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Claudins, which are known as transmembrane proteins play an essential role in tight junctions (TJs) to form physical barriers and regulate 
paracellular transportation. To understand equine diseases, it is helpful to measure the tissue-specific expression of TJs in horses. Major equine 
diseases such as colic and West Nile cause damage to TJs. In this study, the expression level and distribution of claudin-1, -2, -4, and -5 in 
eight tissues were assessed by Western blotting and immunohistochemistry methods. Claudin-1 was primarily identified in the lung, 
duodenum, and uterus, claudin-2 was evenly observed in equine tissues, claudin-4 was abundantly detected in the liver, kidney and uterus, 
and claudin-5 was strongly expressed in the lung, duodenum, ovary, and uterus, as determined by Western blotting method. The localization 
of equine claudins was observed by immunohistochemistry methods. These findings provide knowledge regarding the expression patterns 
and localization of equine claudins, as well as valuable information to understand tight junction-related diseases according to tissue specificity 
and function of claudins in horses.
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Introduction

Tight junctions (TJs) serve as a barrier to regulate paracellular 
transportation. These proteins are expressed throughout the 
body, particularly in epithelial cells. Paracellular or transcellular 
barriers dynamically maintain homeostasis by regulating the 
selective exchange of molecules across the epithelial cell sheet 
barrier, and are essential to the recycling of ions and survival of 
complex organisms. 

Claudins (20–27 kDa) have four transmembrane structures 
with a short internal N-terminal sequence, two extracellular 
loops, and an internal C-terminal domain [28]. The first 
extracellular loop governs paracellular charge selectivity, while 
the second one serves as a receptor for bacterial toxin [28] and 
participates in heterogeneous claudin-to-claudin interactions 
[10]. In epithelial cells and tissues, most TJs contain one or 
more types of claudins, and form complexes with different 
claudins [14]. 

Claudin-1, which is the first identified claudin [5,8], is crucial 
to epidermal barrier formation in mammals by forming TJ 
strands. Claudin-2 decreases the tightness of claudin-based 
junctional strands in Madin-Darby canine kidney (MDCK I) 

cells [6], contributes to formation of cation-selective channels, 
and transforms TJs into leaky junctions [1]. Claudin-4 plays a 
role in cation-barrier formation and leads to increased 
transepithelial resistance and decreased Na+ permeability [27]. 
Claudin-5 is predominantly expressed in endothelial TJs, and is 
closely associated with vascular diseases [21]. 

Dysregulation of TJs or genetic defects evokes numerous 
diseases. Increased paracellular transport of solutes and water 
occurs in intestinal inflammatory diseases, such as Crohn’s 
disease, ulcerative colitis, and celiac disease, with increased 
levels of pro-inflammatory cytokines and claudin-2 [18]. Ions 
and water diffuse from blood to the lumen, resulting in leak-flux 
diarrhea, a distinct form of diarrhea. Inflammatory bowel 
diseases are related to the uptake of luminal pathogens, 
including food antigens and bacterial lipopolysaccharides, due 
to increased permeability to large molecules [18]. 

Horses have long been used for transportation, agriculture as 
well as in numerous competitions ranging from racing to 
Olympic sports. Hundreds of specialized breeds have been 
developed. Moreover, humans have also obtained many 
products from horses including meat, milk, hides, hair, bones, 
and pharmaceuticals extracted from the urine of pregnant 
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Table 1. Characteristics of horses

Sample Sex
Age 
(yr)

Breed Harvested tissues

Horse A Stallion   4 Thoroughbred Liver, kidney, lung, 
duodenum, heart 
and testis

Horse B Gelding   6 Thoroughbred Liver, kidney, lung, 
duodenum and 
heart

Horse C Mare 14 Thoroughbred Liver, kidney, lung, 
duodenum, heart, 
ovary and uterus

Horse D Mare   5 Thoroughbred Liver, kidney, lung, 
duodenum, heart, 
ovary and uterus

mares. Equus ferus caballus, the domestic horse, is an 
economically important animal. Common equine diseases are 
closely related with TJ disorders. For example, West Nile 
disease, a representative zoonosis between horse and humans, 
causes decreased expression of claudins in vivo and in vitro 
[19]. Colonic obstruction, a major etiology of equine colic, is 
related to TJ deficiency or severe structural changes [12]. 

The claudin family has different expression patterns, is 
composed of different TJs, and is associated with various 
diseases. However, few studies have investigated equine TJs. 
In the present study, we identified the expression level and 
distribution of four claudins via Western blotting and 
immunohistochemistry, respectively, in various equine tissues 
including those from the liver, kidney, lung, duodenum, heart 
and male/female reproductive organs. 

Materials and Methods

Ethics and animal experiments
We obtained equine tissues from slaughterhouse at Jeju 

island. Eight kinds of tissues were collected from four horses 
(Table 1), liver, kidney, lung, duodenum, heart, testis, ovary and 
uterus. All procedures were approved by the Committee on the 
Ethics of Animal Experiments of the Chungbuk National 
University (approval No. CBNUA-257-1004-01; approval date 
30 November 2010).

Western blot analysis
To extract cellular protein, tissues were lysed by Pro-prep 

(catalog No. 17081; iNtRON Biotechnology, Korea), then 
homogenized by 20 strokes with a Dounce homogenizer, after 
which samples were centrifuged at 15,300 × g for 20 min at 4oC. 
Next, 50 g of protein was loaded onto a 12.5% sodium dodecyl 
sulfate polyacrylamide gel, then transferred to nitrocellulose 

membrane (catalog No. IPVH00010; Millipore, USA). The blot 
was blocked with tris-buffered saline containing 0.5% 
tween-20 (TBS-T) including 5% skim milk for 1 h at room 
temperature (RT), then probed with the following primary 
antibodies at 4oC overnight: anti-claudin-1 (1 : 1,000; 37-4900; 
Invitrogen, USA), anti-claudin-2 (1 : 1,000; 51-6100; Invitrogen), 
anti-claudin-4 (1 : 1,000; 36-4800; Invitrogen), anti-claudin-5 
(1 : 1,000; 34-1600; Invitrogen), and anti-GAPDH (1 : 1,000; 
SC-137179; Santa Cruz Biotechnology, USA). After washing 
three times with TBS-T, the blots were treated with horseradish 
peroxidase-conjugated secondary antibody (bs-0296G-HRP; 
Bioss, USA; mouse IgG 1:3000 or sc-2004; Santa Cruz 
Biotech; rabbit IgG 1:3000) in TBS-T containing 5% skim milk 
for 2 h at RT. The blots were subsequently exposed to enhanced 
chemiluminescence reagent (SC-2048; Santa Cruz Biotech) 
and developed via GeneGnome5 (MOL5405; Syngene, USA). 
Signal specificity was confirmed through blotting without 
primary antibody. 

Data analysis
The densities of each band obtained upon western blotting 

were measured using the NIH Image J software and were 
normalized to the corresponding density of GAPDH bands. 
Data are presented as the means ± standard deviation (SD). 
Groups were compared by one-way analysis of variance 
(ANOVA) followed by Tukey’s multiple comparison test. All 
statistical analyses were performed using the Prism 6.01 
(GraphPad Software, USA). P values ＜ 0.05 were considered 
to be significant.

Immunohistochemistry
Pieces fixed with 10% formalin solution were embedded in 

paraffin, then cut to 4 m in thickness and mounted on glass 
slides. The sections were subsequently deparaffinized with 
xylene and hydrated in descending graded ethanol solutions. 
Next, these sections were boiled in basic citrate buffer (pH 9.0) 
for 5 min to retrieve antigen, treated in TBS-T with 3% 
hydrogen peroxide for 30 min to block endogenous peroxidase 
activity, and then incubated with 10% normal goat serum for 1 
h to prevent nonspecific reaction. Samples were then probed 
with primary antibody (1 : 250) at RT overnight, after which 
they were washed three times with TBS-T. The tissue-sections 
were then reacted with biotinylated secondary antibodies 
(rabbit IgG 1 : 500 or BA9200; mouse IgG 1 : 500; catalog No. 
BA-1000; Vector laboratories, USA) for 1 h at 37oC, washed 
with TBS-T, and exposed to a VECTASTAIN Elite ABC HRP 
Kit (catalog No. PK-6100; Vector laboratories) for 1 h at 37oC. 
After washing three times with TBS-T, sections were exposed 
to diaminobenzidine (D4293; Sigma, USA), counterstained 
with hematoxylin, and mounted in Richard-Allan Scientific 
Cytoseal 60 (REF 8312-4; Thermo Scientific, UK). The 
specificity of antibodies was confirmed through negative 
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Fig. 1. Protein levels of claudin-1, -2, -4 and -5 in equine tissues. Levels were measured by western blot (A) and were normalized against
GAPDH protein (B-E; claudin-1, -2, -4 and -5, respectively). The signal intensity of each band was measured using the NIH Image J 
software (USA). Data are presented as the means ± standard error of the mean of four equine samples. Liv, Liver; Kid, Kidney; Lu, Lung;
Duo, Duodenum; Hrt, Heart; Tes, Testis; Ov, Ovary; Ut, Uterus. *p ＜ 0.01 vs. liver; †p ＜ 0.01 vs. kidney; ‡p ＜ 0.01 vs. lung; §p ＜
0.01 vs. duodenum; ǁp ＜ 0.01 vs. heart; ¶p ＜ 0.01 vs. ovary; **p ＜ 0.05 vs. uterus. 

condition without either primary or secondary antibody. 

Results

Expression and tissue localization of claudin-1 
Claudin-1 was strongly expressed in the equine lung, 

duodenum and uterus when measured by Western blot (panels A 

and B in Fig. 1; Table 2). Claudin-1 was very low in the kidney, 
heart and testis compared to other tissues investigated. 
Immunohistochemical labeling showed that claudin-1 was 
predominantly present in the epithelia of equine tissues (panels 
A-J in Fig. 2). Claudin-1 was detected in hepatocytes (panel A 
in Fig. 2), proximal (panel B in Fig. 2, red arrowhead) and distal 
(panel B in Fig. 2, black arrowhead) renal tubules, pulmonary 
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Fig. 2. Localization of claudin-1 in equine tissues via 
immunohistochemistry. Scale bar = 100 m.

Fig. 3. Localization of claudin-2 in equine tissues via 
immunohistochemistry. Scale bar = 100 m.

Table 2. Relative expression levels of claudins

Liver Kidney Lung Duodenum

Claudin-1 0.10 ± 0.02 0.04 ± 0.00 0.56 ± 0.07 0.86 ± 0.20
Claudin-2 0.50 ± 0.11 0.53 ± 0.18 0.55 ± 0.10 0.33 ± 0.11
Claudin-4 0.96 ± 0.14 0.59 ± 0.17 0.00 ± 0.00 0.10 ± 0.07
Claudin-5 0.15 ± 0.09 0.11± 0.02 1.16 ± 0.08 0.72 ± 0.05

Heart Testis Ovary Uterus

Claudin-1 0.00 ± 0.00 0.01 ± 0.00 0.16 ± 0.06 0.80 ± 0.05
Claudin-2 0.10 ± 0.04 0.79 ± 0.00 0.53 ± 0.05 0.41 ± 0.06
Claudin-4 0.00 ± 0.00 0.17 ± 0.00 0.01 ± 0.00 0.47 ± 0.24
Claudin-5 0.23 ± 0.16 0.09 ± 0.00 0.65 ± 0.19 0.58 ± 0.13

bronchiolar (panel D in Fig. 2, red arrowheads) and alveolar 
cells (panel D in Fig. 2, black arrowheads), and duodenal villi 
(panel E in Fig. 2). Claudin-1 was also identified in Leydig cells 
of the testis (panel G in Fig. 2), and theca cells of the ovary 
(panel H in Fig. 2, red arrowheads). However, it was not 
detected in cardiac or uterine smooth muscle. 

Expression and tissue localization of claudin-2 
Claudin-2 was expressed in all eight analyzed equine tissues 

(panels A and C in Fig. 1; Table 2) and was immunohistochemically 
detected in various cell types. Claudin-2 showed the lowest 
expression in equine heart, while it was localized in hepatocytes 
(panel A in Fig. 3), proximal (panel B in Fig. 3, red arrowhead) 
and distal (panel B in Fig. 3, black arrowhead) renal tubules, 
pulmonary bronchiolar (panel D in Fig. 3, red arrowhead) and 

alveolar (panel D in Fig. 3, black arrowhead) cells, duodenal 
villi (panel E in Fig. 3, red arrowheads) and Brunner’s glands 
(panel E in Fig. 3, black arrowhead), Leydig cells (panel G in 
Fig. 3, red arrowheads), spermatids (panel G in Fig. 3, black 
arrowheads), ovarian follicles (panel H in Fig. 3), and uterine 
glands (panel I in Fig. 3) and myocytes (panel J in Fig. 3). 
Unlike other members of the claudin family, claudin-2 was 
detected in Brunner’s gland of the duodenum. 

Expression and tissue localization of claudin-4 
Quantification of claudin-4 by Western blotting revealed that 

it was more abundantly expressed in the liver, kidney, and 
uterus than other tissues, such as the lung, duodenum, heart, and 
ovary (panels A and D in Fig. 1; Table 2). The expression level 
of claudin-4 in the duodenum is lower than that of other claudins 
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Fig. 5. Localization of claudin-5 in equine tissues via 
immunohistochemistry. Scale bar = 100 m.

Fig. 4. Localization of claudin-4 in equine tissues via 
immunohistochemistry. Scale bar = 100 m.

and differed between individual horses (panel A in Fig. 1). 
Similar to other analyzed claudins, claudin-4 was identified in 
the epithelial cells of tissues including hepatocytes (panel A in 
Fig. 4), proximal (panel B in Fig. 4, red arrowhead) and distal 
(panel B in Fig. 4, black arrowhead) renal tubules, duodenal 
villi (panel E in Fig. 4), Leydig cells (panel G in Fig. 4), and 
uterine glands (panel I in Fig. 4). Claudin-4 showed the lowest 
expression in lung tissue.

Expression and tissue localization of claudin-5
Claudin-5 was predominantly expressed in the lung, duodenum, 

ovary, and uterus (panels A and E in Fig. 1; Table 2). Claudin-5 
was also detected in all hearts except for that of the old mare 
(horse C, panel A in Fig. 1). Immunohistochemistry revealed 
that claudin-5 was detected in all analyzed tissues, and was 
localized in the bile ductules (panel A in Fig. 5, red arrowheads), 
proximal (panel B in Fig. 5, red arrowheads) and distal (panel B 
in Fig. 5, black arrowhead) renal tubules, pulmonary bronchiolar 
(panel D in Fig. 5, red arrowhead) and alveolar (panel D in Fig. 
5, black arrowheads) cells, and duodenal villi (panel E in Fig. 
5). It was also expressed in coronary arteries of the heart (panel 
F in Fig. 5, red arrowheads), Leydig cells of the testis (panel G 
in Fig. 5), ovarian epithelial cells (panel H in Fig. 5), and uterine 
glands (panel I in Fig. 5) and myocytes (panel J in Fig. 5, red 
arrowheads). 

Discussion

Claudins, which were first identified in TJs, consist of four 
transmembrane domains including a long, first extracellular 
loop, a highly conserved domain, and a shorter second 

extracelluar loop [5,26]. The claudin family consists of 27 
members, all of which are expressed between epithelial cells 
except for claudin-6, -8, -11, and -19. The amino acid sequence 
homology between the claudin family members is approximately 
30% [20,21]. Claudin members possess different properties and 
functions, and are differentially expressed in various tissues. 
The expression of claudins is regulated by many factors, 
including hormones, various cytokines, and epithelial- 
mesenchymal transition (EMT)-related transcription factors. 

The liver is a digestive and detoxifying organ that produces 
bile, which consists of a highly enzymatic and oxidative mixture 
[2]. Bile flow and cholestasis are regulated by interactions 
between gap and TJs of hepatocytes [17]. Claudin-1, -2, and -4 
were detected in hepatocytes, while claudin-5 was found in bile 
ductules. Since horses do not have a gall bladder and hepatic 
bile constantly flows through the duct, observation of claudin-5 
in ductules plays an important role as an impermeable barrier to 
fluid. In this study, claudin-5 protein was expressed in the 
coronary arteries of the equine heart, while very little was 
detected in the heart of a 14 years old mare. Claudin-5 is 
predominantly expressed in endothelial tight junctions such as 
the vascular endothelium of the blood-brain barrier to form tight 
junctions that are impermeable to macromolecules [14]. 
Moreover, claudin-5 functions as a small molecular sieve as 
indicated by claudin-5 knockout mice showing impaired 
permeability against particularly small molecules of less than 
800 Da though the formation of morphologically normal blood 
vessels with claudin-12 [23]. Claudin-5 was also shown to be 
age-dependently reduced in the murine kidney and pancreas 
[3]. Decreased claudin-5 levels have been reported in the hearts 
of the dystrophin/utrophin-deficient mouse model and human 
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patients with Duchenne muscular dystrophy and Becker 
muscular dystrophy, and occurs in the very early step of disease 
progression with reduction of the physiological and histological 
indicator (dystrophin) of heart failure [4]. These findings 
indicate that claudin-5 localized in the artery endothelium can 
act as an important indicator of coronary artery disease.

Renal tubules are composed of epithelial cells, which serve as 
barriers against stress caused by blood filtration and urine 
reabsorption [11]. Claudin-1, -2, -4, and -5 were only expressed 
in the distal and proximal tubules, not in the glomerulus. 
Claudin-1, -12 and -16 form water barriers to increase 
transepithelial resistance (TER) in renal tubules [16,18]. 
claudin-1-deficient mice are born normally, but die within 1 day 
of birth due to severe dehydration owing to transepidermal 
water loss [7]. Previous studies have reported that knockout of 
claudin-2 in mice causes a reduction in the Na+ conductance of 
the proximal tubule and net reabsorption of Na+, Cl−, and water 
[22]. It has also been suggested that claudin-2 functions as the 
paracellular cation pore for passive reabsorption of Na+ in the 
study using claudin-2 null mice. These null mice also showed 
hypercalciuria, indicating that claudin-2 plays a role in 
reabsorption of Ca2+ at the proximal tubule [14]. Western 
blotting revealed that claudin-4 was more highly expressed in 
the kidney than in other organs. Claudin-4 acts as a cation-barrier, 
facilitates NaCl reabsorption [15], and has tightening effect 
when forming TJs [27]. In the lung, claudin-4 protein was 
positively expressed by correlating with alveolar fluid clearance 
[25]. 

In the testis, all four claudins were observed in Leydig cells 
and/or the interstitial region, although the distribution patterns 
were slightly different, with claudin-2 detected in the spermatids. 
Three claudins were identified in the ovary and uterus upon 
immunohistochemistry analysis. The female equine organs are 
anatomically different from those of mice or humans. Specifically, 
the equine ovary has a reversed structure unlike other animals. 
The cortex, where follicles are developed, is located in the 
center of the ovary. Claudin-1 was detected in ovarian follicles, 
claudin-2 and -5 were found in the epithelium and claudin-4 
was not expressed in any horses tested. Claudin-4 is not 
expressed in healthy ovaries of normal mice [24]. The equine 
uterus was too big to mount on a slide; therefore, it was divided 
into two sections; the endometrium and myometrium. In the 
uterine glands, claudin-2, -4, and -5 were identified along the 
ciliated columnar epithelium. Claudin-5 was also detected in 
the uterine veins. 

Claudin-1, -2, and -5 were observed in bronchiolar and 
alveolar cells in the lung, and were found in the epithelium of 
the duodenal villi. Only claudin-2 was expressed in Brunner’s 
glands of the duodenum. These glands are located in the 
proximal small intestinal submucosa. Alkaline juice secreted 
from this gland has a buffering effect against gastric acid [13]. 
The small intestine of claudin-2 knockout mice shows 

decreased transepithelial conductance and reduced 
permeability of Na+ [14]. Moreover, upregulation of claudin-2 
is observed in human inflammatory bowel disease such as 
Crohn’s disease, ulcerative colitis and celiac disease, as well as 
in animal models [18]. Overexpression of claudin-2 induces 
high-conductance through cation-permeable paracellular pores, 
then causes leak flux diarrhea due to the increased intestinal ion 
permeability caused by the disease. 

In conclusion, the expression and distribution of four claudins 
were assessed in several equine tissues. Claudin-1 was strongly 
expressed in the lung, duodenum, and uterus, which constantly 
go through cycles of relaxation and contraction. Claudin-2, 
which is known to decrease TER [9], was evenly observed in the 
eight equine tissues. Claudin-4 was abundantly detected in the 
liver, kidney and uterus, but showed weak signals in other 
tissues. Unlike others, claudin-5 was identified in bile ductules 
and blood vessels including coronary veins and uterine veins. 
When compared with murine or human TJs, equine claudins 
play similar roles, but their tissue-specific distribution was 
slightly different due to distinct structures of horse organs. 
These findings provide knowledge about the molecular 
organization of equine TJs, and a better understanding of 
TJ-related diseases that are dependent on tissue specificity and 
functions of claudins in horses.
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