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Pleuromutilins are antibiotics that selectively inhibit bacterial translation and are semisyn-
thetic derivatives of the naturally occurring tricyclic diterpenoid pleuromutilin, which re-
ceived its name from the pleuromutilin-producing fungus Pleurotus mutilus. Tiamulin and
valnemulin are two established derivatives in veterinary medicine for oral and intramuscular
administration. As these early pleuromutilin drugs were developed at a timewhen companies
focused on major antibacterial classes, such as the b-lactams, and resistance was not regard-
ed as an issue, interest in antibiotic research including pleuromutilins was limited. Over the
last decade or so, there has been a resurgence in interest to develop this class for human use.
This has resulted in a topical derivative, retapamulin, and additional derivatives in clinical
development. The most advanced compound is lefamulin, which is in late-stage develop-
ment for the intravenous and oral treatment of community-acquired bacterial pneumonia
and acute bacterial skin infections. Overall, pleuromutilins and, in particular, lefamulin are
characterized by potent activity against Gram-positive and fastidious Gram-negative patho-
gens as well as against mycoplasmas and intracellular organisms, such as Chlamydia spp.
and Legionella pneumophila. Pleuromutilins are unaffected by resistance to other major
antibiotic classes, such as macrolides, fluoroquinolones, tetracyclines, b-lactam antibiotics,
and others. Furthermore, pleuromutilins display very low spontaneous mutation frequencies
and slow, stepwise resistance development at sub-MIC in vitro. The potential for resistance
development in clinic is predicted to be slow as confirmed by extremely low resistance rates
to this class despite the use of pleuromutilins in veterinary medicine for .30 years. Although
rare, resistant strains have been identified in human- and livestock-associated environments
and as with any antibiotic class, require close monitoring as well as prudent use in veterinary
medicine. This review focuses on the structural characteristics, mode of action, antibacterial
activity, and resistance development of this potent and novel antibacterial class for systemic
use in humans.

Pleuromutilins are a well-known class of an-
tibiotics discovered in the 1950s by the iso-

lation of the naturally occurring pleuromutilin
from Pleurotus mutilus (now renamed Clitophi-
lus scyphoides), an edible mushroom (Fig. 1)

(Kavanagh et al. 1951). Semisynthetic derivati-
zations have led to tiamulin and valnemulin,
which were introduced to veterinary medicine
in 1979 and 1999, respectively, for the treatment
of pulmonary and intestinal infections caused
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by Mycoplasma spp., Brachyspira spp., and Law-
sonia intracellularis in pigs, poultry, and, to
some extent, in rabbits. Despite the use of pleu-
romutilins for treatment in veterinary medicine
for more than three decades, resistance devel-
opment has been uncommon. This can likely
be attributed to several factors including the
unique and highly specific mode of action of
the pleuromutilins. Further, this class has not
been used for enhancement of food-producing
animal production (e.g., as growth promoters
or for enhancement of feed efficiency) unlike
the tetracyclines, penicillins, or sulfonamides
(EMA 2014a,b). Even though oral valnemulin
has been reported to be efficacious in the treat-
ment of persistent or life-threatening mycoplas-
ma infection in humans (Heilmann et al. 2001),
no pleuromutilin had received marketing au-
thorization by the end of the last century.

In the new millennium, interest in the pleu-
romutilin class significantly increased as evi-
denced by the development of new derivatives
for human use. Retapamulin, a topical agent,
was the first to be approved for the treatment
of impetigo and infected small lacerations,
abrasion or sutured wounds caused by Staphy-
lococcus aureus and Streptococcus pyogenes (FDA
2007; EMA 2008). More recently, lefamulin, the
first pleuromutilin for intravenous and oral
administration, has entered into late-stage clin-
ical development for the treatment of commu-
nity-acquired bacterial pneumonia (CABP) and
acute bacterial skin and skin structure infec-
tions (ABSSSIs). BC-7013 and BC-3205, which
have a similar antibacterial profile but differ in
ADMET properties, are in early-stage clinical

development for topical and oral administra-
tion, respectively. In addition, recent research
has been directed at further extending the
antibacterial spectrum to include the ESKAPE
pathogens (Boucher et al. 2009; Paukner et
al. 2014a,b, 2015a,b,c; Strickmann et al. 2014;
Wicha and Ivezic-Schoenfeld 2014; Wicha et al.
2015b).

To the question “Are pleuromutilins finally
fit for human use?” (Novak 2011), which has
been raised because of unjustified anecdotal
concerns regarding metabolic stability, gastro-
intestinal side effects, cardiac safety, or intrave-
nous tolerability, a clear response can be given:
Yes. In a phase 2 study, lefamulin was well-
tolerated and showed comparable efficacy to
IV vancomycin in patients with ABSSSI (Prince
et al. 2013). Despite challenging medicinal
chemistry, a number of compounds are in the
pipeline and further developments in this anti-
biotic class are anticipated.

PLEUROMUTILINS—MODE OF ACTION,
ACTIVITY, AND RESISTANCE

Structure

The diterpenoid pleuromutilin comprises a tri-
cyclic scaffold with unique annelation of a five-,
six-, and eight-membered ring and eight stable
chiral centers, as well as a glycolic ester moiety
forming the side chain also regarded as an ex-
tension at position C14 (Fig. 1) (Anchel 1952;
Arigoni 1962, 1968; Birch et al. 1963, 1966).
Remarkable efforts have been made to achieve
chemical modifications at several positions of
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Figure 1. Structure of pleuromutilin with numbering system (Arigoni 1968). (Left panel from Lindsey 2006.)
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the tricyclic core (Naegeli 1961; Berner et al.
1980, 1981, 1983, 1987; Brooks and Hunt 2000;
Bacqué et al. 2002; Springer et al. 2003, 2008;
Takadoi et al. 2007; Wang et al. 2009; Paukner
et al. 2015b), as well as biotransformation (Han-
son et al. 2002), and the total synthesis of this
unique scaffold (Gibbons 1982; Paquette and
Bullman-Page 1985; Paquette and Wiedemann
1985; Bacqué et al. 2003; Liu et al. 2011; Lotesta
et al. 2011; Ruscoe et al. 2015). Most modifi-
cations, however, are primarily performed at
the glycolic side chain of pleuromutilin with
replacement of the terminal hydroxyl group or
the entire side chain resulting in semisynthetic
pleuromutilin analogs of two main types: (1) the
flexible sulfanylacetyl, and (2) the rigid acyl-
carbamate linker type. Despite significant ef-
forts in the field of acylcarbamate pleuromuti-
lins by the GlaxoSmithKline group (Hunt 2000;
Brooks et al. 2001; Andemichael et al. 2009),
only sulfanylacetyl derivatives, mostly with one
basic function at the side chain, have progressed
beyond phase 1 clinical studies. The early work
of the Sandoz group resulted in lipophilic orally
available veterinary products, tiamulin (Egger
and Reinshagen 1978) and valnemulin (Fig.
2A) (Berner and Vyplel 1987), whereas work
from GlaxoSmithKline and Sandoz/Nabriva
led to the lipophilic topical products retapa-
mulin (Berry et al. 1999) and BC-7013 (Fig.
2B) (Thirring et al. 2007). Extensive modifica-
tion of the C14 side chain culminated in lefa-
mulin (Fig. 2C) (Mang et al. 2008), the first
pleuromutilin with optimized physicochemical

characteristics, including exceptional solubil-
ity, potent antimicrobial activity, and excellent
ADMET properties including metabolic stabil-
ity enabling administration by both the intra-
venous and oral routes.

Mode of Action

Pleuromutilins inhibit bacterial protein synthe-
sis by binding to the central part of domain V
of the 50S ribosomal subunit at the peptidyl
transferase center (PTC), which prevents the
correct positioning of the CCA ends of tRNAs
for peptide transfer in the A- and P-site, thereby
inhibiting peptide bond formation (Hogenauer
1975; Hogenauer and Ruf 1981; Hogenauer
et al. 1981; Poulsen et al. 2001; Schlunzen et al.
2004; Long et al. 2006; Davidovich et al. 2007).
Figure 3 shows the positioning of lefamulin in
the PTC of the bacterial ribosome in relation to
the positions of A- and P-site tRNA. Positioning
is similar for various pleuromutilin derivatives
in that the tricyclic core is located in a pocket
close to the A-site, whereas the C14 side chain
extends toward the P-site hindering the 30-end
tRNA A- to P-site rotary motion, as shown by
various footprinting and crystallographic stud-
ies for tiamulin, valnemulin (Poulsen et al. 2001;
Schlunzen et al. 2004; Long et al. 2006; Davido-
vich et al. 2007), retapamulin (Yan et al. 2006),
lefamulin (Nabriva, unpubl.), and BC-3205
(Eyal et al. 2015). Crystallography data using
ribosomal preparations from Deinococcus radio-
durans and S. aureus show that the tricyclic

S

HN

O
Valnemulin

Tiamulin

A B C

NH2

H2N

NH2
BC-7013

Retapamulin Lefamulin

OH

BC-3205

22

S 22

N N

N
S 22

O

HO

S 22 S 22

S 22

Figure 2. Structures of side chains at C22. Side chains of various pleuromutilin derivatives: (A) veterinary,
(B) topical human, and (C) systemical human.
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pleuromutilin core interacts with the riboso-
mal nucleotides mainly through hydrophobic
interactions, van der Waal forces, and hydrogen
bonds with nucleotides of domain V of 23S
rRNA, namely, A2503, U2504, G2505, U2506,
C2452, and U2585 (Fig. 4). For the tricyclic
pleuromutilin core, specific hydrogen bonds
have been reported for the hydroxyl group at
C11 with nucleotides G2505 or A2503 (Davido-
vich et al. 2007) and for the hydroxyl group at
C2 (present in only few selected derivatives)
with G2505. Further, hydrogen bonds have been
reported for the C21 carboxyl group and the
sulfur in sulfanylacetyl or acyl in acylcarbamate
of the C14 extension (linker) with the nucleo-
tide G2061, which are similar for both linker
types (Schlunzen et al. 2004; Davidovich et al.
2007). In previous studies using D. radiodurans
ribosomes, it was concluded that the rest of the
C14 extension is involved only in minor hydro-
phobic interactions (Davidovich et al. 2007).
Recent studies using S. aureus ribosomes, how-
ever, clearly showed additional hydrogen bonds
of the C14 extensions, specifically the amino
groups of BC-3205 and lefamulin, with the nu-
cleotides U2506 (Eyal et al. 2015) and A2062
(A Yonath, Z Eyal, E Zimmerman, et al., un-
publ.), respectively. Most notably, the C14 ex-
tensions of all pleuromutilins sterically interfere

with the highly flexible nucleotides U2585 and
U2506 causing rotational movements of these
nucleotides, which consequently interact with
each other by the formation of one or more
additional hydrogen bonds or at least van der
Waal or similar interactions. This closing of the
binding pocket around pleuromutilins, also re-
garded as the induced-fit mechanism, tightens
the binding of pleuromutilins to the ribosome
(Davidovich et al. 2007; Eyal et al. 2015) and
leads to the protection of these nucleotides
in footprinting experiments (Schlunzen et al.
2004). Interestingly, the amino group of the
C14 extension of BC-3205 forms a hydrogen
bond with U2506 in S. aureus causing a larger
shift of U2506, consequently further stabilizing
BC-3205 in the binding pocket and indicating a
better fit of this molecule in the pocket (Eyal
et al. 2015).

It has been further hypothesized that pleu-
romutilins might also interfere with translation
initiation or at an early point of the elongation
cycle with particular sensitivity of the first pep-
tide bond formation (Hunt 2000; Novak 2011).
This is based on the fact that (1) radiolabeled
tiamulin did not bind to the 50S subunit of the
ribosome once elongation has begun, (2) addi-
tion of tiamulin to intact cells led to the forma-
tion of defective initiation complexes reflected

Lefamulin
A-site tRNA
P-site tRNA

Figure 3. Lefamulin positioning in the peptidyl transferase center (PTC). PTC of the bacterial ribosome in
relation to the positions of A- and P-site tRNA. Red, Lefamulin; blue, A-site tRNA; teal, P-site tRNA.
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by the depletion of the polysome pool through
blockage of reinitiation (Dornhelm and Hoge-
nauer 1978), and (3) retapamulin partially in-
hibited binding of fMet-tRNA during initiation
complex formation (Yan et al. 2006).

Coupled in vitro transcription/translation
(TT) assays with bacterial ribosomes have
shown high specificity of pleuromutilins for
the inhibition of bacterial protein translation,
whereas no effect on eukaryotic nonorganelle
protein synthesis was observed for tiamulin
and retapamulin (Yan et al. 2006). The speci-
ficity for bacterial protein synthesis was also
confirmed for lefamulin with IC50 values of
0.51 mM and 0.31 mM in Escherichia coli
and S. aureus TT-assays, respectively, whereas
the IC50 in the eukaryotic TT-assay was with
952 mM .2000-fold higher than the IC50

in the bacterial system. Cycloheximide, a TT
inhibitor of eukaryotic protein synthesis, and
puromycin, a nonspecific inhibitor of bacterial
and eukaryotic TT, were used as controls. Com-
parison of IC50 values of various pleuromutilin
derivatives showed a slight trend of higher IC50

for E. coli than for S. aureus (Table 1; Nabriva,
unpubl.). It further showed that the IC50 does
not necessarily correlate with high antibacterial
activity; for example, BC-7013, which has the
highest IC50, was one of the most active com-

pounds in vitro (Biedenbach et al. 2009). Addi-
tional important factors other than translation
inhibition, such as intracellular concentration,
uptake, or efflux, contribute to in vitro antimi-
crobial activity as well (Paukner et al. 2014b).

Antibacterial Activity

The antibacterial spectrum of the pleuromuti-
lins is characterized by potent activity against
Gram-positive organisms including staph-
ylococcal species (e.g., community-acquired
methicillin-resistant S. aureus [CA-MRSA],
hospital-acquired MRSA [HA-MRSA], vanco-
mycin-resistant S. aureus [VRSA], vancomycin-
intermediate S. aureus [VISA], heteroresistant
VISA [hVISA]), streptococcal species (e.g.,
penicillin-resistant Streptococcus pneumoniae
[PRSP], multidrug-resistant S. pneumoniae
[MDR-SP]), and Enterococcus faecium (partic-
ularly vancomycin-resistant strains [VRE]), as
well as activity against fastidious Gram-nega-
tives, including Haemophilus spp., Moraxella
catarrhalis, Neisseria spp., and Legionella pneu-
mophila (Rittenhouse et al. 2006; Sader et al.
2012a,b; Paukner et al. 2013c). Pleuromutilins
also display potent activity against mycoplas-
mas, ureaplasmas, chlamydia (Hannan et al.
1997), and Brachispira hyodysenteriae (Karlsson

C2063 C2063

U2585

U2506

U2585

U2506

G2505

BC-3205

C2452

U2504G2061

3.1A

2.7A

C2452

G2061 U2504

A B

Sulfanylacetyl

Acylcarbamate

Figure 4. Interaction network. (A) The tricyclic pleuromutilin core and sulfanylacetyl as well as acylcarbamate
linker (side chains omitted for clarity), and (B) the C14 side chain extension with nucleotides of the peptidyl
transferase center (PTC). Hydrogen bonds are shown as dotted lines (Schlunzen et al. 2004; Davidovich et al.
2007; Eyal et al. 2015).
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et al. 2001). Activity against anaerobic organ-
isms has been seen for retapamulin, lefamulin,
and BC-7013, including Propionibacterium
acnes (Goldstein et al. 2006), Peptostreptococcus
spp., Prevotella spp., Porphyromonas spp., Fuso-
bacterium spp., and Clostridium perfringens,
whereas pleuromutilins generally show weak ac-
tivity against strains from the Bacteroides fragilis
group (Odou et al. 2007; Paukner et al. 2013a).
Pleuromutilin activity against Clostridium dif-
ficile varies and is dependent on the C14 side
chain; retapamulin and lefamulin possess no
relevant to weak activity, whereas BC-7013 has
potent activity with 78% of isolates inhibited
at concentrations of �1 mg/mL (Nabriva, un-
publ.). The lack of lefamulin activity against
B. fragilis group and Enterobacteriaceae is an-
ticipated to result in limited disruption to the
normal gastrointestinal microbiome and poten-
tially a lower propensity to be associated with C.
difficile infection (CDI). Further studies are war-
ranted to assess the effect of the pleuromutilins
on the gut microbiome and its impact on CDI.

No relevant activity was observed against
Enterococcus faecalis, Enterobacteriaceae, and
nonfermenting Gram-negatives, such as Acine-
tobacter baumannii and Pseudomonas aerugi-
nosa, although coupled in vitro transcription–
translation assay results showed inhibition of
the bacterial translation in these organisms
and would suggest also antibacterial in vitro

activity (Nabriva, unpubl.). Research at Nabriva
revealed that the intrinsic resistance of Entero-
bacteriaceae is caused by the efflux of pleu-
romutilins mediated by the AcrAB-TolC efflux
pump. This is supported by the fact that AcrAB-
TolC deficient E. coli strains were susceptible to
pleuromutilins (Paukner et al. 2014b) and that
the minimum inhibitory concentration (MIC)
values against Enterobacteriaceae were signifi-
cantly reduced by the addition of efflux pump
inhibitors (e.g., PAbN). Furthermore, recent
new pleuromutilin derivatives partially over-
come efflux and show increased activity against
Enterobacteriaceae, including carbapenem-re-
sistant isolates. These so-called “extended spec-
trum pleuromutilins” (ESPs) are characterized
by the modification of the tricyclic pleuro-
mutilin core at C12 (Paukner et al. 2014a,b,
2015a,b,c; Strickmann et al. 2014; Wicha and
Ivezic-Schoenfeld 2014; Wicha et al. 2015b).
Further investigations are needed to identify
the mechanism(s) responsible for decreased
susceptibility in nonfermenting organisms and
E. faecalis.

Given that lefamulin is the first in-class IV
and oral pleuromutilin antibiotic to advance
into late-stage clinical development, addition-
al information is provided on its activity.
The antibacterial spectrum of lefamulin against
a recent strain collection is well matched to
the profile required for the empiric treatment

Table 1. Inhibition of bacterial and eukaryotic in vitro transcription–translation by various pleuromutilin
derivatives

IC50 (CI95) (mM)

Compound Escherichia coli Staphylococcus aureus

Eukaryotic

(reticulocyte lysate system)

Pleuromutilin 0.76 (0.63–0.92) 1.73 (1.22–2.44) ND
Tiamulin 0.50 (0.44–0.57) 0.36 (0.32–0.42) ND
Valnemulin 0.59 (0.54–0.66) 0.38 (0.35-0.41) ND
Retapamulin 0.69 (0.64–0.76) 0.35 (0.32–0.39) 850 (562–1287)
Lefamulin 0.51 (0.45–0.57) 0.31 (0.29–0.33) 952 (732–1238)
BC-3205 0.62 (0.56–0.68) 0.49 (0.44–0.54) .100
BC-7013 0.74 (0.65–0.83) 0.64 (0.59–0.69) .100
Cycloheximide .100 .100 0.44 (0.29–0.68)
Puromycin 0.39 (0.34–0.46) 0.19 (0.16–0.23) 0.31 (0.27–0.36)

Unpublished data (Nabriva).

ND, not determined.

S. Paukner and R. Riedl

6 Cite this article as Cold Spring Harb Perspect Med 2017;7:a027110

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



Ta
bl

e
2.

A
n
ti

b
ac

te
ri

al
ac

ti
vi

ty
o
f
le

fa
m

u
li

n
an

d
co

m
p
ar

at
o
rs

M
IC

9
0

(m
g/

m
L)

Sp
ec

ie
s

n
LM

U
ER

Y
C

LI
D

O
X

T
G

C
LZ

D
VA

N
D

A
P

LE
V

P
EN

O
rg

an
is

m
s

ca
u

si
n

g
p

re
d

o
m

in
an

tl
y

S
S

SI
an

d
b

ac
te

re
m

ia
St

ap
hy

lo
co

cc
u

s
au

re
u

s
55

27
0.

12
.

4
.

2
0.

25
0.

25
1

1
0.

5
.

4
–

M
SS

A
31

57
0.

12
.

4
�

0.
25

0.
25

0.
25

2
1

0.
5

1
–

M
R

SA
23

70
0.

25
.

4
.

2
1

0.
25

1
1

0.
5

.
4

–
C

o
N

S
87

8
0.

12
.

4
.

2
2

0.
25

1
2

0.
5

.
4

–
E

n
te

ro
co

cc
u

s
fa

ec
iu

m
53

6
4

.
4

–
.

8
0.

25
1

.
16

2
.

4
–

V
an

co
m

yc
in

-n
o

n
su

sc
ep

ti
b

le
30

4
0.

25
.

4
–

.
8

0.
25

1
.

16
2

.
4

–
b

-H
ae

m
o

ly
ti

c
St

re
pt

oc
oc

cu
s

sp
p

.
76

3
0.

03
.

4
.

2
8

0.
06

1
0.

5
0.

25
1

0.
06

V
ir

id
an

s
gr

o
u

p
St

re
pt

oc
oc

cu
s

sp
p

.
24

5
0.

5
.

4
�

0.
25

.
8

0.
06

1
0.

5
0.

5
2

0.
5

n
LM

U
ER

Y
A

Z
I

D
O

X
T
G

C
LE

V
SX

T
C

X
M

IM
I

P
EN

O
rg

an
is

m
s

ca
u

si
n

g
p

re
d

o
m

in
an

tl
y

R
T

I
St

re
pt

oc
oc

cu
s

pn
eu

m
on

ia
ea

14
73

0.
25

.
4

.
4

8
0.

06
1

.
4

8
0.

5
4

H
ae

m
op

h
il

u
s

in
fl

u
en

za
eb

36
0

2
8

2
0.

5
0.

25
–

.
4

2
1

–
M

or
ax

el
la

ca
ta

rr
h

al
is

25
3

0.
25

0.
25

�
0.

25
0.

25
0.

25
–

�
0.

5
2

�
0.

12
.

4
L

eg
io

n
el

la
pn

eu
m

op
h

il
a

c
30

0.
5

0.
25

0.
12

–
–

0.
12

–
–

–
–

M
yc

op
la

sm
a

pn
eu

m
on

ia
e

50
(4

)d
0.

00
6

0.
00

25
–

0.
00

5f
�

0.
00

03
f

0.
04

–
0.

04
f

–
–

–
–

–
–

C
h

la
m

yd
ia

pn
eu

m
on

ia
e

50
(2

)e
0.

04
0.

04
–

0.
16

f
0.

08
–

0.
16

f
0.

04
–

0.
08

f
–

–
–

–
–

–

D
at

a
ad

ap
te

d
fr

o
m

P
au

kn
er

et
al

.
(2

01
3c

)
an

d
Sa

d
er

(2
01

2b
).

M
R

SA
,M

et
h

ic
il

li
n

-r
es

is
ta

n
tS

.a
u

re
u

s;
M

SS
A

,m
et

h
ic

il
li

n
-s

u
sc

ep
ti

b
le

S.
au

re
u

s;
C

o
N

S,
co

ag
u

la
se

-n
eg

at
iv

e
St

ap
hy

lo
co

cc
u

s
sp

p
.;

A
Z

I,
az

it
h

ro
m

yc
in

;C
L

I,
cl

in
d

am
yc

in
;C

X
M

,c
ef

u
ro

xi
m

e;

D
A

P,
d

ap
to

m
yc

in
;

D
O

X
,

d
o

xy
cy

cl
in

e;
E

R
Y,

er
yt

h
ro

m
yc

in
;

IM
I,

im
ip

en
em

;
L

E
V

,
le

vo
fl

ox
ac

in
;

L
M

U
,

le
fa

m
u

li
n

;
L

Z
D

,
li

n
ez

o
li

d
;

P
E

N
,

p
en

ic
il

li
n

;
SX

T,
tr

im
et

h
o

p
ri

m
-s

u
lf

am
et

h
o

xa
zo

le
;

T
G

C
,

ti
ge

cy
cl

in
e;

VA
N

,
va

n
co

m
yc

in
.

a 61
.3

%
o

f
S.

pn
eu

m
on

ia
e

is
o

la
te

s
w

er
e

p
en

ic
il

li
n

-s
u

sc
ep

ti
b

le
.

b
23

.6
%

o
f

H
.

in
fl

u
en

za
e

is
o

la
te

s
w

er
e
b

-l
ac

ta
m

as
e-

p
o

si
ti

ve
.

c M
IC

s
d

et
er

m
in

ed
b

y
ag

ar
d

il
u

ti
o

n
u

si
n

g
ch

ar
co

al
-s

u
p

p
le

m
en

te
d

B
C

Y
E
a

m
ed

iu
m

.
d
L

M
U

w
as

te
st

ed
ag

ai
n

st
n
¼

50
is

o
la

te
s,

w
h

er
ea

s
co

m
p

ar
at

o
rs

w
er

e
te

st
ed

ag
ai

n
st

n
¼

4
is

o
la

te
s.

e L
M

U
w

as
te

st
ed

ag
ai

n
st

n
¼

50
is

o
la

te
s,

w
h

er
ea

s
co

m
p

ar
at

o
rs

w
er

e
te

st
ed

ag
ai

n
st

n
¼

2
is

o
la

te
s.

f R
an

ge
o

f
M

IC
s

fo
r

is
o

la
te

s
te

st
ed

.

Pleuromutilins: Potent Drugs for Resistant Bugs

Cite this article as Cold Spring Harb Perspect Med 2017;7:a027110 7

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



of patients with CABP and ABSSSI (Table 2).
Notably, lefamulin was equipotent against
S. aureus strains that were community-acquired
or healthcare-associated and its activity was
not negatively influenced by the presence of
Panton-Valentine leukocidin (PVL). Compared
with macrolides, lincosamides, fluoroquinoloes,
tetracyclines, b-lactams, linezolid, and vanco-
mycin, lefamulin was among the most active
compounds in vitro and the lefamulin activity
was unaffected by resistance or multidrug
resistance to these antibiotic classes (Paukner
et al. 2013c). Lefamulin’s activity is not adverse-
ly affected by presence of serum (�95% v/v) or
lung surfactant (�1 mg/mL Survanta; 4% v/v).
Lefamulin has shown high intracellular concen-
tration in macrophages (Paukner et al. 2013b),
achieves excellent penetration into human tis-
sues including epithelial lining fluid of the
lung (Zeitlinger et al. 2016), has oral bioavail-
ability, potent in vivo efficacy in skin and pul-
monary infection mouse models (Wicha et al.
2010, 2013, 2015a), and possesses a low po-
tential for resistance development. Moreover,
lefamulin has shown efficacy in patients with
ABSSSI infection caused primarily by MRSA
(including PVL-producing CA-MRSA) compa-
rable to that of vancomycin (Prince et al. 2013).
To date, lefamulin has been well tolerated in
phase 1 and 2 clinical studies involving exposure
of more than 400 subjects. Lefamulin also pos-
sesses potent activity (MIC90 values�2 mg/ml)
against organisms causing sexually transmitted
infections (STIs), including resistant Neisseria
gonorrhoeae, Mycoplasma genitalium, Chlamyd-
ia trachomatis, or Haemophilus ducreyi, war-
ranting further evaluation of this drug for treat-
ment of STIs (Paukner et al. 2013a).

Resistance and Cross-Resistance

The unique mode of action of pleuromutilins
and the binding to highly conserved ribosomal
targets implies a low probability of resistance
development and lack of cross-resistance with
other antibiotic classes including protein syn-
thesis inhibitors, such as macrolides, ketolides,
or fusidic acid (Yan et al. 2006). The binding
sites and mode of action of pleuromutilins

can be clearly differentiated from those of
oxazolidinones, lincosamides, phenicols, and
streptogramins; however, pleuromutilins also
have partly overlapping interaction sites with
these antibacterials (Schlunzen et al. 2004). Con-
sequently, resistance mechanisms exist that can
mediate cross-resistance with these antibacte-
rials, albeit with an exceedingly low incidence.

Pleuromutilins have shown a low potential
for resistance development in vitro as shown in
various studies for tiamulin and valnemulin in
Brachyspira spp. (Karlsson et al. 2001; Pringle
et al. 2004), Mycoplasma spp. (Long et al. 2009;
Li et al. 2011), S. aureus and E. coli (Miller
et al. 2008), for retapamulin in S. aureus and
S. pyogenes (Kosowska-Shick et al. 2006; Gentry
et al. 2007), and for lefamulin in S. aureus,
S. pneumoniae, and S. pyogenes (Paukner et al.
2012). Generally, the spontaneous mutation
frequencies are low (�1029) with no stable
resistant mutants selected at four- to eightfold
MIC. In multipassage experiments, resistance
developed in a slow and step-wise manner
with multiple mutations required to cause
high-level resistance. Mutations in 23S rRNA,
rplC, and rplD genes encoding the large ribo-
somal proteins L3 and L4, have been identified
as the primary resistance mechanism in vitro.
In clinical isolates, two additional resistance
mechanisms have been identified: the acquisi-
tion of vga(A) encoded or related ATP-binding
cassette (ABC)-F transporters and the acquisi-
tion of cfr encoding the Cfr methyltransferase.
The common denominator is the alteration of
the pleuromutilin target site.

Mutations in the 23S RNA gene (rrn) at
positions G2032A, C2055A, A2058, A2058G,
A2059G, G2061U, G2447A/U, C2499A,
A2503U, U2504A/G, and A2572U were primar-
ily observed in laboratory-selected Brachyspira
spp., Mycoplasma spp., and in clinical isolates.
Mutations in 23S rRNA have been described to
confer resistance only in Mycoplasma spp. and
Brachyspira spp., which only have a single copy
of 23S rRNA, whereas staphylococcal and strep-
tococcal species have multiple copies (Pringle
et al. 2004; Miller et al. 2008; Long et al. 2009;
Li et al. 2010; Hillen et al. 2014). Experiments
with single-copy rrn knockout strains of E. coli
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illustrated that “the copy number of 23S rRNA
is the limiting factor in the selection of 23S
rRNA mutants” (Miller et al. 2008). In Brachy-
spira, resistance is often associated with addi-
tional mutations in rplC (Pringle et al. 2004;
Long et al. 2009; Li et al. 2010, 2011; Hidalgo
et al. 2011).

Mutations and deletions in the rplC and
rplD genes, although L3 and L4 do not directly
interact with the pleuromutilins, can cause
conformational changes in the PTC and hinder
correct positioning of the pleuromutilins in the
pocket formed between the nucleotides G2576
with U2506 and G2505 (Eyal et al. 2015).
Mutations in rplC and rplD have been descri-
bed for Staphylococcus spp. (Pringle et al. 2004;
Kosowska-Shick et al. 2006; Gentry et al. 2007;
Miller et al. 2008; Paukner et al. 2012) and
together with mutations in 23S rRNA for
B. hyodysenteriae (Hillen et al. 2014). Notably,
mutations in rplC have also been associated
with considerable loss of fitness (Gentry et al.
2007). Pleuromutilin resistance by mutational
changes in rplC and 23S rRNA develops gradu-
ally and in a stepwise manner both in vitro and
in vivo, suggesting that multiple mutations are
needed to achieve high-level resistance. (Karls-
son et al. 2001; Gentry et al. 2007; Miller et al.
2008; Hidalgo et al. 2011; Paukner et al. 2012).

ABC-F transporters encoded by vga(A) and
its variants vga(A)v, vga(A)LC, vga(B), vga(C),
vga(D), vga(E), and lsa(E) have been described
to confer resistance to pleuromutilins, strepto-
gramin A, and lincosamides in Staphylococcus
spp., E. faecium, and Erysypelothrix rhusiopa-
thiae. Isolates were collected almost exclusively
from animal species, predominantly swine
(Kadlec and Schwarz 2009; Kadlec et al. 2010;
Overesch et al. 2011; Schwendener and Perreten
2011; Li et al. 2013, 2014a,b; Zhang et al. 2015).
MRSA isolates collected from humans appeared
to be related to animal-associated lineages of
S. aureus such as ST398 (Lozano et al. 2012).
Recent studies concluded that ABC-F trans-
porters, which lack a transmembrane domain,
likely mediate resistance by the interference
of translation at the PTC and by the action as
efflux transporter. This is based on the homol-
ogy of vga(A) and variants with the ABC-F

transporter EttA, which is a translation factor
binding to the tRNA exit site (E-site) (Lenart
et al. 2015).

Last, the rarely encountered methyltrans-
ferase Cfr, methylating the nucleotide A2503
of 23S rRNA, can confer resistance. Because of
steric hindrance, binding of phenicols, linco-
samides, oxazolidinones, pleuromutilins, and
streptogramins (PhLOPS antibiotics) is prohib-
ited, which results in the PhLOPS-resistance
phenotype. The cfr gene was originally identi-
fied in coagulase-negative staphylococci from
animals and has been detected mostly in live-
stock-associated staphylococci (Kehrenberg et al.
2005, 2009; Alba et al. 2015; Feltrin et al. 2015;
Moon et al. 2015) but, more recently, has also
been found in a limited number of staphylo-
coccal isolates from humans including one
outbreak of a cfr-positive MRSA in a Spanish
hospital, which was terminated by reduction
of linezolid use and infection-control measures
(Sanchez et al. 2010; Shore et al. 2010, 2016).
Cfr was also found in nonstaphylococcal species
collected, with the exception of E. faecalis,
exclusively from livestock animals and related
farm environments: one out of 1230 E. coli iso-
lates collected from pigs, ducks, and chickens in
China, in one Proteus vulgaris out of 557 nasal
swabs of Chinese swine and a porcine Bacillus
spp., as well as a Macrococcus caseolyticus and
Jeotgalicoccus pinnipedialis isolate (Wang et al.
2011, 2012a,b,c,d). Cfr has also been detected in
an E. faecalis isolate collected from a Chinese
animal as well as in an animal-associated isolate
from a patient in Thailand. Cfr has been located
on the chromosome and on various plasmids
or transferrable elements indicating the ability
to spread (Locke et al. 2012; Shen et al. 2013;
Li et al. 2015; Shore et al. 2016). In vitro, the
cfr-carrying plasmid isolated from human
E. faecalis was only transferrable by conjugation
to another E. faecalis laboratory strain, whereas
it was not transferrable to S. aureus or E. faecium
(Diaz et al. 2012). Recently, the transferability
of cfr-carrying plasmids from S. epidermidis
to MRSA by conjugation or transduction was
shown, indicating a role of S. epidermidis as a
potential reservoir for cfr spread (Cafini et al.
2016).
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Most importantly, it should be noted that
despite the characterization of isolates resistant
to pleuromutilins and the descriptions of mech-
anisms conferring resistance, the rate of resis-
tance to pleuromutilins remains low. In the
SENTRY surveillance program conducted with
lefamulin in 2010, the total incidence of pleu-
romutilin resistance was 0.18% for S. aureus
and 3.4% for coagulase-negative Staphylococcus
spp. Among the S. aureus isolates, 0.018% har-
bored the cfr gene, 0.11% harbored the vga(A)
gene, and 0.05% had mutations in rplC. Among
coagulase-negative Staphylococcus spp., the
incidences for cfr, vga(A), and rplD alterations
were 0.11%, 2.5%, and 0.34%, respectively
(Paukner et al. 2013c). The low prevalence of
cfr is consistent with data collected in the course
of linezolid-resistance monitoring (Table 3).

CONCLUDING REMARKS

In summary, pleuromutilins display potent an-
tibacterial activity against a variety of Gram-
positive, fastidious Gram-negative and atypical
respiratory bacterial pathogens—a profile well
suited to treat human infections, including
CABP, ABSSSI, and STI. Chemical modifi-
cations have led to derivatives with optimi-
zed physicochemical properties and improved
ADME properties, allowing for intravenous
and oral dosing in humans; of these analogs,

lefamulin is the most advanced in clinical
development. The incidence of pleuromutilin-
resistant bacterial isolates is low despite the
use of tiamulin and valnemulin in veterinary
medicine for more than 30 years. The availabil-
ity of topical retapamulin in human medicine
since 2007 and selection pressure for cfr by
the use of linezolid over the past two decades
does not appear to have had a major effect on
the incidence of pleuromutilin-resistant bacte-
rial isolates among organisms causing infec-
tions in humans. Nevertheless, close monitor-
ing of resistance development to pleuromutilins
is warranted, along with prudent use of oxa-
zolidinones and veterinary pleuromutilins to
maintain low resistance rates and retain the
potent activity of this novel antibacterial class
against pathogens that have acquired resistance
to other established antibiotic classes.
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