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Meeting the ever-increasing needs of the Earth’s human population without

excessively reducing biological diversity is one of the greatest challenges

facing humanity, suggesting that new approaches to biodiversity conservation

are required. One idea rapidly gaining momentum—as well as opposition—is

to incorporate the values of biodiversity into decision-making using economic

methods. Here, we develop several lines of argument for how biodiversity

might be valued, building on recent developments in natural science, econ-

omics and science-policy processes. Then we provide a synoptic guide to the

papers in this special feature, summarizing recent research advances relevant

to biodiversity valuation and management. Current evidence suggests that

more biodiverse systems have greater stability and resilience, and that by

maximizing key components of biodiversity we maximize an ecosystem’s

long-term value. Moreover, many services and values arising from biodiver-

sity are interdependent, and often poorly captured by standard economic

models. We conclude that economic valuation approaches to biodiversity con-

servation should (i) account for interdependency and (ii) complement rather

than replace traditional approaches. To identify possible solutions, we present

a framework for understanding the foundational role of hard-to-quantify

‘biodiversity services’ in sustaining the value of ecosystems to humanity,

and then use this framework to highlight new directions for pure and applied

research. In most cases, clarifying the links between biodiversity and ecosys-

tem services, and developing effective policy and practice for managing

biodiversity, will require a genuinely interdisciplinary approach.
1. Context
Though not yet formally recognized as such, the term ‘Anthropocene’ is

increasingly used to label Earth’s current epoch [1,2]. A major hallmark of

this period is the transformation of ecosystems for human use [3], a process

leading to the loss of wilderness [4] and multiple impacts on ecosystems

from biotic homogenization [5,6] to the rapid erosion of species richness in

the most highly transformed areas of Earth [7]. At global scales, evidence is

mounting that humans are precipitating Earth’s sixth mass extinction [8–10]

and the collapse of its life support systems [11].
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As awareness of the scale and rapidity of biodiversity loss

has grown, so too has our appreciation of the many ways that

biodiversity supports human well-being either directly

through enhanced ecosystem functions and services [12,13]

or indirectly by increasing the resilience of such functions

in the face of environmental change [14–16]. Although the

underlying causal mechanisms continue to be explored [17],

a growing body of natural and social science indicates that

biodiverse ecosystems are important for achieving sustain-

able development [18] and supplying the fundamental

services and conditions necessary for human well-being [19].

The imperative of conserving biodiversity spans multiple

sectors, from governments and academia to environmental

and development non-government organizations (NGOs), to

businesses and community groups. Repeated efforts over sev-

eral decades have included bold international commitments,

including the 2020 Aichi targets enshrined in the United

Nations Convention of Biological Diversity [20], and the

Sustainable Development Goals for 2030 (agreed in 2015)

[21]. However, progress to slow biodiversity loss has stalled

[22], and it is becoming increasingly clear that neither of

these commitments for global biodiversity conservation are

likely to be met [8] given projected increases in human popu-

lation [23] and consequent demands for natural resources

[24]. The severity of environmental challenges facing humanity

has led many to suggest that a new approach to biodiversity

conservation is needed [2,25]. Perhaps the most pragmatic

option is to incorporate the value of biodiversity into

decision-making using economic methods [26], and yet this

idea remains highly controversial [27–29].

In this paper, we focus on biodiversity—defined as the

diversity of genes, traits, species, habitats and landscapes in

the biosphere—and develop various lines of argument for

how it might be valued, building on recent developments in

natural science, environmental economics and science-policy

processes. Then we provide a synoptic guide to the papers in

this special feature and highlight research advances relevant

to biodiversity valuation. Finally, we outline key future direc-

tions, and discuss how best to integrate the links between

biodiversity and ecosystem services into policy. As part of

this, we present a framework for understanding the indirect

nature of some of these links by highlighting the foundatio-

nal role of ‘biodiversity services’ in sustaining the value of

ecosystems to humanity.
2. Evolving perspectives on valuing biodiversity
Many real-world decisions are based on comparing the costs

and benefits of alternative actions. The favoured action is the

one that delivers most benefit relative to its cost (cost–benefit

analysis) or delivers a desired outcome most efficiently (cost-

effectiveness analysis). In the case of biodiversity, cost-effective

approaches may be used for the purposes of direct conserva-

tion planning [30]. However, decision-making more often

misses out biodiversity completely. In large part, this is

because biodiversity values are complex and highly contested:

there is no common approach to valuing biodiversity and those

approaches that do exist are often controversial or only applied

in certain very specific contexts [31].

Whenever a decision is made to do one thing instead of

another, a choice is made that values the two actions differently

and prioritizes one over the other. This is itself an implicit
statement of value. Therefore, valuation in a broad sense

underpins the decision to establish a protected area in one

location compared to another, or to protect one set of species

before others. The prioritization may not be couched in terms

of the monetary benefits that flow in response to the actions,

but an implicit choice has been made that is an expression of

value. The problem is that decisions based on non-monetary

values cannot be compared to those based on market values

and prices, such as agriculture and timber logging. As a

result, biodiversity is often treated as if it has no value, leading

to environmentally harmful policy and practice (figure 1).

How might we value biodiversity? In the first place, it is

important to clearly distinguish between biodiversity and eco-

system services [32,33]: biodiversity may underpin or regulate

ecosystem functions and services, or it may be an ecosystem

service itself. A commonly used typology of values, popular

with environmental economists, is the Total Economic Value

(TEV) framework [34]. This separates intrinsic values (which

fall outside the human construct and TEV, and by definition

cannot be valued economically) from instrumental values

(that contribute to human welfare in some way). Instrumental

values are divided into use values (e.g. for food or recreation

benefits) and non-use values (e.g. existence value, which

includes the satisfaction arising from simply knowing that

species and ecosystems continue to exist, or bequest value,

which reflects benefits accrued by future generations). There

are a range of valuation methods that can be used to estimate

instrumental values [35].

Although the TEV framework is widely accepted in some

fields, its use as a policy mechanism for biodiversity conser-

vation has been questioned. Some have suggested a more

complex set of routes by which the natural environment deli-

vers economic value, in particular ecological resilience [36].

Others propose that it oversimplifies the relationships

between people and nature among multiple cultures and

knowledge systems [37], with Chan et al. [38] identifying a

further category of relational values reflecting individual

and cultural identity.

These considerations have yet to filter into policy mechan-

isms in any meaningful way, with most recent valuations of

biodiversity focusing on basic monetary values. These are gen-

erally derived indirectly from its role in provisioning services

(e.g. food and timber) and regulating services (e.g. water and

nutrient cycling) [39,40], as well as more directly from cash

flows generated by markets such as bio-prospecting and tour-

ism [41]. Its supporters argue that the approach has the

advantage of transforming conservation from an imperative

that delivers little acknowledged economic return to one in

which the value of biodiversity becomes the basis of the devel-

opment of more sustainable long-term financing. For example,

rather than park guards being paid by wildlife-protection

NGOs that are dependent on donor contributions, they

would instead be paid through revenues generated from eco-

tourism, carbon credits and payments from adjacent farms

for the bio-control and pollination services provided by the

park. Viewed from this perspective, economic valuation of bio-

diversity becomes a critical step in conservation, providing a

means to identify who benefits from nature, and hence who

may be willing to contribute to its conservation.

Opponents of economic valuation have raised a number of

challenges. First, it is clear that there are substantial risks associ-

ated with this approach as a means to conserve biodiversity [42]

because the values derived are likely to be context-dependent
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Figure 1. The value of biodiversity to human well-being. Biodiversity is structured by a range of ecological processes including: (i) community assembly (the biotic
and abiotic interactions, including environmental filtering, competition and host – parasite interactions, which together determine the distribution of species and
their abundance in communities), (ii) interaction networks (the architecture of mutualistic and antagonistic interactions underlying pollination, seed dispersal,
predator – prey cycles, etc.), (iii) nutrient transfer (the breakdown of nutrients and transfer across the environment), and (iv) biogeochemical cycling (the cycling
of chemicals, e.g. C, N, through the biosphere and lithosphere). These processes—which can be termed ‘biodiversity services’—underpin and determine the stab-
ility, resilience, magnitude and efficiency of the functions and properties of ecosystems. Those functions and properties that benefit people are referred to as
‘ecosystem services’ and reflect what it is we tend to value about biodiversity. Values are divided into intrinsic (which by definition cannot be valued economically)
and instrumental values (that contribute to human welfare in many and varied direct and indirect ways). When economic valuation is done correctly (i.e. robust
assessment and weighting of values), the outcome is green environmental policy (left, green arrow implying positive effects on biodiversity and ecosystems) that
leads to environmental conservation, restoration, protection and sustainable practice. When done incorrectly, it can lead to environmental degradation and unsus-
tainable practice (right, red arrow, implying harmful effects on biodiversity and ecosystems). Two elements of this framework are therefore critical; the natural
science underpinning biodiversity’s influence over ecosystem functions and properties, and the social science underpinning values and valuations. If incomplete,
poorly done or ignored, policy is more likely to be red than green.
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and probably underestimate the true TEV of biodiversity.

Furthermore, even where it can be shown that there are signifi-

cant economic benefits of investing in biodiversity, existing

investments fall far short of what is required to effectively safe-

guard it [20,43,44]. Second, there are substantial disagreements

with the principles involved. To many conservation biologists,

it is simply inconceivable that conservation should and could

pay for itself. Some see such approaches as tantamount to

selling out on biodiversity [27]. Others suggest that the whole

idea of ecosystem service markets has been oversold [29]

and may ultimately undermine conventional environmental

protection [28].

Though the concept of putting a monetary price on

biodiversity still provokes intense debate, a consensus is emer-

ging that a unified framework, integrating the many different

values of biodiversity [45] is essential for meeting environ-

mental goals in the Anthropocene. Rather than focusing on

disagreements over whether economic valuations should be

undertaken, the debate increasingly centres on how values

should be estimated [46] and used in a consistent way in

cost–benefit analyses [30] and decision-making [42,47].
3. Recent advances in natural science relevant to
biodiversity valuation

Critical to economic approaches is an understanding of the

causal links among biodiversity, ecological processes, ecosys-

tem functions and the services derived from these processes

and functions (figure 1). To explore these ideas, we introduce

and synthesize articles in this feature within the context of

two key questions. First, in what ways and to what extent are

more biodiverse ecosystems demonstrably more valuable?

Second, do we understand the links between biodiversity

and ecosystem functions and services well enough to measure

and predict the effects of anthropogenic activities on the values

of biodiversity?

(a) The value of biodiverse ecosystems
Ecosystem processes, functions and services are a product

of the activities of the communities of organisms that reside

in a given system (figure 1). However, it does not necessarily

follow that the inherent diversity of these communities matters.
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Indeed, disentangling biodiversity’s effects from the myriad

factors that govern ecosystem function has been much

more difficult than initially perceived [48]. Biodiversity is an

extraordinarily complex feature of biological communities

involving taxonomic, genetic, phylogenetic, functional,

trophic, spatial, temporal, behavioural and many other dimen-

sions of the diversity of life in an ecosystem [49,50]. For reasons

of empirical tractability, early studies tackled this complexity

by focusing on how changes in a single dimension of biodiver-

sity (usually species richness) influenced a single ecosystem

function (often biomass production) over a limited range of

spatial and temporal scales, often assuming that species loss

was random [51]. Later studies grew in complexity and

expanded beyond these limited approaches [52,53]. By 2012,

the consensus view based on 20 years of research was that (i)

experimental reduction in species richness, at any trophic

level, negatively impacts both the magnitude and stability of

ecosystem functioning [12,52], and (ii) the impact of biodiver-

sity loss on ecosystem functioning is comparable in

magnitude to other major drivers of global change [13,54].

The implications of these conclusions still remain unclear

for two key reasons. First, robust theoretical frameworks for

understanding the mechanistic links between diversity and

ecosystem functions and services are emerging [48] but

await further development and testing. Second, empirical

studies are still strongly biased towards small-scale temperate

grassland experiments focused on the response of bottom-up

ecosystem processes to random species loss (but see [55,56]).

Because of these limitations, critics often conclude that

biodiversity experiments cannot illuminate how species

loss will affect ecosystem functioning in the real world. In par-

ticular, to what extent do the relationships detected also apply

to long-lived tropical plant species, microbes, and animal

species performing key top-down ecosystem processes such

as pollination, seed dispersal and predation? Are they relevant

to much less well-studied environments where biodiversity

remains poorly quantified (e.g. much of the marine environ-

ment) and that are experiencing rapid change (e.g. polar

ocean ecosystems)?

In this feature, these questions are addressed in a series of

theoretical and empirical studies. Turnbull et al. [57] propose

that niche (coexistence) theory can explain mechanistic links

between species richness and key ecosystem functions

(i.e. biomass over-yielding, multi-functionality and temporal

stability). They also use niche theory to address some of the

most prominent criticisms of biodiversity experiments. They

suggest that not only are the results of these experiments

highly likely to apply in real-world situations, but also

in many cases the relationships between diversity and ecosys-

tem functioning in the real world will be steeper and/or

saturate at higher levels of diversity. For example, real environ-

ments are vastly more heterogeneous than experimental

settings, and niche theory predicts that a heterogeneous,

fluctuating world is likely to require even more species to

adequately fill niche space and ensure the sustainability of

ecosystem function [58].

New ‘real world’ support for diversity-stability effects, and

corroboration of expectations from niche theory, is presented

by Tuck et al. [59], who describe findings from the first 10

years of the Sabah Biodiversity Experiment in Borneo. This

large-scale (500 ha) experiment tests the role of the identity,

composition and diversity of enrichment-planted long-lived

dipterocarps on the functioning and stability of selectively
logged lowland rainforests during restoration [60]. Tuck et al.
[59] provide support for the idea that increased species diver-

sity promotes resilience in tropical forests through insurance

effects (i.e. spatial and temporal complementarity in ecosystem

functioning [61]).

Plants have often been centre stage in the debate about

valuing biodiversity, because they are clearly linked to high-

profile ecosystem functions, such as carbon uptake, biomass

production, hydrological cycles and climatic moderation.

Animals, by contrast, have less direct connection with core eco-

system functioning, but they nonetheless provide a wide range

of services integral to ecosystem health and stability, such

as nutrient transfer, decomposition and pollination [62,63].

Moreover, animals are highly susceptible to human activities

(e.g. hunting, disturbance, area effects and so forth), such

that the extinction of larger vertebrates is perhaps the dominant

signature of the Anthropocene [9,10]. Despite this, we remain

largely ignorant about how much animal diversity matters

for ecosystem functioning, services and resilience [64].

In this feature, two articles consider direct and indirect

impacts of the loss of vertebrates on dependent species in

lower trophic levels. Bregman et al. [50] use the functional

structure of avian communities to explore the impact of

anthropogenic land-use change on two animal-mediated pro-

cesses in tropical forests: seed dispersal and insect predation.

The results reveal a disproportionate loss of large-bodied fru-

givorous birds, an effect with important implications for the

structure and economic value of tropical forests, given the

role these species play in the seed dispersal of larger,

longer lived hardwood species. Similarly, Griffiths et al. [65]

find positive effects of dung beetles on seedling recruitment

through their role as secondary seed dispersers, suggesting

that changes in dung beetle communities caused by anthro-

pogenic activities could have implications for future

vegetation composition of tropical forests.

Most empirical support for the idea that species loss

impairs ecosystem functioning derives from studies in terres-

trial environments where biodiversity is relatively well

studied and quantified. In other words, there is an inevitable

bias in empirical studies towards systems in which a high

proportion of species have been identified and quantified in

terms of their functional traits and phylogenetic relationships.

Given these biases, can we predict the impact of species loss on

ecosystem functions and services in much less well-known eco-

systems, such as the marine environment, where many species

remain to be described [66,67], or in taxa such as microbes

where species limits are poorly defined [68]?

In this feature, Cavanagh et al. [66] highlight the dearth of

studies exploring the relationship between diversity and eco-

system value in the marine environment, and the tendency to

focus on specific ecosystem services (often harvested species).

They discuss implications of this for conservation and man-

agement strategies and propose a how best to embed the

biodiversity–ecosystem services relationship in decision-

making. Murphy et al. [67] emphasize the importance of a

systematic approach to analysing polar ocean ecosystem

structure and functioning, with a particular focus on integrat-

ing factors such as species interactions and life cycles with an

understanding of environmental controls at different spatial

and temporal scales. Based on a comparative analysis of

several key polar marine ecosystems, they propose a frame-

work for understanding interactions between biodiversity

and functioning of pelagic ecosystems, thus providing a
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much-needed context in which to understand and predict

marine ecosystem responses to change.

In summary, recent (post-2012) research in the field of

biodiversity–ecosystem functions and services has confirmed

the pervasiveness of positive biodiversity–productivity–

stability relationships in numerous environmental contexts,

and across broader spatial and temporal scales [53,56,57]. It

is also becoming increasingly clear that interactions within

and between lineages and trophic levels are the fundamental

architecture of functional and stable ecosystems [55,58,68].

Recent findings highlight the importance of top-down

(animal mediated) as well as bottom up (microbe or plant

mediated) processes. Moving forward, perhaps the key

research challenges in this field are to determine the capacity

of biodiversity (measured in multiple ways) to sustain key

ecosystem functions and flows of services in the face of inter-

acting global stressors (habitat loss/degradation, climate

change, disease, overhunting, etc.), and to use this infor-

mation to identify tipping points in biome and planetary

stability and resilience, as well as effective policy interven-

tions. This will require a truly multidisciplinary approach

with relevance across multiple scales. At one level, technical

advances are needed to integrate global mechanistic models

(e.g. General Ecosystem Models; [69]) with insights and

approaches from the fields of ecology, evolutionary biology,

climate science and the earth sciences, using datasets

sampled widely from the tree of life. Just as importantly, it

is vital that research focuses on generating outputs which

can be translated into real policies and practices relevant to

local contexts. For a list of key future research questions,

see the electronic supplementary material, table S1.

(b) Measuring and predicting effects of anthropogenic
activities on values of biodiversity

A major criticism of the valuation approach to conserving

biodiversity is that current understanding of the mechanistic

links between species and the functioning and resilience of

ecosystems is far from complete [70–72]. Without this, we

may fail to protect those elements of diversity crucial for eco-

system integrity.

As described above, there is growing consensus that maxi-

mizing species richness probably maximizes the productivity

and stability of ecosystems under fluctuating environmental

conditions [12,15]. Consequently, there is still widespread use

of taxonomic diversity (i.e. species richness) as a measure of

the functionality and ‘value’ of the ecosystem. However, we

also know that species vary in their contributions to ecosystem

functions (e.g. productivity) or properties (e.g. biomass or

stability): some species may perform many roles, some

may perform roles more key than others, some species’ roles

may be redundant [73], and others may not contribute in a sig-

nificant way [74–76]. As a result, growing emphasis has been

placed on the identity and diversity of traits or evolutionary

lineages mediating ecological functions [71,77], with the use

of metrics such as ‘functional diversity’ (FD) or ‘phylogenetic

diversity’ (PD) in studies assessing the impact of anthropogenic

activities [78–82].

The various ways in which species influence ecosystem

functions and properties are, in principle, becoming increas-

ingly well understood [13]. However, applying these findings

to natural ecosystems is difficult. In particular, we still know

little about the phenotypic and/or behavioural traits that
lead some species to dominate ecological functions while

rendering other species vanishingly rare, and we are only

beginning to understand how functional traits are distributed

within and across communities and the ecological and evol-

utionary processes generating these patterns [83–85]. For

example, Pigot et al. [86] show that the FD of frugivorous

bird assemblages may be a relatively weak predictor of the eco-

logical functions they support, and that additional information

on the abundance and intrinsic traits of species (i.e. functional

identity) is crucial in determining their relative importance in a

community. Because they find that species niches are strongly

constrained by their traits and conserved over evolutionary

time, they suggest that highly distinct species may nevertheless

be less substitutable than those with more redundant traits.

That species loss is buffered by functional redundancy in

very diverse environments is a pervasive idea in ecology

[87]. However, new studies indicate that despite the potential

for high functional redundancy in diverse ecosystems, most

species tend to be strongly clustered in trait space. Bregman

et al. [50] find that large areas of functional morphospace are

supported only by small numbers of highly distinctive,

large-bodied frugivorous birds and that these are the first to

disappear following habitat degradation. Similarly, D’Agata

et al. [88] show that large-bodied, pelagic fishes, which account

for a major proportion of functional trait space, are highly vul-

nerable to fishing. These findings, along with other related

work (e.g. [62]), provide growing evidence for a problem of

‘double jeopardy’ whereby a handful of highly distinct

species, often positioned at higher trophic levels, play

disproportionately large roles in the ecosystem but also tend

to be rare and prone to local extinction. This generally arises

through intrinsic sensitivity to population pressures,

combined with human activities (hunting, harvesting and

land-use change) [62,89]. The articles in this feature add to a

growing consensus that even a small decline of animal

diversity can have serious consequences for ecosystem func-

tioning, in particular, because those species to disappear first

often perform vital functions [90,91].

Understanding, predicting and ultimately mitigating the

effects of anthropogenic pressures will require the use of mul-

tiple measures of biodiversity. Building on this theme,

Naeem et al. [49] suggest that while research has expanded

to consider a wider variety of functions, organisms and habi-

tats, most studies continue to examine individual facets of

biodiversity in isolation. Using the impacts of herbivory by

deer as a case study, the authors illustrate the need to con-

sider complex interactions among multiple dimensions of

biodiversity to fully comprehend how ecosystems respond

to environmental change.

Together, these papers highlight the potential of using

functional traits to quantify the values and functions of

biodiversity. However, while functional traits offer some

promise, they also present pitfalls. Most importantly, we

still lack a complete understanding of the causal mechanisms

linking many forms of biodiversity loss to impacts on ser-

vices, particularly at broader scales. One of the core

challenges is that there is no simple mapping between

species’ traits, functions and services. Multiple traits may

produce a single function, and multiple functions may pro-

duce a single service. Moreover, traits effecting ecosystem

functioning may often differ from those influencing the

response of species to ecosystem perturbations (e.g. global

stressors such as climate change).
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In summary, further research is required in many areas

before we can reliably quantify the impacts of anthropogenic

activities on the values of biodiversity and develop robust

metrics to guide environmental policy. For example, we

need to examine the dynamic consequences of species extinc-

tion on the delivery of ecological process, and whether the

extinction of species from ecological networks will be buf-

fered by niche expansion of the remaining species

(electronic supplementary material, table S1). Similarly,

more evidence is needed to support the idea that functional

traits extracted from present-day snapshots of ecological net-

works or assemblages can help us predict the resilience of

ecosystems in the face of environmental change.
R.Soc.B
283:20162094
4. Linking biodiversity science to value, human
well-being and policy

(a) A framework for understanding the foundational
role of ‘biodiversity services’

While values have always informed environmental policy

even if only implicitly, contemporary approaches seek to inte-

grate ecosystem services into different policy contexts, for

example, through the use of TEV. Social scientists, environ-

mental economists and policy-makers are familiar with the

TEV framework, but they may be less clear on the processes

by which value is produced by biodiversity (and sometimes

conflate the term ‘biodiversity’ with final ecosystem products

and services). Meanwhile, natural scientists are familiar with

frameworks linking ecological processes to ecosystems functions

and services, but may be much less clear on the significance of

these processes to our understanding of biodiversity’s values,

and the creation of environmental policy.

To address this disconnect, we suggest a framework that

explicitly links biodiversity to value-based policy decisions

via ecosystem functions and services (figure 1). In this

schema, we assume that policy decisions affect biodiversity

positively or negatively by their impact on the drivers of biodi-

versity loss. Biodiversity in turn is viewed as the bedrock on

which human well-being ultimately depends (see also [92]).

Linking biodiversity to direct benefits are ecological processes

that are generally not identified as valuable services per se, and

yet they are integral to the downstream flow of services to

humanity. We refer to these ecological processes as ‘biodiver-

sity services’, and place them at the foundation to all other

functions and services provided by the ecosystem (see

figure 1 for details).

To understand the concept of biodiversity services, consider

the importance of forests to humanity. They produce oxygen,

regulate hydrological cycles, moderate climates and store

carbon [93]. The loss of tree diversity may appear unimportant

to the policy-maker who might assume that these benefits

would flow from large stands of a single species. However,

such monocultures may be more vunerable to disease and

potentially less able to withstand changing environmental con-

ditions. Tree diversity stabilizes the system yet this diversity

does not arise on its own. Instead, it is generated through

density-dependent processes such as those mediated by disease

and herbivory, e.g. Janzen–Connell effects [94]. Moreover, it is

only made possible by the pollination of flowers and dispersal

of seeds by numerous specialized organisms. Although much

of the diversity of microbes, pathogens, insects, birds and
mammals in the forest system is not directly generating services

to humanity, it is supplying something more fundamental by

allowing the ecosystem to regenerate in perpetuity, and to

withstand and recover from disease and environmental change.

A key message from this framework is that functions, ser-

vices and values are all interdependent. Economic valuation

must take these interdependencies into account, or else risk

underestimating biodiversity’s role in human well-being. For

example, final ecosystem services with marketable value

depend strongly on ecological processes that cannot be directly

valued and/or that also produce other services that are much

harder to value directly and have benefits beyond the final

ecosystem service with a market value (e.g. pollination, soil

formation and nutrient cycling). Ignoring these factors

potentially leads to under appreciation and underestimation

of biodiversity’s values, and could precipitate policy decisions

that ultimately compromise human well-being and sustainable

development (figure 1). We recognize that myriad factors

influence policy decisions, and that it is important to frame

the values of biodiversity in ways that resonate most with the

different types of decision-maker. Conservation policy-

makers, for example, may be more likely to be influenced by

intrinsic values associated with protecting rare species,

whereas land-use planners may have more direct interests in

values associated with particular ecosystem services (e.g. con-

nected to flood risks). However, as decision-making becomes

more ‘mainstream’ and hence largely dictated by wider

socio-economic goals and considerations, so arguments

about economic value and the role of biodiversity in this

broader context become more relevant.

(b) Integrating biodiversity values into decision-making
processes

There is widespread recognition of the urgent need to take

account of biodiversity values in decision-making both nation-

ally and internationally. At the international level, three major

policy processes and platforms are particularly important: The

Convention on Biological Diversity (CBD), the Intergovern-

mental Platform on Biodiversity and Ecosystem Services

(IPBES) and the Sustainable Development Goal (SDG) frame-

work. One of the targets of the CBD’s current Strategic Plan

for Biodiversity is that by 2020, biodiversity values will have

been ‘integrated into national and local development and pov-

erty reduction strategies and planning processes’ [95]. Parties

to the CBD are expected to incorporate these targets in their

own National Biodiversity Strategies and Action Plans

(NBSAPs), and significant effort and resources are invested in

supporting NBSAP development and implementation [96].

Meanwhile, IPBES has been designed as an interface

between science and policy communities, to enable policy-

makers to ask questions and scientists to address these

questions based on the current state of knowledge [97].

Acting at unavoidably coarse scales, the IPBES programme

nonetheless includes vital support and capacity development

to individuals and institutions operating at regional, national

and sub-national scales [98]. The success of IPBES will be

judged on its ability to bring together diverse and credible

knowledge in a way that is transparent, coherent and influen-

tial in terms of global policy-making [37,99]. Key challenges

for IPBES will be showing how its assessments can help the

global community meet the recently agreed SDGs and build

on the Aichi Biodiversity targets when they expire in 2020.
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Finally, the SDG framework is the pre-eminent com-

mitment on environment and development for the next

two decades (https://sustainabledevelopment.un.org/). The

goals are important in having been universally adopted for

delivery nationally as well as internationally. Biodiversity

explicitly appears within the framework in the form of Goal

15 (protect, restore and promote sustainable use of terrestrial

ecosystems, sustainably manage forests, combat desertifica-

tion, and halt and reverse land degradation and halt

biodiversity loss). However, it is implicit in Goal 14 (conserve

and sustainably use the oceans, seas and marine resources

for sustainable development). Moreover, as highlighted by

the science synthesized in this feature and illustrated in

figure 1, the conservation and restoration of the ecosystems

that harbour biodiversity is fundamental to achieving a wide

range of other societal goals embodied within the SDGs includ-

ing food security (Goal 2), water security (Goal 6), mitigation

and adaptation to climate change (Goal 13) and livelihood

diversification (Goal 8) (see also [100]). The challenge now for

scientists and practitioners is to work together to make this case

to governments and the various constituencies investing in

and overseeing implementation of the SDGs [21]. In doing

so, they will bring biodiversity to the heart of the sustainable

development agenda.
5. Conclusion
The balance of evidence suggests that more biodiverse ecosys-

tems are more productive, stable and resilient, and that by

maximizing species, functional and phylogenetic diversity we

maximize an ecosystem’s value over the long term. However,

we are still a way off from being able to causally and accurately

link many forms of biodiversity loss to impacts on ecosystem

services. Although many key questions remain (electronic sup-

plementary material, table S1), current research points to the

prudent approach of conserving as much diversity as possible.

However, to do so requires expanding beyond traditional biodi-

versity metrics (e.g. species richness) to include trait- and

phylogeny-based metrics. As data on species traits, food webs

and guild structure grows, for plants, animals and microorgan-

isms, a more complete understanding of ‘biodiversity services’

and their contribution to ecosystem services will emerge, and

predictions of the economic, not just the ecological, consequences

of biodiversity loss will improve.

In the meantime, attempts to place an economic value on

biodiversity’s contribution to ecosystem services must proceed

with caution. They must take the complexity and uncertainty of
the underlying science into account and acknowledge the high

likelihood that estimates undervalue the total contribution of

biodiversity to human well-being, especially when considering

future generations and the uncertain environmental conditions

they will experience. As such, an economic valuation approach

to biodiversity conservation should complement rather than

replace traditional approaches (especially in poorly studied

ecosystems such as the marine environment).

We note, in closing, that an implicit assumption behind the

broader rationale of our analysis here, and the following papers

in this feature, is that improving scientific understanding of the

links between biodiversity and value should result in improved

prospects for biodiversity. However, recent analyses [8] show

that while indicators of effective responses are improving (e.g.

awareness of the value of biodiversity and establishment of pro-

tected areas) the state of biodiversity is deteriorating, according

to standard metrics. This suggests that a key challenge moving

forward is to identify and overcome the myriad social, cultural

and political obstacles to effective translation of policy into

actions and financial resources that benefit biodiversity. To do

this, ecologists and conservation biologists need to engage

much more strongly with and draw on the social sciences

(e.g. political science, psychology and anthropology) as well

as the humanities (e.g. history, philosophy and aesthetics).

This in itself will require focused effort by members of all

these disciplines to share knowledge and develop common

languages and frameworks [101].

Ultimately, meeting the challenge of understanding and

maintaining the value of biodiversity in the Anthropocene

demands a genuinely interdisciplinary approach, one that rig-

orously unites the social sciences, natural sciences and

humanities on the one hand, and researchers and practitioners

on the other. At a time of planetary collapse, and political

divide, such collaboration and cooperation within and between

disciplines and sectors has never been more important.
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