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Humans and other mammals as well as honeybees learn a unilateral associ-

ation between an olfactory stimulus presented to one side and a reward. In

all of them, the learned association can be behaviourally retrieved via contra-

lateral stimulation, suggesting inter-hemispheric communication. However,

the underlying neuronal circuits are largely unknown and neural correlates

of across-brain-side plasticity have yet not been demonstrated. We report

neural plasticity that reflects lateral integration after side-specific odour

reward conditioning. Mushroom body output neurons that did not respond

initially to contralateral olfactory stimulation developed a unique and stable

representation of the rewarded compound stimulus (side and odour) predict-

ing its value during memory retention. The encoding of the reward-associated

compound stimulus is delayed by about 40 ms compared with unrewarded

neural activity, indicating an increased computation time for the read-out

after lateral integration.
1. Introduction
Bilaterally symmetric organization is conserved across most phyla in the animal

kingdom. Bilateral protostomes and deuterostomes share mirror symmetric rep-

resentations of sensory information. In the insect olfactory system, the two

antennae differently receive an odour stimulus depending on the spatial stimu-

lus pattern and its temporal evolution. This difference can be exploited by the

nervous system to extract behaviourally relevant spatial information about the

olfactory scene (e.g. a pollinator may orient itself inside the flower in an optimal

position to transfer the pollen [1]). Olfactory input from each antenna is first

processed ipsilaterally in the respective antennal lobe, and then projected

almost exclusively to the mushroom body (MB) and the lateral horn on the

same side of the brain [2]. The MB integrates different sensory modalities,

and is crucial for learning and memory formation (for review, see [3–5]). Cross-

talk between the two sides of the bee brain is confined predominantly to the

mushroom body output neurons (MBONs) and their target neurons [6].

Unilateral olfactory conditioning leads to a stable memory that can be initially

retrieved only via the antenna that was stimulated during training [7]. Several

hours later the association could be behaviourally recalled via the contralateral

antenna [8], at least to a certain extent, which suggests across-brain-side inter-

actions. This inter-hemispheric transmission of olfactory information has also

been demonstrated in behavioural experiments with rats [9,10] and humans

[11], and may reflect lateral integration, which is necessary to solve complex

forms of learning and memory formation. In honeybees, for example, non-

elemental learning tasks are solved when both antennae and MBs are involved

[12–17]. However, if only one antenna is stimulated [16] or only one MB is
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functioning, bees are no longer able to solve side-spanning

learning tasks, do not resolve contradictory information

during differential conditioning and cannot learn negative

and positive patterning tasks [18].

We studied the encoding of odour valence in the MB in

relation to the animal’s behaviour in a side-specific learning

task. To this end, we recorded from a subset of MBONs (elec-

tronic supplementary material, figure S1) in one brain side of

behaving honeybees, and compared their activity before,

during and after applying a unilateral training protocol to

the antenna contralateral to the recording electrode position.

MBONs are known to change their response properties

during learning and memory processing. Extracellular long-

term recordings of a single identified MBON, the PE1, indicate

a reduction of its response to the reward-associated odour [19]

and supported, therefore, earlier findings of Mauelshagen [20],

who recorded intracellularly from the same neuron. MBONs

from the A1, A2, A4, A5 and A7 clusters that exit the MB at

the ventral region of the alpha-lobe are specifically activated

by the rewarded odour as an effect of olfactory learning, and

thus encode stimulus valence [21]. Inhibitory MB feedback

neurons which exit the MB at the lateral side (A3d and A3v

neurons [6]) increase their responses to the learned odour

[22–24]. Filla & Menzel [25] showed that learning of odours

in a specific context led to changes of response rates of these

neurons that varied according to both the odour (whether

rewarded or not rewarded) and the context (whether combined

with the rewarded or the not rewarded odour). Here we used a

well-established method to extracellularly record and extract

single unit activity of target neurons in insects that was pre-

viously used to record from MBONs in the honeybee

[21,26,27]. We demonstrate lateral integration in these

MBONs after classical conditioning merging information

about odour identity, side-specific occurrence and reward as

indicated by memory retention tests.
2. Material and methods
(a) Animals
Honeybee foragers (Apis mellifera) were anaesthetized on ice and

harnessed in metal tubes such that only the mandibles, proboscis

and antennae could freely move [28]. Heads were fixed with wax

onto the metal tube, and the scapi of the antennae were fixed

with low-melting-point wax on the head capsule. Antennae

were spatially separated using a piece of transparent plastic

(3 � 3 cm; 0.2 mm thick) in which the silhouette of each bee’s

head was cut. Gaps between the cuticle and the plastic were

filled with wax. A small window (1.5 � 1.5 mm) was cut unilat-

erally between the left compound eye and the glued-on plastic

wall. Head glands and trachea sacks were removed, and the elec-

trode was positioned at the ventral part of the alpha-lobe at a

depth between 100 and 250 mm (cf. electronic supplementary

material). Following insertion, the hole in the head capsule was

filled with silicon (KWIK-SIL, Sarasota, FL, USA) in order to pre-

vent the brain from drying and to anchor the electrode within the

brain and the head capsule, avoiding electrode drift. To avoid a

confusion of potential effects of a hemispheric specialization [29]

and lateralization [30] with the outcome of our learning protocol,

we always recorded from the left brain side.

(b) Odour stimulation
The two antennae were stimulated separately (figure 1a) using a

custom-built olfactometer [21]. A constant air stream (1.5 m s21
speed) was split into two Teflon tubes (diameter 6 mm). Five syr-

inges (5 ml) were inserted into each tube. Filter papers (2 cm2)

were soaked with 10 ml of odour solution or paraffin oil alone (con-

trol) and placed in the syringes. During the 3 s of odour stimulation,

only half of the syringes’ air volume was injected into the air stream.

An exhaust hood was placed behind the bee to remove all odour

molecules. The odour delivery as well as the data acquisition

software (CHEETAH, Neuralynx, Bozeman, MT, USA) was synchro-

nized using a Visual Basic script (VBA v. 6.0, Microsoft, USA).

(c) Conditioning of an odour-side compound stimulus
Two out of four different odours (eugenol, heptanal, octanal,

limonene; Sigma-Aldrich Chemie GmbH) were chosen rando-

mly for each experiment. Odours were diluted in paraffin oil

(Sigma-Aldrich Chemie GmbH) to a 0.01 concentration. During a

pre-conditioning phase (PRE) the two odours (A and B) were

presented in pseudo-randomized order 10 times to the contralat-

eral as well as to the ipsilateral antennae relative to the recording

position (figure 1b). We used an inter-trial interval (ITI) of 1 min.

Twenty minutes after the PRE test we performed differential con-

ditioning (acquisition ¼ ACQ) always to the contralateral antenna

(figure 1a). Odour A contralateral was paired with a reward (CSþ)

while odour B contralateral was presented without reward (CS2).

The ITI was again 1 min. Odour stimuli lasted 3 s. A 30% sucrose

reward stimulus (US) followed the CSþ odour-side compound.

It was applied to both antennae and the proboscis ensuring the

activation of the unilateral (antenna) as well as the bilateral (pro-

boscis) US component [31]. The US started 2 s after odour onset

and lasted for about 3 s. Three hours later, a memory retention

test (MEM) was performed by repeating the initial test phase.

(d) Data acquisition
The electrode consisted of three closely spaced wires (poly-

urethane-coated copper wire, 14 mm in diameter; Electrisola,

Escholzmatt, Switzerland) which are very flexible. Extracellular

neural signals were measured differentially from all three electrode

pair combinations using the Patch Panel ERP-27 (Neuralynx, Boze-

man, MT, USA) with a sampling rate of 20 kHz. A silver wire with

a diameter of 25 mm (Nilaco, Tokyo, Japan) inserted into the right

compound eye served as a ground electrode. We used a 16-channel

analogue recording system (Neuralynx, Bozeman, MT, USA) for

data acquisition. An example recording is shown in the electronic

supplementary material.

(e) Single unit activity
To obtain single unit activity, we applied a semi-automatic spike

sorting (template-matching) provided with the SPIKE2 software

(Cambridge Electronic Design, Cambridge, UK). All details can

be found in the electronic supplementary material, S3. Following

our criteria we could extract 1–3 units per bee. In total, we

extracted 29 units out of 17 bees.

( f ) Data analysis
Data analyses were carried out with MATLAB (MathWorks GmbH,

Ismaning, Germany) and the FIND open source toolbox (http://

find.bccn.uni-freiburg.de/; [32]). The firing rate during a single

trial was estimated using a kernel convolution [32,33]. We used

an asymmetric kernel with the kernel shape ‘ALP’ (alpha function)

and time-resolution t. The trial-averaged firing rates were used to

construct stimulus-dependent neuronal population vectors in the

following way. For a given stimulus configuration a (odour iden-

tity, stimulation phase and stimulation side) and an ensemble of

n neurons, we constructed the n-dimensional rate vector va at

each point in time during a 6000 ms time window (1500 ms

before odour onset, 3000 ms during odour stimulation, 1500 ms

http://find.bccn.uni-freiburg.de/
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following odour offset). All vectors together were used for princi-

pal component analysis (PCA) in figure 3a. Before we applied a

separate PCA on the population vectors representing the CSþ
and CS2 induced activity during memory retention (figure 3b),

we averaged the baseline activity of 1000 ms before stimulus

onset in every single unit and subtracted it from the unit’s firing

rate (baseline correction). The factor loadings of each single unit

after PCA were used to rank the units with respect to their contri-

bution to the first principal component (PC1, figure 3c). The same

procedure was used to extract eight units (highest factor loadings)

which responded to ipsilateral stimulation during MEM. We calcu-

lated stimulus response latencies for a given stimulus from

individual neurons. To this end, we convolved the pooled spike

trains across all 10 trials with a kernel of exponential shape. We

then estimated the latency as the relative time after stimulus

onset when the spike rate function crossed a threshold of 4 � s.d.

of the spontaneous spike rate before stimulus onset. To calcu-

late the Euclidean distances (EDs) (L2-Norm), we performed

a pairwise subtraction of the respective population vector couples

ðva � vbÞ as dðtÞ ¼ ðSðva
i ðtÞ � vb

i ðtÞÞ
2Þ1=2. Maximal firing rates were

always extracted in the phasic response window (500 ms following

odour onset).
(g) Monitoring behaviour
Simultaneously with the MBONs we recorded a myogram of the

muscle M17, which reflects the proboscis extension response
(PER) of the bee [34]. During the acquisition phase a behavioural

response was detected if the activity of the M17 muscle started

immediately after the odour onset and before the reward (US)

was presented.
(h) Statistics
The differences in behavioural as well as neural performances

between the different odour-side compound stimuli during

ACQ and MEM were tested using the Wilcoxon rank sum test.

Differences were considered to be significant if p , 0.05. The

neural rate change between the ACQ and MEM phase for the

CSþ as well as for the CS2 were tested using the signed-rank

test. The response rate latency distributions between odour A

presented to the ipsilateral side (A ipl) and odour A presented

to the contralateral side (CSþ) during MEM were tested using

the Wilcoxon rank sum test.
3. Results
(a) Unilateral odour discrimination
The behavioural learning in the acquisition phase (figure 1c)

illustrates that unilateral conditioning rapidly leads to significant

behavioural discrimination between the rewarded stimulus

(CSþ) and the unrewarded stimulus (CS2). During the
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Figure 2. No neuronal responses to contralateral odour stimulation prior to con-
ditioning but during memory retention. Activity in response to contralateral
(ipsilateral) stimulation is shown on the left (right), respectively. (a) Initial
test before conditioning (PRE). Spike raster plots and trial-averaged firing rates
of a representative unit in response to odour A presented contralaterally
(CSþ, red), odour A presented ipsilaterally (A ipl, pink), odour B presented con-
tralaterally (CS2, black) and odour B presented ipsilaterally (B ipl, grey). Odour
stimulation is indicated by the grey shading. During the pretest this unit did not
respond to contralateral stimulation. The same odours presented ipsilaterally
evoked reliable responses to both odours. (b) Mean rates of all recorded units
prior to conditioning (PRE) and during memory retention (MEM). (c,d ) Reliable
separation of odour identity and stimulation side during memory retention tests.
(c) Euclidean distances (ED) between the population vectors of CSþ and CS2
(left) and A ipl and B ipl (right). Before conditioning (PRE, light grey) the ED
between CSþ and CS2 was close to zero. The same odours presented to
the ipsilateral side (A ipl and B ipl) resulted in a large ED. Three hours after con-
ditioning (MEM, dark grey) the population response to the CSþ was now clearly
separated from the population response to the CS2. (d ) ED between the popu-
lation vectors in response to CSþ versus CS2, CSþ versus A ipl and CSþ versus
B ipl revealed a clear separation of the CSþ from all other stimuli.
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memory test the bees discriminated the CSþ (A contralateral)

and the CS2 (B contralateral), as well as both odours presented

to the ipsilateral antenna (A ipl, B ipl; figure 1d).

(b) Contralateral stimulation evokes neuronal CSþ
response in conditioned but not in naive animals

None of the units recorded responded to contralateral odour

stimulation before unilateral conditioning (figure 2a,b, PRE).

This result can be explained by the bilateral symmetric organiz-

ation and a morphological separation of the olfactory pathway

between both brain sides up to the level of MB output [6]. How-

ever, 3 h after differential conditioning at the contralateral

antenna the CSþ (odour A contralateral) evoked a clear average

response (figure 2b, MEM) but not CS2 stimulation (odour B

contralateral), indicating that a learning-induced representation

of the odour-side compound stimulus was established.

(c) Mushroom body output neurons develop unique
representation of the side-specific odour reward
association

Next, we quantified the stimulus separation before (PRE) and

after (MEM) contralateral conditioning in the recorded

MBON population by calculating the pairwise ED between

the population response vectors of two different stimuli. Ipsi-

lateral stimulation with odours A and B evoked a distinct

population response in both the PRE and the MEM phase

(A ipl versus B ipl; figure 2c, right). By contrast, odour A and

odour B presented to the contralateral side remained at base-

line throughout stimulus presentation in the PRE-phase (CSþ
versus CS2; figure 2c, left). However, during MEM contralat-

eral stimulation resulted in a pronounced ED between both

odours (CSþ versus CS2, MEM; figure 2c, left). Moreover,

the population of MBONs had established a neuronal represen-

tation of the reward-associated odour-side compound that was

distinct from all three other compound stimuli (figure 2d ). The

latter was supported by PCA across all experimental phases

(figure 3a). Visualizing the stimulus-dependent evolution of

the first three principal components (PC1–3) revealed a clear

stimulus-specific response before conditioning (PRE) if

odours A and B were presented on the ipsilateral antenna

(A ipl, B ipl; figure 3a, right). During stimulation with the

same odours but inverted side information the neural

ensemble remained at baseline level (CSþ, CS2; figure 3a, left).

During MEM two distinct changes in the population

response were established. First, the baseline activity had

changed (discussed in [21]) separating the experimental

phases in PC space (figure 3a, left and right). This change

dominates PC1, which explained 65% of variation. It reflected

a change in baseline firing rates of some single units (some

increased others decreased; data not shown). Second, contral-

ateral stimulation with odour A (CSþ) evoked a clear

transient population response (figure 3a, left, MEM).

(d) Stimulus valence is encoded by a subset of initially
silent mushroom body output neurons

Next, we identified individual units that are responsible for

the increased CSþ activity during MEM. To remove the influ-

ence of the observed change in baseline activity, we

subtracted the baseline firing rate from the time-resolved
firing rate estimates in every single unit (cf. Material and

methods), and performed PCA in the MEM phase on the

CSþ (A contra) and the CS2 (B contra) population response
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vectors. PC1 explained 69% of variation in the population

activity and resembles the stimulation-induced response pro-

file. PC2 explained 8% of the variation, mainly contrasting

the CSþ and CS2. PC3 explained 3% of the variation

(figure 3b). As PC1 resembled the dominant CSþ response

profile during MEM, we ranked the single units with respect

to their factor loading of PC1 (figure 3c). Units with high

factor loadings did not show any significant CSþ response

before conditioning (figure 3d, PRE). However, they became
recruited as a consequence of the training procedure,

showing pronounced responses evoked by the rewarded

odour-side compound stimulus during MEM (figure 3d ).

Although there is partial overlap, ipsilateral stimulation

during MEM activated a different set of MBONs (figure 3d).

The maximal rate difference between the PRE and MEM

phase for the units showing factor loadings (greater than

0.05) was significant for the side-specific CSþ but not for

the CS2 (figure 3e). These eight units were recorded in six
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MEM phase the neural responses differed significantly, separating the CSþ from the CS2 (Wilcoxon’s rank sum test, p ¼ 0.0002). (c) Distribution across the
differences between CSþ and CS2 peak rate in the final ACQ trial and in the first MEM trial. Only the latter difference was significant, indicating stronger
MBON responses to the CSþ than to the CS2 (signed-rank test: first MEM trial, p , 0.05; last ACQ trial, p ¼ 0.28). The same odours presented to the ipsilateral
side did not show a significant difference (A ipl – B ipl; signed-rank test, p ¼ 0.97).
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different bees, which were trained with different rewarded

and unrewarded odour-side combinations (figure 3f ).

(e) Side-specific response development across
experimental phases

The strong CSþ response was carried by units that were silent

in the PRE phase but recruited to encode the CSþ during

MEM. The trial-resolved firing rate of such an example unit

together with the bee’s response behaviour is shown

in figure 4a. To resemble the neuronal learning curves, we cal-

culated the trial-resolved average peak rates during stimulation

of the extracted eight units during ACQ and MEM (figure 4b).

In contrast with the behavioural learning curves (figure 1c), the

neural learning did not allow a differentiation between CSþ
and CS2 during ACQ (figure 4b). However, during MEM

the units showed a significantly increased rate response for

the CSþ (figure 4b). Calculating the difference between the

CSþ and CS2 induced peak rates in the last acquisition and

the first memory retention trial for each unit revealed a signifi-

cant differentiation at the first memory retention but not at the

last acquisition trial (figure 4c).

( f ) Increased computation time for the read-out of the
compound stimulus value

Activation of MBONs evoked by ipsilateral odour stimulation

represents unilateral processing within one hemisphere. How-

ever, activation of MBONs during contralateral stimulation,

requires integration of information across hemispheres and

represents lateral integration as found in tests during the

MEM phase.

In order to test whether unilateral processing might be faster

than processing after lateral integration, we analysed the
neuronal response latencies for ipsi- and contralateral stimu-

lation with odour A (A ipl versus CSþ) during MEM. We

compared the eight units extracted by their factor loadings

(greater than 0.05) to compute for the CSþ during MEM

(figures 3c, 5a top) with another set of eight units which

showed the highest factor loadings for ipsilateral stimulation

during MEM (figure 5a bottom; for details cf. electronic sup-

plementary material, figure S2). The average firing rates of the

different subsets of units revealed delayed responses for contral-

ateral stimulation (figure 5b). Estimating the response latencies

for each single unit in the trial-averaged firing rate profile (see

Material and methods) revealed significantly longer latencies

for the CSþ (lateral integration) than for the A ipl (unilateral pro-

cessing) with an average delay of 37 ms (figure 5c). However,

both ipsilateral computation as well as contralateral compu-

tation is fast enough to be integrated in the animals’ decision

process to extend or not extend the proboscis (figure 5d,e).
4. Discussion
(a) Lateral integration of side-specific odour information

during memory retention
To form a side-specific odour memory, the information of both

brain sides needs to be integrated to evoke a unique neural

activity during memory recall. The existence of such stable

side-specific memory was first postulated by Sandoz &

Menzel [8] when they trained bees differently on both antenna

such that the contingency of odours was reversed dependent

on stimulation side. The result was a stable side-specific

memory as expressed in the conditioned response behaviour.

We found neural correlates of this lateral integration

accompanied by a subset of MBONs that became recruited to
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encode the side-specific odour reward association during a

post-acquisition memory-processing period (figure 3). Interest-

ingly, approximately 50% of these units had also not responded

to ipsilateral stimulation before conditioning. Thus, the activity

of a small set of recruited units was sufficient to separate the

reward-associated odour-side compound stimulus from all

other tested stimuli including the same odour but presented

to the ipsilateral antennae at the ensemble level (figure 2d).

The fact that the same odour activated a different set of

MBONs for ipsi- and contralateral stimulation (figure 3d;

electronic supplementary material, figure S2) and only the

CSþ combination evoked a conditioned response behaviour

(figure 1d) shows that the activity measured during memory

retention reflects lateral integration. The result is a stable

neural representation of the valence of a specified stimulus

constellation consisting of odour identity and stimulation side.

(b) Consolidation-dependent short- and mid-term
memory at distinct locations

In honeybees, loci for learning-related olfactory plasticity have

been determined with optophysiological and electrophysio-

logical methods at different processing stages along the

olfactory path, and in the AL [35–43], the MB calyces [44]

and different MBONs [19,21,23–25,45]. In addition, paired pre-

synaptic stimulation and postsynaptic recording suggested
plasticity of the synapses between KCs and MBONs [46].

This suggests multiple consolidation-dependent serial and par-

allel kinds of learning-related memory traces distributed

between different processing levels (reviewed in [4]).

Consolidation within the MB circuits may lead to a rearrange-

ment of memory traces as it was described for Drosophila [47,48].

Our data indicate separate locations of plasticity for early short-

term memory as behaviourally expressed during ACQ, and for

consolidation-dependent short- to mid-term memory as tested

3 h after conditioning during MEM. Behavioural responses

reflecting early short-term memory were already initiated

during the first few acquisition trials (figure 1c). This behavioural

effect was not seen in the neural learning curves of the MBONs

recorded at the contralateral side, and is consistent with our

earlier experiments where we stimulated both antennae and

found acquisition-induced plasticity in MBONs only 3 h after

but not during conditioning [21].

We therefore hypothesize that during acquisition short-

term memory was established in parallel pathways possibly

within another subset of MBONs of the ipsilateral or the

contralateral brain side, which were not recorded in our

experimental paradigm, nor in an earlier stage of unilateral

processing, such as in the antennal lobe (cf. references above)

or in the micro-glomerular structure of the calycal input

region to the MB [49,50]. The latter might include plasticity

of the GABAergic feedback synapses, as previously suggested
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[44,51]. The unilateral processing of the early memory phase is

consistent with the model of Sandoz et al. [31], who predicted

one association centre (network) for each of the two input

sides. Based on the fact that a unilaterally established

memory trace could be retrieved 3 h after training from the con-

tralateral antennae [8], their model postulates a crosstalk

between brain sides during later phases of memory formation.

Our data support a substantial aspect of their model, namely

the crosstalk and the formation of a side-spanning memory

trace, which needs up to 3 h of consolidation. In contrast

with Sandoz et al. [8], we did not observe a behavioural

response to ipsilateral stimulation with the rewarded odour,

which could have two reasons, both related to the experimental

design. In particular, Sandoz and colleagues have used only

four training trials, while here we used 10 conditioning trials.

The number of conditioning trials might have an impact on

the ability to learn and consolidate the side specificity and it

also affects the animals’ satiation level 3 h after conditioning

as animals are fed in each conditioning trial. Thus, the motiv-

ation to generalize between stimulation sides in the present

case might be lower. Another reason could be the extensive

pre-conditioning phase in which the animals were exposed to

40 unilateral odour presentation (20� left, 20� right), which

may have caused an acclimatization to unilateral stimulation

which was not permitted by Sandoz et al. [8].

(c) Prolonged encoding of stimulus value to evaluate
behavioural options

Comparing the latencies of the contralaterally recruited units

with units that responded to the same odour A if presented to

the ipsilateral side (A ipl) revealed a latency difference of

approximately 37 ms. Thus, ipsilateral processing was faster

than contralateral activation (figure 5) and could be based on

the morphology, as the contralateral induced odour signal has

to cross more synapses when crossing the midline of the

brain. Because we always recorded the left brain side to

ensure that our experiments are consistent across animals and
do not confuse learning mechanisms and hemispheric special-

ization [29] and lateralization [30], the latency difference

might be also caused by asymmetric odour computation

as reported by Regosi et al. [29]. To confirm that it would

be necessary to test naive animals and exclude influences of

consolidation. However, in naive animals we found no

odour-induced activity due to contralateral stimulation in

MBON. We therefore assume that the delayed implementa-

tion of the contralateral information during MEM reflects a

generally prolonged computation for the reward-associated

stimulus because a temporal shift in the same range was

found in MBONs to occur for the separation of the reward-

associated odour from non-rewarded control odours after

classical conditioning including both antennae [21]. Therefore,

encoding the value of a behaviourally relevant (i.e. reward-

associated) stimulus appears to be prolonged compared with

the representation of non-reward-associated stimuli. We

hypothesize that this temporal shift reflects the activation of

stored memory for evaluating the current stimulus conditions

as a prerequisite for eliciting the conditioned behaviour.
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