial efforts have aimed to develop new tools for analyzing these brain signals given 

the increasing amount of data recorded with intracranial electrode grids. Neural encoding 

models have attracted increasing interest in neuroscience, as they allow testing a hypothesis 

about the neural coding strategy under study (Wu, David, and Gallant 2006; Pasley et al., 

2012; Mesgarani et al. 2014; Vu et al. 2011; Paninski, Pillow, and Lewi 2007). The encoding 

model identifies stimulus tuning properties of the neural response and alternative models can 

be compared using the model’s predictive power (Wu, David, and Gallant 2006). Neural 

decoding models refer to the reverse mapping from brain response to stimulus, with the 

challenge being able to reconstruct sensory stimuli behavioral parameters from information 

encoded in the neural response. These models form the basis of neural interface systems that 

can be used to develop assistive technologies for people with disabling neurological 

conditions. For example, patients with long-standing tetraplegia were able to control a 

robotic arm to perform three-dimensional reach and grasp movements using a neural 

interface system (Hochberg et al. 2012)

Currently, more than two million people in the Unites States, and far more around the world, 

have verbal communication deficits, resulting from brain injury or disease (Wolpaw et al. 

2002). People with such speech impairments would benefit from an internal speech decoder 

that can translate their brain activity in a natural and intuitive way. Until recently, efforts 

were mainly centered on motor and visual restoration. Fewer studies have investigated and 

decoded features of speech, in order to better understand the neural correlates of language 

for targeting of speech neuroengineering applications.

In this review article, we describe current approaches to decoding different features of 

speech perception and production, such as spectrotemporal, phonetic, semantic and 

articulatory components, using intracranial recordings. A specific section is devoted to the 

decoding of imagined speech. We also outline the challenges in decoding human language, 

as well as the opportunities and unique applications offered. To provide context, we first 

briefly describe the functional organization of language, as well as present the properties of 

intracranial recordings.

2. Functional organization of speech

Language is encoded in a widely distributed and complex network – whose activation 

depends on both linguistic context and brain modality. It is well accepted that two main 

brain areas involved in speech comprehension and speech production are Wernicke’s area 

(posterior superior and middle temporal gyrus/superior temporal sulcus) and Broca’s area 
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(posterior inferior frontal gyrus), respectively (Figure 1; see Price 2000; Démonet, Thierry, 

and Cardebat 2005 and Hickok and Poeppel 2007 for reviews).

Speech comprehension involves multiple stages of neural representations in order to convert 

sound to meaning. The first stage in this process involves spectrotemporal analysis of the 

acoustic signal in early auditory cortices. This is followed by phonetic and phonological 

processing in the superior temporal lobe (Hickok and Poeppel 2007), in which continuous 

acoustic features are projected into categorical representations (Chang et al. 2010). 

Ultimately, higher levels of speech comprehension transform intermediate speech 

representations into conceptual and semantic representations in the so-called ventral stream 

(superior middle temporal lobe).

In addition, the dorsal stream (posterior dorsal temporal lobe, parietal operculum and 

posterior frontal lobe) is responsible for translating speech signals into articulatory 

representations. The network projects from primary auditory cortices to more dorsal aspects 

of the temporal lobe, and then to the posterior frontal lobe (Broca’s area), as well as 

premotor and supplementary areas (Hickok and Poeppel 2007). Broca’s area, which 

originally was recognized to be important for speech motor production, has recently been 

challenged regarding its role. Recent work suggested that Broca’s area coordinates speech – 

rather than actually providing the motor output – by mediating a cascade of activation from 

sensory representations to their corresponding articulatory gestures (Adeen Flinker et al. 

2015). Speech production itself is the result of coordinated and precise movements over 

rapid time scales in the ventral half of the lateral sensorimotor cortex (Levelt 1993; Gracco 

and Löfqvist 1994; Brown et al. 2009), where the organization of the articulators (i.e., lips, 

jaw, tongue and larynx) is arranged somatotopically.

While actual speech perception and production have been extensively studied, the neural 

mechanisms underlying imagined speech remain poorly understood. Imagined speech 

(referred to as: inner speech, silent speech, speech imagery, covert speech or verbal 

thoughts) is defined here as the ability to actively generate internal speech representations, in 

the absence of any external speech stimulation or self-generated overt speech. 

Understanding and decoding the neural correlates of imagined speech has enormous 

potential for targeting speech devices. However, due to the lack of behavioral output and 

subjective nature of sensory imagery, imagined speech cannot be easily controlled and 

analyzed. It is well accepted that imagined speech share overlapping brain areas with both 

speech perception and production (Palmer et al. 2001; Aleman 2004; Geva et al. 2011). 

However, the different speech processing levels are also dissociated at the neural level 

(Huang, Carr, and Cao 2002; Shuster and Lemieux 2005; Leuthardt et al. 2012).

3. Intracranial recordings

Intracranial recording, also called electrocorticography (ECoG) has been used for decades in 

patients with epilepsy to localize the seizure onset zone, prior to brain tissue resection. In 

such cases, clinical procedure requires temporary implantation of electrode grids or strips 

onto the cortical surface, either above (epidural) or below (subdural) the dura mater (Figure 

2). In some cases, depth electrodes (stereo electrodes) are implanted to identify brain 
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functions, and can have up to 3 mm inter-electrode spacing (Halgren, Marinkovic, and 

Chauvel 1998). In contrast, we refer to intracortical recordings when electrode shafts are 

inserted into deep brain structures and have both macroelectrodes along the electrode shaft 

and either splayed micro-wires at the recording tip or microwires along the shaft. This 

intracortical depth recording approach is referred to as steroencephalogpaphy (SEEG), and 

enables both field potential and single unit activity (SUA) recording from deep brain 

regions. Because of its invasiveness, intracranial recordings are applied exclusively for 

clinical purposes; nevertheless, the implantation time provides a unique opportunity to 

investigate human brain functions. Electrode grids placed over the temporal cortex, frontal 

cortex and sensory motor cortex are the most relevant for investigating speech processes.

ECoG has superb spatial (i.e., millimeter; Flinker et al. 2011) and spectral (0–500Hz; Staba 

et al. 2002) resolution, as well as higher amplitude (50–100µV) and signal-to-noise ratio – as 

compared to electroencephalography (EEG; centimeters, 0–40Hz, 10–20µV). It is also less 

sensitive to artifacts such as those generated by the electrical activity from skeletal muscle 

movements (Ball et al. 2009). In addition, the electrodes cover broad brain areas compared 

to intracortical recordings. Although, scalp EEG has a better overall brain coverage (e.g. 

covers both hemispheres), it has increased distortion and smearing of the electrical signal 

through to the skull, and therefore a much lower spatial resolution. Finally, ECoG has much 

higher temporal resolution (millisecond) with respect to metabolic imaging techniques, such 

as functional magnetic resonance imaging and positron emission tomography (seconds).

The high gamma frequency band (HG; 70–110 Hz) has been correlated with multiunit spike 

rate and asynchronous post-synaptic current of the underlying neuronal population 

(Manning et al. 2009; Lachaux et al. 2012; Buzsáki, Anastassiou, and Koch 2012). High 

gamma signal reliably tracks neural activity in many sensory modalities and correlates with 

cognitive functions, such as memory and speech (see Lachaux et al. 2012 for a review). The 

high gamma band has been correlated with spectrotemporal acoustic properties of speech in 

the superior temporal gyrus (Pasley et al. 2012; Kubanek et al. 2013), phonetic features 

(Chang et al. 2010), and articulatory features in the sensorimotor cortex (Bouchard et al. 

2013). These studies demonstrate that many aspects of speech are robustly encoded in the 

high gamma frequency range of the ECoG signal.

Previous work has demonstrated the value of the ECoG signal in neuroprosthetic 

applications. For example, Leuthardt et al used ECoG recordings in humans to control a one-

dimensional computer cursor (Leuthardt et al. 2004). Other ECoG-based brain-computer 

interfaces have been studied for the potential for assistive technologies (Schalk et al. 2007; 

Felton et al. 2007). Alternatively, formant frequencies (spectral peaks in the sound spectrum) 

were decoded in real time using intracortical recordings in the human motor cortex. The 

predicted speech was synthesized, and acoustically fed back to the user with a delay under 

50ms (Guenther et al. 2009; Jonathan S. Brumberg et al. 2010).

Thus, ECoG represents a promising recording technique to investigate and decode neural 

correlates associated with human language. The next section briefly introduces neural 

encoding and decoding models and examples of applications to decode various speech 

features from the neural response.
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4. Neural encoding and decoding models

A sensory stimulus, a movement, or a cognitive state generates a brain response that is 

specific in time, frequency band and location. Neural encoding models attempt to 

characterize how these parameters are represented in the brain. The model essentially asks 

the question, given a particular stimulus or behavior representation, can we predict the 

resulting brain response? On the other hand, a decoding model predicts information about 

the stimulus, behavior, or cognitive state from measured brain activity response, i.e., how 

well can we estimate the stimulus, behavior, or cognitive state given the brain activity? 

Various research fields have applied neural decoding models, including memory (Rissman, 

Greely, and Wagner 2010), vision (Kay and Gallant 2009) and motor research (Kubánek et 

al. 2009; Schalk et al. 2007). In neurorehabilitation, decoding models have allowed 

predicting 3D trajectories of a robotic arm for motor substitution (Hochberg et al. 2012).

Speech processing includes various processing steps – such as acoustic processing in the 

early auditory periphery, phonetic and categorical encoding in posterior areas of the 

temporal lobe and semantic and higher level of linguistic processes in later stages. One can 

ask what are the critical features of speech to target for efficient decoding and designing 

optimal communication technologies? For instance, a decoding model can synthetize 

acoustic features from parameters predicted from the brain activity. Alternatively, decoding 

discrete phonemes allows building words and sentences. Decoding speech is a complex 

problem, and can be approached with different strategies, objectives, and methods. 

Addressing the different models is central for our basic understanding of neural information 

processing, as well as for engineering speech neuroprosthetic devices. In this analytic 

framework, two main categories of decoding models have been studied (Figure 3); discrete 

category decoding and continuous feature decoding.

Discrete category decoding, also referred as classification, is the simplest form of decoding, 

in which the neural activity during specific events is identified from a finite set of possible 

events (Figure 3a). The classification accuracy often relies on sophisticated feature 

extraction techniques and classification algorithms developed in machine learning research 

(Varoquaux and Thirion 2014). Various speech features have been classified above chance 

levels, such as vowels and consonants during overt speech (Pei et al. 2011), phonemes (J.S. 

Brumberg et al. 2011; Mugler et al. 2014), syllables (Blakely et al. 2008), words (Kellis et 

al. 2010) and sentences (Dan Zhang et al. 2012). Decoding discrete units has been used in 

brain-computer interfaces to choose an action among a finite number of choices, and allow 

people control a wheelchair (Millán et al. 2009) or move a cursor on the screen (Wolpaw et 

al. 1991).

Continuous feature decoding, on the other hand, aims at reconstructing features of the 

stimulus under study (Figure 3b). Although relatively simple, techniques like linear 

regression can also be effective. For instance, the modeling of upper limb movement 

parameters, such as position, velocity and force has been extensively used to build motor 

prosthetic devices. Similarly, decoding models based on linear regression have been used to 

reconstruct visual (Nishimoto et al. 2011; or behavioral representations (Schalk et al. 2007) 

from brain activity. In speech reconstruction, acoustic features, such as formant frequencies 
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(Jonathan S. Brumberg et al. 2010), spectrotemporal fluctuations (Pasley et al. 2012) and 

mel-frequency cepstral-coefficients (Chakrabarti et al. 2013) were accurately reconstructed. 

In this approach, stimulus features are assumed to be a linear combination of the input 

(independent) variables – i.e., the brain activity. More complex hypotheses can be tested 

using linearizing decoding models, in which an intermediate feature space – a non-linear 

transformation of the stimulus representation – is linearly regressed against the neural 

activity (Naselaris et al. 2011). To evaluate the accuracy, the reconstructed stimuli are 

compared directly to the original representation. Reconstructing continuous features may 

allow synthesizing speech from the parameters decoded from brain activity. In a recent 

study, formant frequencies of intended speech were predicted directly from the activity of 

neurons involved in speech production. The predicted speech was synthesized from the 

decoded parameters and acoustically fed back to the user (Jonathan S. Brumberg et al. 

2010). Such approaches have been extensively used in text-to-speech synthesis, and have 

recently been demonstrated to be very effective in synthesizing speech (King 2011).

In the next section, we describe the different speech representations that have been 

successfully reconstructed using electrocorticographic recordings.

4.1. Decoding spectrotemporal acoustic representations

An example of the types of speech features that can be targeted for decoding are spectro-

temporal features of sound. Spectrotemporal features represent the spectrum of frequency in 

the sound waveform as they vary with time. A recent study demonstrated that 

spectrotemporal features could be reconstructed from high gamma frequency band ECoG 

signals (Pasley et al. 2012; Figure 4). In this study, two speech representations were 

evaluated for reconstruction: a spectrogram- and a modulation-based representation. The 

first representation was a time-varying representation of the amplitude envelope at each 

acoustic frequency – generated by an affine wavelet transformation of the sound waveform. 

This auditory filter was based on psychophysical and physiological studies of the cochlea, 

thus mimicking the frequency decomposition of sounds in the auditory periphery (Chi, Ru, 

and Shamma 2005). The second speech representation was based on a non-linear affine 

wavelet transformation of the spectrogram – reflecting temporal and spectral fluctuations in 

the spectrogram envelope. Spectral and temporal fluctuations carry essential phonological 

information that are robust under a variety of noise conditions, and reflect important 

properties of speech intelligibility (Chi et al. 1999; Elliott and Theunissen 2009). For 

instance, low and intermediate temporal modulation rates (<4Hz) are linked with syllable 

rate, whereas fast modulations (>16Hz) are related to syllable onsets and offsets. Similarly, 

broad spectral modulations are associated with vowel formants, whereas narrow spectral 

modulations are associated with harmonics (Shamma 2003).

Another continuous acoustic feature set that was successfully decoded is formant 

frequencies – which are concentrations of acoustic energy around particular frequencies in 

the speech waveform. A single case study recorded brain signals using intracortical depth 

electrodes in the human motor cortex and succeeded in predicting in real-time formant 

frequencies (Guenther et al. 2009). The audio signal was synthetized from the reconstructed 

acoustic features and fed back aurally to the patient within 50ms. This study highlights the 
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potential of using invasive neural recording techniques for building a neural-based speech 

synthesizer.

Altogether, these studies have shown that neural decoding models were able to successfully 

reconstruct continuous acoustic features of speech from early auditory cortices. The next 

encoding level in the speech processing stream is the mapping of continuous acoustic 

features into discrete phonological units – forming the building blocks of more complex 

speech utterances.

4.2. Decoding phonetic representations

Natural speech expression is not operated just under conscious control; it is also affected by 

various factors, including gender, emotional state, tempo, pronunciation and dialect. This 

leads to spectrotemporal speech irregularities both between speakers and within the same 

individual (Parneet Kaur and Vidushi Garg 2012). In addition, contextual effects and 

linguistic specifications also affect the acoustic realization of the speech sounds making up 

an utterance (King 2011) – i.e., preceding/following phonemes (co-articulation), position of 

segment in syllable, and end tone of phrase. As such, speech perception requires the rapid 

and effortless extraction of meaningful and invariant phonetic information from a highly 

variable acoustic signal. As an example, the phenomenon of categorical speech perception, 

where a continuum of acoustically varying sounds is perceived as perceptually distinct 

phonetic objects, was found to be encoded in the superior temporal gyrus (Chang et al. 

2010).

From a decoding perspective, several studies have also shown successful classification of 

individual speech units into different categories. For instance, individual vowels and 

consonants during overt and covert speech production were classified above chance level 

(Pei et al. 2011). Similarly, phonemes were accurately predicted from intracranial recordings 

from the motor cortex (Mugler et al. 2014). In these studies, the discriminant information 

was extracted from various anatomical brain areas, and reflected different levels of speech 

processing, such as early spectrotemporal acoustic features, phonetic or articulatory 

movement components.

4.3. Decoding phonotactic sequences

Speech units are often analyzed as isolated components, whereas in natural speech 

communication, they are rarely found in isolation. Instead speech units are embedded in 

streams of natural speech where they are arranged sequentially (phonotactics; Vitevitch et al. 

1999 to convey more complex linguistic and semantic meanings.

A recent study by Herff and colleagues showed that continuous spoken speech could be 

decoded into textual representations of single phone sequences, using Gaussian models as 

generative statistical representation for broadband gamma power (Herff et al. 2015, see 

Figure 5). During the decoding procedure, the information about the observed neural activity 

was combined with statistical language information – in order to find the most likely 

sequence of phones and words, given the observed neural activity sequence.
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The model used in this study was context-independent (i.e., only one model trained for each 

phone, with no consideration of preceding or succeeding phones), whereas in auditory 

perception, listeners are normally tuned to the statistical properties of surrounding units 

(Winkler, Denham, and Nelken 2009). For instance, as reported by Leonard and colleagues, 

hearing the sound /k/ followed by /uw/ (“koo”) is more common than hearing /k/ followed 

by /iy/ (“kee”). Thus, in English, /k/ predicts /uw/ more strongly than /iy/, which is less 

likely to be the next sound (Leonard et al. 2015). Behavioral studies have shown that people 

learn these statistics, although they are not consciously aware of the probability 

distributions. A recent study investigated how the brain encodes the statistical structure of 

sequentially arranged unit (Leonard et al. 2015). Results showed that the neural response is 

modulated according to the language-level probability of surrounding sounds. In addition, 

phonotactic statistics integrate lower-level acoustic features in a context-dependent manner 

and is influenced by higher-level lexical features.

4.4. Decoding higher levels of speech processing

Speech processing in higher brain areas involves the integration of semantic meaning. A 

recent study showed that semantic information could be decoded from human intracranial 

recordings of the inferior frontal gyrus and superior temporal gyrus (Wei Wang et al. 2011). 

Additionally, natural verbal communication often takes place in noisy environments and 

background speech. As such, speech requires additional verbal working memory (Conway, 

Cowan, and Bunting 2001) and attentional resources (Fritz et al. 2007) to segregate the 

target stream from competing background noise. As an example of higher level precessing 

step, speech spectrograms of attended speech was succesfully decoded from neural activity 

associated with mixtures of speakers (Mesgarani and Chang 2012).

4.5. Decoding articulatory representations

Speech production is believed to occur in various processing levels, such as conceptual 

preparation, lexical selection, phonological code retrieval and encoding, phonetic encoding 

and articulation (Levelt, Roelofs, and Meyer 1999; Indefrey and Levelt 2004). The 

articulatory mechanisms involve various steps to select specific articulator muscles, identify 

the degree of activation of each muscle, and initiate a coordinated activation sequence 

(Levelt 1993).

A recent study provided evidence for how speech articulators are organized in the ventral 

sensorimotor cortex (vSMC; Bouchard et al. 2013). The decoding weights for the different 

articulators (lips, tongue, larynx and jaws) were somatotopically distributed across the 

vSMC, yet partially overlapping at individual electrode. Articulators were temporally 

coordinated as the production of consonant-vowels syllable unfolded sequentially, and were 

separable according to the phonetic features. This suggests that neural populations in the 

sensorimotor cortex represent both low-level parameters of movements (i.e., muscle 

activation) and high-level aspects (i.e., as movement goals and phonetic representation).

The studies described in this review article shows that both the low- and high-level 

parameters of speech processing might be targeted for decoding, and building speech 

prosthetic devices.
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4.6. Decoding imagined speech representations

Imagined speech has been studied extensively (see Price 2012 and Perrone-Bertolotti et al. 

2014 for reviews) yet the underlying neural representation remains poorly understood. This 

is mainly due to the subjective nature of imagined speech, which prevents measurement of 

behavioral output. For the same reason, it is difficult to build decoding models that directly 

regress the neural activity to any behavioral metric or speech representation. To address that 

issue, several approaches have been proposed.

A number of studies have provided evidence for decoding of neural activity associated with 

imagined speech features into categorical representations – i.e., covertly articulated isolated 

vowels (Ikeda et al. 2014), vowels and consonants during covert word production (Pei et al. 

2011) and intended phonemes (J.S. Brumberg et al. 2011). These studies used spectral 

features to predict the class index among a finite number of choices, thus reducing the 

problem associated with speech production temporal irregularities.

An alternative possibility is to exploit the high temporal resolution offered by ECoG, and 

use time features for decoding. Recently, we evaluated the possibility to reconstruct 

continuous spectrotemporal acoustic features of imagined speech from a decoder built 

during overt speech production. This strategy was based on evidence that speaking out loud 

and speaking covertly may share common neural mechanisms (Palmer et al. 2001; Aleman 

2004; Geva et al. 2011). In this study, the decoding model was built based on high gamma 

signals to reconstruct spectrotemporal auditory features of self-generated overt speech 

(Figure 6.a). Then, the same decoding model was applied to reconstruct auditory speech 

features in the covert speech condition (Figure 6.b). To evaluate performances, the 

reconstruction in the imagined speech condition was compared to the representation of the 

corresponding original sound spoken out loud – using a temporal realignment algorithm. 

Results showed that significant acoustic features of imagined speech could be reconstructed 

from models that were built from overt speech data (Martin et al. 2014). This supported the 

hypothesis that overt and covert speech share underlying neural mechanisms. In addition, the 

ability to decode imagined speech may provide a basis for development of a brain-based 

communication method for patients with disabling neurological conditions. Decoding 

speech – and imagined speech in particular – presents several distinct challenges as reviewed 

in the next section.

5. Challenges

5.1. Experimental barriers

Animal models have been extensively studied in most sensory and cognitive domains, 

providing fundamental descriptions of underlying neural mechanisms. However, speech is 

exclusive to human beings in comparison to other forms of communication used by non-

human animals. Animals use a system of communication that is believed to be limited to 

expression of a finite number of utterances that is mostly determined genetically (Tomasello 

2008). In contrast, humans can produce a vast range of utterances from a finite set of 

elements (Trask 1999). Lower-level auditory and motor processing has been widely explored 

in nonhuman mammals (Georgopoulos, Kettner, and Schwartz 1988; deCharms 1998; 
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Depireux et al. 2001) and avians (de Boer 1967; Theunissen et al. 2001). However, 

knowledge about physiological correlates in higher levels of speech processing likely cannot 

be inferred from animal models.

In addition, recordings in humans are generally restricted to noninvasive techniques such as 

EEG, MEG or fMRI. These approaches give large-scale overviews of cortical activity in 

distributed language networks, but typically lack either spatial or temporal resolution. A few 

intracortical recordings have shown promising results in decoding intended phonemes (J.S. 

Brumberg et al. 2011) and formant frequencies (Guenther et al. 2009). Although 

intracortical recordings obtained with stereo EEG (SEEG) have higher spatial resolution 

than cortical based intracranial recordings, their spatial coverage is limited – making them 

less suitable to investigate higher speech processing levels. Given its unique spatiotemporal 

properties, intracranial recording is a good candidate to decode speech, but its opportunities 

are limited in humans. Only in rare cases, patients with epilepsy undergoing neurosurgical 

procedure for brain ablation are implanted with ECoG grids. The ECoG grids provide the 

opportunity to investigate neuroanatomical pathways of language processing, but the 

configuration, location and duration of implantation are not designed for the experiments, 

but rather solely for clinical purposes. In addition, long-term implantation abilities in human 

is lacking, as compared to non-human primate studies that showed stable neural decoding 

for extended periods of time (weeks to months; Ashmore et al. 2012).

Long-term grid implantations in humans are desired for targeting neural prosthetic 

applications, but until now they still are limited by technical difficulties. One key issue is the 

foreign body response and increased impedance leading to loss of signal (Groothuis et al. 

2014). This is particularly problematic for SEEG intracortical electrodes. Device material 

and electrode-architecture influences the tissue reaction. Softer neural implants with shape 

and elasticity of dura mater increase electrode conductivity and improve the implant-tissue 

integration (Minev et al. 2015). The design of the intracranial recording electrodes has been 

shown to be an important factor in motor decoding performance. Namely, the spatial 

resolution of a cortical surface electrode array depends on the size and spacing of the 

electrodes, as well as the volume of tissue to which each electrode is sensitive (Wodlinger et 

al. 2011). Many researchers have attempted to define what could be the optimal electrode 

spacing and size (Slutzky et al. 2010), but this is still an open area of research. There is 

emerging evidence from the brain computer interface literature that decoding performances 

might be improved when high gamma activity is derived from very high-density grids 

(Blakely et al. 2008; Rouse et al. 2013). However, although a smaller inter-electrodes 

spacing increases the spatial resolution, it poses additional technical issues related to the 

electrode grid design. This is a fundamental issue for speech decoding, given that speech 

processing at the individual neuron level revealed a complex pattern of individual cell firing 

(Chan et al. 2014).

6.2. Lack of understanding of language organization

As a result of such experimental barriers, the complex neural mechanisms underlying speech 

and language remain largely unknown. In addition, these functions are highly dependent on 
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the context and brain modality. Understanding speech processing is a key step to building 

efficient natural speech prosthesis.

Context refers to the factors that affect the acoustic realization of speech sounds – including 

segmental elements, such as co-articulatory features, and supra-segmental elements, such as 

stress, prosodic patterns, phonation type, and intonation. While context dependent modeling 

is very common in speech recognition (Waibel and Lee 1990) and known to significantly 

improve recognition performances, it has rarely been taken into account for neural decoding. 

A reason for this is that it remains unknown how the brain encodes the various factors 

affecting the production of speech sound. A key aspect for improving speech prosthetic will 

be to determine which factors significantly improve decoding performances, and how to 

model them.

Language is involved in a variety of modalities including writing, reading, listening and 

speaking. These four modalities share receptive and production areas of the brain, yet, they 

also have unique processing levels and neuroanatomical substrates (Berninger and Abbott 

2010; Singleton and Shulman 2014). For instance, a person with a writing deficit may still 

speak normally, or vice versa (Rapp, Fischer-Baum, and Miozzo 2015). The locations of 

brain injuries are known to lead to different types of language deficits. Various types of 

aphasia that affect language components range from auditory, phonological or lexical 

functions (Pasley and Knight 2013). This complex network connects expressive and 

receptive brain areas, processing oral and written forms of language.

To better understand the effect of context and modality of speech decoding, efforts should be 

made to distinguish what features of speech are encoded in the different frequency bands. 

Most of the studies described in this review have focused on the decoding of HG frequency 

bands, but there is evidence that lower frequency bands encode various aspects of speech, 

such as attended speech envelope (Ding and Simon 2012; Zion Golumbic et al. 2013), and 

track and discriminate spoken sentences (Luo and Poeppel 2007). As a result, lower 

frequency bands might provide complementary information to the more traditional HG 

frequency band, and overcome the shortcomings of some of other frequency bands.

Finally, neural activity associated with speech is not stationary, but modulated by top-down 

influences based on expectations (Leonard et al. 2015), and speech monitoring feedback 

loops (Chang et al. 2013; Houde and Chang 2015). As an example, speakers are known to 

articulate differently when deprived of auditory feedback of their own speech, such as in 

high-noise environments. This is an additional challenge that will have to be faced to decode 

speech in natural settings.

5.3. Modeling limitations

A major challenge in neural decoding applications lies in the computational models used for 

decoding the neural correlates of language. Most of the studies described in this review use 

linear decoding models to map the neural activity to the speech representations. However, in 

reality, the neural correlates of language are likely non-linearly related to the various speech 

representations.
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As speech sounds unfold, brain signals track spectrotemporal acoustic features, as well as 

phonetic and phonotactic elements. One question arises from these complex processing 

steps: what is the best speech representation to be decoded and how to model it. Answering 

this question is central for our basic understanding of neural information processing, as well 

as for engineering speech neuroprosthetic devices (Donoghue 2002). As mentioned earlier, 

two large categories of decoders can be targeted: discrete and continuous modeling 

approaches. Both categories pose unique set of challenges.

In discrete decoding approaches, the neural activity is classified into a class among a finite 

number of choices based on similarities. Studies in speech recognition/synthesis have 

investigated for over eighty years the optimal speech unit size to be analyzed; the answer 

remains a matter of debate. However, the longer the unit, the larger the database needed to 

cover the required domain, while smaller units offer more degrees of freedom, and can build 

a larger set of complex utterances. Alternatively, decoding individual words carries in itself 

more semantic information, which would be relevant in a basic clinical setting; e.g., decode 

one among ten clinically relevant words (‘hungry’, ‘thirsty’, ‘yes’, ‘no’, etc.). A challenge 

will be the creation of dictionaries of limited size, but that are rich enough to be useful for 

speech communication in neurological patients.

In continuous decoding approaches, the goal is not to predict the label of a trial, but to 

reconstruct continuous features. A difficulty in this approach lies in defining what are the 

best speech parameters to model. Potential avenues for alternative speech-neuroprosthetics 

would be to synthetize audible and understandable speech directly from neural decoding.

6. Opportunities

Neural decoding models have attracted increasing interest as novel research tools to derive 

data driven hypotheses underlying complex cognitive functions. Progress on uncovering the 

link between speech and neural responses revealed that brain activity is tuned to various 

levels of speech descriptions, broken down into anatomic and functional stages. Decoding 

speech from intracranial recordings serves two complementary purposes: understanding the 

neural correlates of speech processing and decoding speech features for targeting speech 

neuroprosthetic devices. For instance, understanding how speech is processed in the brain 

leads to better design and implementation of robust and efficient models for decoding speech 

representations. Alternatively, decoding models allow validating hypotheses about the neural 

coding strategy under study.

Unique opportunities for targeting speech neuroprosthesis are offered by combining 

different research fields. First, research findings from neuroscience reveal which anatomical 

locations and brain signals should be modeled. Second, linguistic fields support development 

of decoding models that incorporate linguistic, contextual specifications – including 

segmental elements and supra-segmental elements. Combining insights from these research 

fields with machine learning and statistical modeling is a key element to improve prediction 

accuracies. Finally, the success of speech neuroprosthesis will depend on the continuous 

technological improvements to enhance signal quality and resolution, and allow developing 

more portable and biocompatible invasive recording devices.
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The knowledge coming from these various scientific fields will help to build hybrid-

decoding systems, and provide realistic applications for people with speech production 

impairments. Hybrid systems acquire sensor data from multiple elements of the human 

speech production system, and combines the different signals to optimize speech synthesis 

(see Brumberg et al. 2010 for a review). For instance, recording sensors allow characterizing 

the vocal tract by measuring its configuration directly or by sounding it acoustically using 

electromagnetic articulography, ultra-sound or optical imaging of the tongue and lip. 

Alternatively, electrical measurements can infer articulation from actuator muscle signals 

(i.e., using surface electromyography) or signals obtained directly from the brain (mainly 

EEG and ECoG). Using different sensors and different speech representations allow 

exploiting an individual’s residual speech functions to operate the speech synthesis.

The various types of language deficits exemplify the challenge in targeting specific speech 

prosthesis that addresses individual needs. As a first step, encoding models offers a possible 

functional explanation for specific language disorder, and identify injured neural circuits. 

For instance, a recent study identified impairments in basic spectrotemporal modulation 

processing of auditory stimuli in Wernicke’s aphasia patients with lesions to parietal and 

superior temporal areas (Robson et al. 2013). Encoding modeling approaches also offers the 

opportunity to measure continuously changes in cortical representation induced by 

rehabilitation. Quantitative measures of plasticity would allow optimizing and guiding 

training-induced changes in specific cortical areas, and applicable to a variety of aphasic 

symptoms having different level of speech representation affected.

Both receptive and expressive types of aphasia could benefit from encoding models and 

targeted rehabilitation. In addition, expressive language impairments could also benefit from 

decoding models. Especially, when the motor output is disrupted, but the internal speech 

representations remain intact. In these cases, speech devices could assist and communicate 

out loud what they cannot express anymore – using various speech features along the 

different processing levels. As such challenges are solved, decoding speech opens the door 

to new communication interfaces that may allow for more natural speech-like 

communication to take place when no audible acoustic signal is available in patients with 

severe communication deficits.
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Highlights

• Functional organization of language.

• Properties of intracranial recordings.

• Approaches to decoding features of speech perception and production.

• Decoding of imagined speech.

• Challenges and opportunities in decoding human language features.
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Figure 1. 
Speech network. The major brain areas involved in speech processing are depicted (Price 

2000). Early auditory cortices (Heschl’s gyrus) involve spectrotemporal analysis of speech, 

and project into Wernicke’s area (posterior superior temporal gyrus). The arcuate fasciculus 

connects Wernicke’s area to Broca’s area, which is involved in speech preparation and 

planning. Finally, the ventral sensorimotor cortex coordinates articulatory movements to 

produce audible speech.
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Figure 2. 
The ECoG grid and surgical placement (a) ECoG surgical placement. (b) Radiography of 

electrode placement. (c) Electrode positions in situ.
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Figure 3. 
Neural decoding a) In discrete category decoding, events in the neural activity are classified 

into a finite number of choices. b) In continuous feature decoding, features of speech are 

modeled and reconstructed continuously over time.
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Figure 4. 
Reconstruction a) Decoding weights for each electrodes b) Electrode location c) Example of 

original and reconstructed spectrograms.
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Figure 5. 
Phonetic decoding procedure. Neural activity continuously decoded into phone likelihoods, 

and subsequently translated into most likely discrete phone sequence. During the decoding 

procedure, the information about the observed neural activity was combined with statistical 

linguistic information – in order to find the most likely sequence of phones and words, given 

the observed neural activity sequence. The decoded sequence is then compared with the 

original sequence.
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Figure 6. 
Imagined speech decoding approach. a) The decoding model is built using data generated 

during an overt speech production task. b) The decoding model built in a) is applied to 

neural data in the imagined speech condition. The reconstructed spectrogram in the 

imagined speech is compared to the corresponding original overt speech spectrogram.
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