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Abstract

Personalized medicine strives to deliver the ‘right drug at the right dose’ by considering inter-

person variability, one of the causes for therapeutic failure in specialized populations of patients. 

Physiologically-based Pharmacokinetic (PBPK) modeling is a key tool in the advancement of 

personalized medicine to evaluate complex clinical scenarios, making use of physiological 

information as well as physicochemical data to simulate various physiological states to predict the 

distribution of pharmacokinetic responses. The increased dependency on PBPK models to address 

regulatory questions is aligned with the ability of PBPK models to minimize ethical and technical 

difficulties associated with pharmacokinetic and toxicology experiments for special patient 

populations. Subpopulation modeling can be achieved through an iterative and integrative 

approach using an adopt, adapt, develop, assess, amend, and deliver [(AAD)2] methodology. 

PBPK modeling has two valuable applications in personalized medicine: (1) determining the 

importance of certain subpopulations within a distribution of pharmacokinetic responses for a 

given drug formulation and (2) establishing the formulation design space needed to attain a 

targeted drug plasma concentration profile. This review article focuses on model development for 

physiological differences associated with sex (male vs. female), age (pediatric vs. young adults vs. 

elderly), disease state (healthy vs. unhealthy), and temporal variation (influence of biological 

rhythms), connecting them to drug product formulation development within the Quality by Design 

framework. Although PBPK modeling has come a long way, there is still a lengthy road before it 

can be fully accepted by pharmacologists, clinicians, and the broader industry.
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Introduction

Inter-person variability can lead to therapeutic failure and adverse effects in individuals or 

specialized subpopulations of patients during clinical practice [1]. Historically, clinicians 

were tasked with identifying factors driving differences in patient response by conducting ad 

hoc post-trial analyses [2]. Currently, researchers are looking to capture this patient 

variability upfront through personalized medicine, striving to deliver the ‘right drug at the 

right dose’ by individualizing treatment [3] for the ‘right disease and at the right time’ [4]. 

While ‘right drug’ emphasizes the need for therapies specifically designed for 

subpopulations of patients, ‘right dose’ highlights the need to maintain the drug plasma 

concentration within the therapeutic window to optimize patient benefit and minimize risk 

[3]. At the individual level, these differences are attributed to a person’s clinical phenotype, 

collectively defined by the individual’s metabolome, proteome, transcriptome, and genome 

[3]. As pointed out in a review by Redekop and Mladsi [5], the term ‘personalized medicine’ 

encompasses a multitude of definitions. While much of the discussion focuses on genetic or 

genomic based therapies, a broader interpretation for personalized medicine is “the use of 

combined knowledge (genetic or otherwise) about a person to predict disease susceptibility, 

disease prognosis, or treatment response and thereby improve that person’s health [5]”. 

Although individualization may be achievable down to the ‘-omics’ level, significant 

advances in personalized medicine have been achieved at the population level where 

subgroups of patients are identified by commonalities in pharmacokinetic exposure and 

pharmacodynamic response to treatment.

Virtual or simulated clinical trials through physiologically-based pharmacokinetic (PBPK) 

population modeling of these complex clinical scenarios has yet to be fully explored. 

However, several reviews on the current state of PBPK modeling point to personalized 

medicine as a key application [6–8]. PBPK models have successfully been embedded 

throughout drug development to explore various patient risks factors such as drug-drug 

interactions (DDI) [9], first-in-human (FIH) drug dosing [10,11], formulation development 

for better drug absorption [12–16,7,17–24], food effect and gastrointestinal pH analysis 
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[12,14,16,25], late stage development [11], and regulatory science [6,26,27]. Additional 

studies evaluated the extrapolation of PBPK models to other species [28], and explored 

sensitivity analysis to understand model robustness and uncertainty [29–33]. In the context 

of personalized medicine, the aim of the model would be to guide physicians to prescribe the 

right drug dosing regimen [34,35]. The assumption that a relationship exists between drug 

dose, physiology, and plasma concentration concurs with current clinical practices such as 

therapeutic drug monitoring (TDM) which aims at designing and administering a dosing 

regimen in a way that results in constant drug concentration within a target therapeutic 

window [36]. As such, model-based drug development would enable clinical trial design to 

be optimized in special populations in silico, providing a rationale for dose selection and 

aiding in assessment of patient risk and benefit [37].

This review provides an overview of the utility and implementation of PBPK models in the 

context of personalized medicine. Model parameterization to account for inter-patient 

variability in physiological state on the basis of sex, age, disease state, and biological 

rhythms will be highlighted. The impact of the physiological states will be discussed in the 

context of the Quality by Design framework through the application of PBPK modeling 

across the continuum of drug product development.

Evolution of Physiologically-based in silico Predictions

The development of high-throughput screening (HTS) and combinatorial chemistry in the 

1990s revolutionized the drug discovery phase of the pharmaceutical industry, enabling the 

identification of an impressive number of biologically active chemical entities [38]. The 

remarkable breakthrough gave sudden access to a virtually unlimited quantity of potential 

drug candidates, but also exposed a new question: how can drug product development keep 

up with the newly fast and efficient pace of drug discovery? More specifically, how can the 

in vivo behavior of so many compounds be studied in a fast, efficient, and accurate fashion? 

Studies showed that the majority of attrition in drug candidates is due to poor 

pharmacokinetic behavior, making the determination of properties related to ADME 

(Absorption, Distribution, Metabolism, and Excretion) a crucial step in the process 

[38,28,39]. Different challenges must be addressed for each classwithin the 

Biopharmaceutical Classification System (BCS) for orally administered drugs [40]. These 

classes are defined as the following: Class I (high permeability, high solubility), Class II 

(high permeability, low solubility), Class III (low permeability, high solubility), and Class 

IV (low permeability, low solubility. As of late, this problem is becoming increasingly 

prominent with the rising level of poorly soluble BCS Class II drugs under development, as 

industry shifts towards manufacturing more chemically stable compounds that allow for 

once-daily dosing [6]. The conventional way to determine the pharmacokinetics of a 

chemical compound in vivo is to conduct preclinical studies in animals and, for the most 

promising drugs, clinical studies in humans. However, these experimental techniques are 

costly, resource-intensive, lengthy, and most of all not suited for screening large volumes of 

drug candidates. For example, the US National Toxicology Program conducted toxicity 

studies on only 600 compounds out of the 80,000+ chemicals in existence in commerce in 

the last 43 years, representing only a minuscule fraction of the total number of chemicals 

[41]. Until experimental techniques are able to catch up to the current rate of production, the 
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bottleneck effect clearly prompts an alternative approach. The need for an accurate, efficient 

method of studying and understanding the behavior of these new drug candidates is 

apparent.

A potential solution lies in Physiologically-based Pharmacokinetic (PBPK) modeling, 

making use of physiological information as well as physicochemical data to portray the 

complex transport processes of a compound throughout the body and to simulate its in vivo 
performance. The model structure consists of organ and tissue compartments connected by a 

circuit of flowing blood, subdivided as arterial and venous blood pools. The properties of 

each compartment are described by a series of differential equations with physiological 

parameters to represent the system in an integrated and biologically meaningful manner.

PBPK modeling was first presented in 1937 in Teorell’s “Kinetics of Distribution of 

Substances Administered to the Body” [42]. However, the mathematical complexity of the 

model exceeded the knowledge and computational power at that time. Today, improvements 

in computing technology combined with the pressing need to study the pharmacokinetics 

and absorption of compounds quickly and efficiently enabled PBPK modeling to emerge as 

a powerful simulation tool to guide pharmaceutical development. The implementation of 

PBPK modeling fits well with current expectations from the United States Food and Drug 

Administration (US FDA) in the recent shift towards Quality by Design (QbD) process 

development. The Quality by Design paradigm aims to facilitate and advance the efficiency 

and quality of product development while mitigating potential risks associated with the 

process [43]. PBPK modeling provides a quantitative and mechanistic methodology that 

connects a drug’s Critical Quality Attributes (CQAs), which encompass a large variety of 

modeling parameters such as manufacturing criteria and drug-specific properties, to its in 
vivo behavior as characterized by its Quality Target Product Profile (QTPP). In recent years, 

studies hailing from academia as well as industry demonstrated how these models can be 

implemented within the Quality by Design paradigm [44,45] such that PBPK modeling 

developed intoa powerful and essential tool to increase mechanistic understanding and 

provide a holistic description of drug exposure in the body.

PBPK models draw data from in vitro experiments as well as in vivo preclinical and clinical 

data as opposed to traditional data-fitting pharmacokinetic models which follow a ‘'top 

down’ approach and to ‘bottom up’ approaches which advocate modeling entirely on a 

virtual basis. Kostewicz et al. classified PBPK modeling as a ‘'middle out’ approach, where 

the model is built and refined during the drug development process in an iterative manner as 

more in vitro and/or in vivo data become available [17]. Model parameters sourced from in 
silico estimations, in vitro experiments and preclinical data can be classified in two broad 

categories: drug-dependent and system-dependent. For orally administered therapies, which 

are the focus of this review, drug-dependent parameters can be further subdivided into 

intrinsic compound properties (molecular weight, diffusion coefficient, solubility over the 

range of gastrointestinal pH, and ionization) and formulation factors (dosage form and 

composition, particle size and shape, excipients, tablet dimensions, powder compression 

force, coating composition, and thickness). Depending on the complexity and flexibility of 

the model, system-dependent parameters (gastric emptying rate, gastrointestinal fluid pH, 

intestinal transit and mobility, secretion and reabsorption, intestinal blood flow, bile 
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secretion rate, intake of food and fluids, etc.) can be adjusted to describe virtually any 

physiology or clinical condition [8]. As such, these properties can also be categorized into 

intrinsic physiological properties and physiological factors related specifically to the clinical 

scenario under study. This richness in information is precisely what gives PBPK models 

tremendous potential for robust simulations and suitability for development of personalized 

treatments, from the discovery phase through regulatory review. As knowledge of 

physiology expands and computer simulations improve, PBPK models become crucial in 

minimizing the ethical and technical difficulties associated with pharmacokinetic and 

toxicology experiments for special patient populations.

Industrial and Regulatory Perspective

Beginning in the 1990s, the US FDA encouraged the use of modeling and simulation to 

establish the best dosing strategy and characterize patient risk in a variety of complex 

clinical scenarios, minimizing the need for animal studies to predict human exposure [6] and 

enabling streamlined drug development and regulatory review [35,46]. Through model-

based regulatory research and clinical trial simulations, traditional drug development and 

regulatory review is shifting from inefficient and empirical to quantitative and mechanistic, 

enabling a deeper understanding of the behavior of drugs within the body while offering an 

explanation for sources of variability in exposure and drug response [47]. The significant 

advances and improved accuracy in mathematical modeling of physiological processes [48–

52,10] promoted PBPK modeling to an important tool within the regulatory review process 

[53]. The increased dependency on PBPK models to address regulatory questions coincides 

with the improved ability to simulate the impact of specific diseases states at the individual 

patient level as well as the population level, the advancement towards improved in silico 
prediction of physicochemical drug properties, and a deeper understanding of the exposure-

response relationship by linking PBPK models with systems biology [6]. This effort has 

been realized through the exchange of knowledge amongst the US FDA, industry, academia, 

and patient advocacy groups [35]. Within the US FDA, the Office of Clinical Pharmacology 

(OCP) is especially important for assuring safety and effectiveness as part of the review 

process, with emphasis on understanding the balance between benefit and risk in regards to 

drug-body interactions, inter-patient variabilities, selection of optimal dose and dose 

regimen, and expansion of clinical knowledge for improved risk assessment [54]. Drug 

developers benefit extensively from early engagement with the OCP for implementation of 

these integrative approaches to maximize learning from early-phase clinical trials [55].

Of the 33 Investigational New Drug (IND) and New Drug Applications (NDA) PBPK 

submissions received by the Office of Clinical Pharmacology from 2008 to 2012, the 

primary focus was on understanding drug-drug interactions (61%), with lesser importance 

placed on pediatrics (18%), absorption (9%), hepatic impairment (6%), pharmacogenetics 

(3%), and drug-drug interactions with other factors (3%) [35]. Thus far, PBPK models 

enabled identification of critical quality attributes, selection of clinical specifications, 

support for biowaivers, establishment of in vitro-in vivo correlations, and assessment of risk, 

amongst other considerations included in the Chemistry, Manufacturing, and Control (CMC) 

section of regulatory submissions [46]. From a broader context, PBPK models play an 

extensive role in the design of clinical pharmacology studies, identification of additional 
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studies to address gaps or residual risks, as well as an understanding of risk-benefit 

relationships for new entities [53]. Regulatory submissions follow the “predict-learn-

confirm” paradigm such that discussion is oriented around the specific development and 

clinical questions to be addressed by the model [56].

These efforts have continued to gain support from the US FDA as evident at the 2014 

workshop entitled “Application of Physiologically-based Pharmacokinetic (PBPK) 

Modeling to Support Dose Selection”, which assessed the current state of simulation in 

regulatory decision making and discussed best practices for dose selection in specific patient 

populations [11]. Dr. Janet Woodcock, director of the US FDA Center for Drug Evaluation 

and Research (CDER), emphasized the importance of using PBPK modeling to address 

challenges in safety and efficacy during drug product development. Similar support was 

echoed by Dr. Vikram Sinha, Director of the US FDA’s Division of Pharmacometrics, who 

identified PBPK as a viable option to answer the following regulatory question: “Since dose-

response information of efficacy and safety in special populations is often lacking, what are 

the options for getting the dose ‘right’ for these groups?” [11]. Patient focus remains of 

utmost importance to regulatory agencies and as such these predictive tools guide drug 

development towards an efficacious and safe dosing strategy, leveraging a combination of 

preclinical, in vitro, in vivo, and in silico methods [35]. In general, industry has low 

confidence in the current state of PBPK models for special populations due to limited 

knowledge describing changes in gut and hepatic physiology, such as enzyme and 

transporter activity in these special groups [57]. Therefore, a deeper knowledge of these 

specialized physiologies is key for improving confidence in specialized PBPK models and 

reaching the ultimate goal of personalized medicine. Readers are directed to the review by 

Jones et al., which summarizes the confidence level, limitations and challenges from an 

industrial perspective for various PBPK modeling applications [57].

Model Parameterization for Special Populations

The literature contains several examples of PBPK models assessing phenotype, sex, age, and 

disease effects on absorption [7,8,58–61,50,17]. All the above examples paving the way 

towards reaching the ultimate goal of personalized or individualized medicine [62]. 

Physiologically-based predictions consider the effects of intrinsic factors such organ 

dysfunction, age, and genetics as well as extrinsic considerations such as drug-drug 

interactions, environmental effects, and lifestyle choices on absorption and drug disposition 

[53,63]. Under this context, PBPK modeling is highly complex, aiming to close the 

knowledge gap between limited experimental data associated with individualized physiology 

and the action or mechanism of a drug. Extending this approach to the population level, 

PBPK models consider physiology defined by similar intrinsic and/or extrinsic factors of 

patient subgroups or special populations to predict drug exposure [56]. Subpopulation 

modeling can be achieved through an iterative and integrative approach using the adopt, 
adapt, develop, assess, amend, and deliver [(AAD)2] computational methodology introduced 

in the framework of systems engineering [64]. Under this approach, an initial hypothesis is 

adopted and later adapted as knowledge of pathology, physiology, and underlying 

mechanisms become available. This hypothesis is the foundation from which an integrated 

in silico model is developed. Model predictions are assessed and the model is amended 
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according to new data and/or model analyses, repeating this loop until the final model is 

delivered. Subpopulation modeling in the framework of the (AAD)2 methodology is shown 

in Fig 1. As can be seen, data from multiple scales (in silico estimations, in vitro 
experimental data and in vivo preclinical information) are integrated into the framework to 

support the prediction of drug exposure.

Patient risk-benefit should be assessed under in silico conditions that are most representative 

of the complex clinical scenarios to be faced at later stages in development. Although 

limited knowledge of the drug’s efficacy and safety are available early in development, 

physiology is independent of the drug under study and can be incorporated into the model 

from the start. By capturing these intricacies as early as preclinical development, patient risk 

is realized sooner and future work can be tailored to address special considerations. 

However, significant challenges remain for PBPK modeling for special populations due to 

limited experience to draw conclusions for the effects of pregnancy, ethnicity, geriatrics, 

obesity, and disease states on exposure [11,65,53]. Therefore, modeling dedicated to address 

specific subpopulations is a critical interest within the US FDA’s Office of Clinical 

Pharmacology [55]. Conventional ‘top-down’ modeling has been implemented extensively 

using empirical data to quantify the effect of intrinsic and extrinsic patient factors on 

exposure (Cmax, AUC, bioavailability) and disposition (clearance, volume of distribution), 

but far fewer examples exist for ‘bottom-up’ or ‘middle-out’ modeling of subpopulations. 

Thus, the success of PBPK modeling in personalized medicine relies heavily on proper 

identification of patient-specific covariates that explain the observed pharmacokinetic 

parameters of individuals or subpopulations of individuals [66,67]. These patient 

characteristics are captured for special populations through model parameterization, which 

involves the identification of model input parameter values that describe various 

physiological states. PBPK modeling combines deterministic and non-deterministic 

components to enable simulation of individual pharmacokinetic exposure and intrinsic 

population variability. The deterministic component represents the biological and chemical 

systems of the body whereas the non-deterministic portion describes mathematically the 

uncertainty, variability, and covariance of the data and parameters in the deterministic model 

for a given population [68]. The extent of model calibration depends on the objective of the 

model and rigor needed to capture population dynamics. This review highlights the 

physiological impact of sex, age, disease state, and biological rhythms on PBPK model 

development, although several additional covariates exist beyond those discussed herein.

Sex

For the same dosing regimen, women may respond differently to therapies than males, both 

in regards to the effectiveness of a particular treatment as well as in the extent of observed 

adverse effects [69,70]. The occurrence of adverse events is 50 to75% higher in females than 

males [71]. Sex differences in responses are not always consistently reported in clinical 

studies given the influence of sex hormones during development, the menstrual cycle and 

oral contraceptive use [72]. Fluctuating levels of hormones contribute to a wider distribution 

in pharmacokinetic responses for females compared to males. Pregnancy and oral 

contraceptive use further affect patient response [72]. As a result, females were typically 

excluded from Phase I and II clinical trials by the US FDA prior to 1993 because of the risk 
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to unborn children and the influence of the menstrual cycle [73]. However, the inclusion of 

women into clinical studies has become a key consideration in the design of more recent 

clinical studies given the high frequency of adverse events amongst female populations. The 

use of virtual or simulated clinical trials for proper dosage selection is especially favorable 

to sex-dependent pharmacokinetics, as this approach enables the evaluation of patient risk 

and benefit without engaging actual patients.

Females typically have reduced body weight relative to males. Thus, pharmacokinetic 

parameters (clearance, volume of distribution) and bioavailability are often normalized by 

body weight or body surface area to account for differences between male and female 

subjects. Many times sex-differences are minimized by this correction and deemed 

statistically insignificant [74]. However, corrections for anatomical differences are not 

always sufficient to eliminate sex differences completely in both animal and human studies 

[74–77]. Thus, physiological differences between sexes beyond body weight drive these 

variations in the rates and extent of absorption and drug distribution, revealing sex-specific 

bioavailability patterns. Signaling pathways are believed to be structurally similar between 

males and females, but differentially expressed and regulated by sex hormones [73]. This 

commonality between sexes enables the same modeling framework (i.e. set of differential 

equations) to be used for both females and males while requiring adjustment of input 

parameter values to account for sex-specific physiology.

Influence of Sex on Absorption and Disposition—Beyond body weight, there are 

several documented physiological differences between sexes, such as gastrointestinal pH, 

transit time, and volume, along the gastrointestinal tract that drive differences in the 

bioavailability of oral dosage forms [78,72,79,80]. Women secrete less gastric acid such that 

drugs with higher solubility in acidic conditions may have lower bioavailability in women 

than men [71]. Estrogen and progesterone prolong transit time through the gastrointestinal 

tract [73,81]. All of these differences can be captured in the PBPK model by defining 

female-specific parameter values for the absorption processes. In general, the influence of 

sex hormones can be separated into three considerations: (1) passive diffusion which is 

dependent on gastrointestinal tract physiology, (2) active transport which is affected by 

expression and activity of intestinal drug transporters such as P-glycoprotein, and (3) gut 

metabolism which is driven by expression and activity of gastric enzymes and cytochrome 

P450 isoforms (CYPs) located in enterocytes lining the gastrointestinal lumen [82]. 

Ultimately, these physiological differences drive the rate and extent of absorption from the 

gastrointestinal tract. Further sex differences are observed in transport protein expression 

due to regulation by sex hormones [72,83,60]. Similarly, the extent of plasma protein 

binding is also affected by sex hormones, driving wider distributions in female patient 

responses during menses [72,79,73]. These physiological processes are reflected in PBPK 

models through rate constants, scaling factors, and enzyme or transporter activity 

coefficients.

Women have a greater proportion of adipose tissue than men. As such, lipophilic drugs may 

accumulate and have a longer duration of action in women, requiring smaller doses to 

achieve the same therapeutic effect [71]. Male and female PBPK models would provide an 

opportunity to explore the sex-dependent interconnectivity between body habitus, drug/
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formulation properties, and drug exposure. Complex scenarios such as these can be 

evaluated through calibration of elimination processes for female-specific physiology, 

accounting for differences in the volume of distribution, ratio of adipose tissue to total body 

weight, and tissue-specific blood flows.

Sex-dependent Metabolism and Elimination—Metabolism also leads to variability 

between male and female oral bioavailability due to differing expression levels of hepatic 

enzymes [84]. This difference becomes an important consideration since drugs are often 

substrates for specific hepatic enzymes, to the point where certain treatments such as 

warfarin require different dosage depending on sex [71]. The isoforms of the cytochrome 

P450(CYPs) or Phase I enzymes in the liver and intestine have marked differences in 

expression and activity between sexes, further affected by the menstrual cycle, oral 

contraceptive use, and pregnancy as a result of regulation by sex hormones 

[85,86,81,72,80,69,79]. Many marketed drugs are substrates for CYP3A4, which is the 

primary isoform of cytochrome P450, making this enzyme a key contributor to sex-

dependent metabolism and ultimately drug clearance. CYP metabolic activity is also 

affected by age and ethnicity which can lead to differences in clearance for drugs that are 

highly metabolized by CYPs [86]. Similarly, Phase II enzymes demonstrate sex-specific 

behavior [80,83,69]. Generally, conflicting findings are presented in the literature for sex-

dependent expression and activity of enzymes during animal and clinical studies, which is 

likely due to the lack of control in regards to hormones levels and small number of women 

included in these studies. Conversely, PBPK modeling has great potential for predicting 

exposure in female subjects under targeted physiological conditions to tease out the 

collective effects of sex hormones on ADME processes and to identify risks associated with 

specific menstrual cycle phases, oral contraceptive use or even pregnancy. Given the 

influence of sex hormones on metabolism and elimination, the PBPK model must be 

carefully calibrated for metabolic enzyme activity and clearance under these distinct 

physiologies.

In addition to Phase I and Phase II enzymes, uptake and efflux transporters in the 

gastrointestinal tract and liver influence how much drug reaches systemic circulation. For a 

drug with high first-pass metabolism, sex-dependent enzyme and transporter activity by sex 

hormone regulation can lead to significant differences between males and females in 

bioavailability of oral drugs [82]. For the fraction of drug that escapes first pass metabolism, 

renal transporters have a key influence on drug clearance. For example, P-glycoprotein (P-

gp) is a plasma membrane-bound transporter, which is present in drug-eliminating organs, 

mainly the liver and to a lesser extent in the intestine [85,87]. Many drugs are substrates to 

P-gp and thus an important consideration for drug product development is understanding its 

influence on bioavailability [60,88,85]. This protein has higher expression in males 

[72,83,60]. Similarly, multidrug-resistant protein transporters (MRPs), organic anion 

transporters (OATs), and organic cation transporters (OCTs) exhibit sex-specific expression 

due to differential regulation by sex hormones [82,89]. Incorporation of enzyme and 

transporter activity into PBPK models is complex for general populations with even greater 

difficulty for sex-specific mechanisms where little to no data are available. However, the 

model that describes enzyme and transporter activity is under constant refinement as more in 
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vitro data become available. In vitro metabolism and transport studies can be conducted by 

determining the value of Michaelis-Menten constants to describe enzymatic activity in cells 

and extrapolate kinetics to whole organs [90]. If the enzymatic degradation pathways for the 

drug are well understood, then metabolism can be more accurately modeled based on sex-

dependent expression between sexes. Lastly, excretion plays a role in personalized medicine 

due to the high variability in renal clearance between males and females. In general, renal 

clearance is known to be higher in men compared to women [71], decrease with age [6,91], 

correlate with body weight [92], and can be strongly impaired by certain diseases [93]. Thus, 

sex-dependent clearance values are essential for model calibration since it determines the 

shape of the latter portion of the plasma concentration profile as drug exits systemic 

circulation.

Challenges for Sex-specific PBPK Modeling—The development of sex-specific 

PBPK models is dependent on proper calibration of the model to account for the intrinsic 

differences in physiology between male and female populations across all ADME processes. 

However, quantitative differences between genders are rarely discussed in the literature and 

instead are often presented as a relative comparison (males > females, males < females, 

males = females). Thus, identifying and estimating sex-specific parameters is at the liberty 

of the researcher. Parameter sensitivity analysis will be an essential component to sex-

specific PBPK model development to build confidence in model predictions, to anticipate 

the distribution of pharmacokinetic responses in male and female populations, and to 

establish whether sex-specific values are necessary for all model inputs. Parameter 

sensitivity analysis can be utilized to establish if the parameter range needed to induce a 

difference in drug exposure is physiologically relevant or not. Furthermore, the population 

simulator feature of PBPK software, such as GastroPlus™, can be leveraged to alter the 

variance associated with input parameters to reflect differences between males and females. 

To simulate the further spread in the distribution of pharmacokinetic responses due to 

hormonal fluctuations in females, a larger variance could be used to describe the female 

population compared to males.

Age

Patient age can strongly influence the way individuals respond to a pharmaceutical treatment 

due to changes in physiology and biochemical processes during early development and late 

in life. Furthermore, certain diseases and conditions are more prevalent in younger and 

elderly populations, which makes understanding age-dependent physiology especially 

important for proper dose selection at these extremes. Some drugs indicate that dose 

adjustment for age may not be necessary [94], whereas other drugs require adjustment in 

older patients [95]. Elderly patients represent a complex and nonhomogeneous population, 

which makes PBPK-based predictions of exposure difficult considering anagraphic age, 

frailty, nutritional status, comorbidities, interactions with concomitant drug administration, 

reduced clearance, lower drug-metabolizing capacity and decreased renal function [96,97]. 

Simply put, age-related changes in physiology are not consistent across all biochemical 

processes or organ functions and so some systems are compromised while others remain 

fully functional [97]. As such, elderly populations exhibit a higher variability in exposure 

due to differences in aging across individuals. Similarly, pediatric populations are associated 
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with high variability in drug exposure due to differences in development rate. There are 

limited studies performed in infants and children due to ethical concerns, and so drug 

developers rely heavily on PBPK modeling for prediction of dose in infants and children. 

The US FDA strongly supports the integration of PBPK modeling into pediatric drug 

development for estimation of the starting dose for different age groups, prediction of 

environmental contaminant exposure, and optimization of clinical drug trial design [98]. 

However, uncertainty and skepticism regarding the robustness and reliability of predictions 

in pediatric patients to address efficacy and toxicity-related questions remain [99].

Parameterization of pediatric PBPK models often requires extrapolating from validated adult 

PK models [99,50] and to a lesser extent from animal studies [100,99]. The adaptation of an 

adult PBPK model for pediatric populations requires allometric scaling of model input 

parameters for body weight, height, and age [98]. This scaling method is simply a 

mathematical relationship accounting for age and anatomy, but does not consider 

physiological changes in developing children such as organ maturation, blood flow, body 

composition, and ontogeny of drug elimination and transport mechanisms [99]. Another 

approach which may be more physiologically-relevant is to utilize empirical regression 

analysis to account for age-dependent variation in model parameters, with increasing 

confidence in parameter estimations when expressions are fit directly to infant and children 

data [101]. Functions that describe the rate of organ development and maturation from 

pediatric physiology to adult physiology can be incorporated into PBPK models to improve 

confidence in predictions for developing patients [99,102]. Similar corrections to model 

parameter values can be made for elderly patients to account for slower biochemical 

processes due to aging and frailty. Physiologically-based parameterization rather than 

allometric estimation of parameters would lead to improved confidence in PBPK predictions 

for these highly variable populations. Thus, a strong understanding of ADME processes 

within pediatric and elderly patient populations is needed to support model development.

Influence of Age on Absorption and Disposition—Several physiological changes 

occur during human development that affect absorption from the gastrointestinal tract, 

suggesting that an age-dependent absorption model would improve predictions of drug 

disposition, particularly for infants and children [103]. These changes are reflected in the 

PBPK model by incorporating age-specific dependencies on gastric emptying and intestinal 

transit time, gastrointestinal volume and flow, effective surface area for absorption due to 

changes in the radius and length, gastrointestinal pH, and intestinal transporter and enzymes 

affecting first pass metabolism [99,104,95,103]. Gastric acid secretion and gastrointestinal 

mobility are known to decrease with age, but have limited clinical significance [95,97]. 

Thus, age-dependent parameterization for these factors is likely not needed for PBPK model 

development. As children reach maturity, physiology approaches that of adults. Thus, model 

parameters for adolescents can safely assume values used to describe adult physiology. In 

fact, the gastric emptying time, intestinal transit time, gastrointestinal tract pH, effects from 

bile salts, amongst other factors are set to adult values for pediatric age groups of 10–12 

years and 13–17 years of age within the Simcyp® pediatric PK module . This assumption 

was made on the basis of several clinical studies and resulted in minimal error between 

simulated and observed plasma concentration profiles [105].
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The extent of plasma protein binding is an important consideration in pharmacokinetics as 

the fraction of unbound drug is considered the biologically or therapeutically active form of 

a drug, although the clinical significance remains unclear. Plasma protein binding is less in 

infants and children than adults [99]. Therefore, pediatric patients would likely have a higher 

exposure unless the dose is adjusted for the fraction of unbound protein, or the biologically 

active form of the drug, in addition to body habitus. In older adults, there is a similar 

decrease in the extent of protein binding by albumin and α1-acid glycoprotein [97]. 

Incorporation of age-dependent protein binding may improve confidence in pediatric 

simulations, particularly for drugs where the extent of protein binding has a significant effect 

on exposure and response. Factors that affect drug distribution, such as body fluid 

compartments and percentage of body fat, are also known to fluctuate with age [99]. Body 

size is reduced with age, while fat content increases [95,104,97]. Given that body habitus is 

closely related to the volume of distribution of a drug, drug disposition will be highly 

dependent on the physicochemical properties of the drug. As such, lipophilic drugs will have 

a higher volume of distribution in elderly patients due to increased adipose tissue whereas 

hydrophilic drugs will have a decreased volume of distribution [104]. The volume of 

distribution is a necessary parameter in PBPK models to ensure proper calibration of 

elimination processes and so age-dependent values will be needed to reflect drug distribution 

in pediatric and elderly populations. The interacting effects of body habitus and the 

physicochemical properties of drug on the volume of distribution highlight the importance of 

considering several patient factors concomitantly.

Age-dependent Metabolism and Elimination—Furthermore, the extent of metabolism 

and transporters activity has a strong age-dependency that can significantly impact exposure 

[99,50]. For example, many marketed drugs are known substrates for P-gp (P-glycoprotein), 

an efflux transporter that can have a significant effect on bioavailability. Activity of P-gp 

appears to be tissue specific, indicating increased and decreased activity with age depending 

on the nature of the study [97]. Similar to sex-specific PBPK modeling, this is an area of 

weakness for age-dependent predictions as limited data are available to mechanistically 

describe metabolic and transport processes in pediatric and elderly populations. The 

metabolic constants, Vmax and Km, of enzymes involved in drug metabolism are determined 

from isolated enzymes in vitro and then extrapolated to describe metabolic clearance from 

the whole liver [100]. This in vitro approach avoids the uncertainty associated with 

interspecies scaling, given that transporter activity is often species dependent and limited 

knowledge of extrapolation from neonatal animal activity to infants and children exists 

[100]. As in vitro methods continue to improve and a deeper understanding of metabolic and 

transporter activity is acquired, PBPK models will be able to better describe these 

biochemical processes in populations categorized by age. Unlike active transport, passive 

diffusion or permeability does not appear to change with aging.

Hepatic metabolism decreases with age due to reduced enzyme activity, blood flow and liver 

volume [104,97]. The activity of CYP1 and CYP2 enzymes are known to decrease with age, 

leading to reduced drug clearance. Similarly, the activity of CYP3A4, the most abundant 

isozyme of cytochrome P450, decreases with age [72,80,83,106,105] leading to reduced 

clearance for drugs metabolized by this enzyme. Ultimately, a reduction in metabolism leads 
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to a risk of higher bioavailability in older populations [95]. This risk of higher exposure is 

further compounded by polypharmacy in elderly patients in which many individuals are 

undergoing concomitant therapies [97], representing a key application of PBPK modeling 

for elderly populations. Despite the significant reduction in Phase I enzyme activity, aging 

does not appear to alter the activity of Phase II metabolic pathways [95]. Thus, an 

understanding of the metabolic pathways or elimination routes for a particular drug are 

needed to ensure the PBPK model is properly calibrated for drug clearance. A confounding 

factor to be considered in PBPK models for elderly populations is sex-dependent 

susceptibility to physiological changes. The difference in clearance between men and 

women tends to be more pronounced in younger populations and less significant in elderly 

subjects [104], indicating a potentially significant age-by-sex interaction in patient 

physiology that must be incorporated into the PBPK model. The effects of age on renal 

clearance in elderly patients are well documented, with reductions in the glomerular filtrate 

rates in elder populations [100,95,83,104,99]. Similarly the glomerular filtrate rate, renal 

tubular absorption, and renal secretion are less in infants and children relative to adults [99]. 

These reductions may be attributed to age-dependent activity of renal transporters which 

show a decrease in activity from childhood to adolescence [107,95]. Again, these 

observations confirm the need to incorporate age-specific transporter activity into PBPK 

modeling framework for pediatric populations. However, the reduction of renal clearance in 

elderly patients may not be clinically relevant [108] and so uncertainty remains as to the 

level of scrutiny needed to describe elderly physiology for accurate predictions.

For pediatric populations, PBPK models are calibrated with clearance values scaled down 

from adults based on age-dependent weight, height, organ weights, and blood flows. The key 

assumptions in this approach are to assume that metabolic pathways contribute to drug 

clearance are the same in children as adults, well-stirred model conditions hold, and that 

enzyme metabolism follows first order kinetics such that the enzymes are not saturated in 

children [98]. Given that clearance is a key parameter for calibration of elimination process 

in PBPK models, validation of these assumptions through targeted in vitro or in vivo studies 

is needed to build confidence in predictions of exposure in pediatric populations. Until 

proven otherwise, the framework of PBPK models for pediatrics remains structurally similar 

to the adult model with model parameterization accounting for differences in absorption and 

drug disposition between age groups.

Disease

Often times drug therapies are administered to patients whose physiology is altered from the 

healthy state due to disease or morbidities. Animals, largely rats, are used to study the 

pathogenesis of human diseases and drug release under these altered physiological states 

[109]. However, the link between rats and humans in regards to pharmacokinetic behavior is 

not always clear under the disease state. Furthermore, healthy volunteers are commonly used 

in bioequivalence studies with the key assumption that pharmacokinetic behavior under 

healthy physiology is similar to the patho-physiologically altered conditions [109]. However, 

disease, disease state and factors related to disease treatment, such as therapeutic procedures 

and associated therapies, can have a significant effect on the pharmacokinetic behavior of a 

drug, requiring dose adaptation to account for modified physiology [110].For example, 
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previous clinical studies revealed differences in the pharmacokinetics of ill, burn, and cancer 

patients [110]. The influence of disease and morbidities on pharmacokinetic outcomes can 

be evaluated by incorporating the modified population physiology into PBPK models. These 

models are often adapted from validated models for healthy populations. Age is a 

confounding factor in consideration of disease state as most clinical studies use young 

healthy adults [111]. Elderly populations are more vulnerable to disease and morbidities 

than their younger counterparts, leading to higher inter-patient variability in treatment 

response in aging adults [1,112].

PBPK models have been utilized to predict dose and frequency of drug administration for 

cancer drugs [113,114]. These models, together with oncology and systems biology 

computation models for tumor growth and cancer progress, form a complex multiscale 

framework that is powerful in the development of anticancer agents [115]. Anticancer 

therapies have very specific targets and so understanding tissue-specific drug concentration 

is important for ensuring that sufficient amount of drug reaches the tumor to induce a 

biological response. An understanding of how cancer alters patient physiology is needed to 

improve the accuracy of tissue-specific predictions. Physiological factors such as body fat, 

organ volume, blood flow, and protein binding, are reduced in cancer patients, whereas 

metabolic enzyme activity is not altered [116]. Cancer progression is complex and leads to 

large variabilities in physiological states of patients, confounded by age and comorbidities. 

Thus, the development of PBPK models for populations with cancer is difficult until more 

data become available to better characterize the altered physiological state. Prediction of 

drug exposure during infection and inflammation are also important considerations for 

disease state modeling, given that this altered state leads to downregulation of metabolizing 

enzymes such as cytochrome P450 enzymes in the liver and intestine due to elevated levels 

of pro-inflammatory cytokines [117]. PBPK models can be used to predict the impact of 

drugs that are primarily eliminated by these enzymes to quantify the risk of overexposure in 

patients with elevated cytokine levels, such as those with rheumatoid arthritis [117]. Proper 

dosing of antibacterial therapies is critical as under dosing can lead to further infection and 

overdosing can cause increased toxicity [110]. Given proper calibration for physiology, 

PBPK models are advantageous for risk-benefit analysis in the dose selection of these 

antibacterial therapies to ensure that therapeutic efficacy is achieved while minimizing 

adverse events. However, accurate predictions of pharmacokinetic exposure during 

inflammation or infection require an understanding of how these indications influence 

absorption and drug disposition.

Body habitus of obese patients leads to differences in drug disposition due to a higher 

amount of fat tissue, requiring adjustment of model input parameters beyond the simple 

corrections for total body weight. Given the high proportion of fat content, obese patients are 

likely to have different volumes of distribution of hydrophilic and lipophilic drugs due to 

variations in tissue-specific accumulation relative to healthy patients. Obesity is associated 

with glomerular hyperfiltration, but the effects of renal tubular secretion and renal tubular 

reabsorption are not known. Dosage adjustment is common to account for increased 

clearance observed in obese populations. However, scaling of renal and hepatic 

physiological parameters to account for body weight or body surface area is insufficient in 

obese patients and as such blood flow rate and organ weight to total body weight ratios are 
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often optimized in PBPK models [118,119]. Simcyp® Population-based ADME simulator 

already has a built-in obese population [120], which can be further optimized as more data 

become available to describe the physiological impact of obesity on the human body [121]. 

Obesity can also be recognized as an inflammatory condition associated with elevated 

cytokine levels, leading to altered metabolic patterns [122–124]. Thus, treatment of obesity 

as a drug disposition problem is insufficient to accurately describe the physiological state of 

obese subjects. Incorporating the influence of obesity on metabolic enzyme and transporter 

activity is needed to improve PBPK predictions of drug exposure and to understand whether 

dose adjustment would be beneficial to the patient.

Influence of Disease State on ADME Processes—Dose selection for an individual 

patients is assigned based on the extent of drug clearance for that particular individual to 

avoid overexposure [110]. Renal impairment, which can significantly reduce clearance, is 

prevalent worldwide. Regulatory agencies emphasize the need for targeted pharmacokinetic 

studies to evaluate the risk of systemic overexposure and the potential for dose adjustment in 

patients with chronic kidney disease [125]. As such, disease state modeling heavily 

emphasizes understanding the impact of renal impairment [67]. Virtual patient populations 

with renal impairment (moderate or severe) and liver cirrhosis are currently available in 

Simcyp® Population-based ADME Simulator [120]. Renal impairment, hepatic impairment, 

and metabolic enzyme inhibition can lead to increased exposure and ultimately a risk of 

adverse effects due to a reduction in drug clearance under the disease state [111]. This risk 

may be amplified by concomitant drug therapies, which contribute to the large variability 

observed in pharmacokinetic responses for unhealthy populations [111]. Even for drugs 

which are not eliminated by the kidneys, renal impairment can indirectly affect the 

pharmacokinetics by altering metabolic and transport mechanisms [125]. Hepatic 

impairment leads to reduced organ blood flow, hepatocellular functionality and plasma 

protein binding which limit the ability of the liver to metabolize drugs [37]. Renal 

impairment is associated with reduced glomerular filtration rate, tubular secretion, and 

protein binding that collectively leads to reduced elimination. Renal disease can also affect 

the activity of intestinal and hepatic uptake transporters due to an increase in uremic toxins 

and chronic inflammation [37]. As such, renal impairment significantly affects drug 

disposition and is a critical consideration in dose selection to ensure proper drug exposure 

[126]. Incorporation of these insufficiencies into PBPK models leads to a more accurate 

prediction of inter-patient variability for the assessment of patient risk and benefit under the 

diseased state.

The combined effects of hepatic and renal impairment must be considered as both the liver 

and kidney contribute to the total drug clearance [125]. Drugs are often eliminated partly by 

urinary excretion and partly by hepatic metabolism [127]. Impairment of both the kidney 

and liver can have synergistic effect to reduce drug clearance further. For example, patients 

who have impaired CYP2D6 metabolism, the primary pathway for hepatic metabolism of 

priodopidine, a new drug for the treatment of Huntington’s disease, depended on renal 

excretion as the primary elimination pathway. Thus, renal impairment in these patients 

would result in a higher risk of overexposure than those with a fully functioning CYP2D6 

pathway [127]. These impaired conditions are reflected in PBPK models through the model 
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parameters that describe liver and kidney physiology as well as the model input parameters 

used to calibrate elimination processes for prediction of the entire exposure profile. Model 

parameterization under this disease state is achieved by extrapolating parameter values from 

the healthy state to describe the extent of impairment.

In addition to drug clearance, absorption can also be affected by disease and morbidities. 

Gastric dysfunction, often manifesting as delayed gastric emptying time, can impact in vivo 
drug release and ultimately bioavailability [109]. Altered intestinal metabolism has been 

associated with different disease states, such as renal dysfunction, liver cirrhosis and obesity 

[128]. These conditions modify intestinal enzyme and transporter activity which can lead to 

substantial differences in bioavailability. Critical illness, such as sepsis or multiple organ 

dysfunction, are associated with significant changes in passive diffusion through the apical 

tight junctions of epithelial cells lining the gut wall [129]. These physiological changes lead 

to increased permeability of the gut wall, resulting in faster absorption of a drug from the 

gastrointestinal tract. Thus, PBPK model under modified gastrointestinal physiology can be 

used to study the impact of these conditions on drug exposure. Additionally, gastrointestinal 

dysfunction may be linked with weight loss, a common comorbidity for patients with 

Parkinson’s disease [130]. A significant change in body habitus would alter the drug’s 

volume of distribution, and ultimately the rate of elimination. Given a deeper understanding 

of how Parkinson’s disease alters physiology, PBPK model may be applied to study the 

covariates, gastrointestinal impairment and body habitus, to quantify exposure risks in this 

subpopulation.

Circadian Rhythms

Daily biological or circadian rhythms are recognized as a key contributor to pharmacokinetic 

variability in clinical studies. As such, these pathological effects are minimized by 

controlling the time and frequency of administration. Circadian influences on efficacy have 

been demonstrated for anticancer, cardiovascular, respiratory, anti-ulcer, anti-inflammatory, 

immunosuppressive, and antiepileptic drugs [131–142]. To date, several therapies have been 

synchronized with biological rhythms to maximize patient benefit and minimize risk 

[143,131]. As an example, the synchronization of corticosteroid therapy with the circadian 

pattern of various cytokines and hormones influencing rheumatoid arthritis disease activity 

has been well documented [144,145]. In general, chronopharmacokinetics studies the inter-

dependent relationship between disease symptoms, risk factors, pharmacologic sensitivity, 

and ADME processes such that the action (or release) of the drug fluctuates with the 

circadian rhythm of the morbidity [143]. In addition to influencing the dose-exposure 

relationship of a drug, circadian rhythms can affect the dose-response relationship and so 

time-of-day must be taken into consideration when modeling pharmacodynamics [146]. For 

example, evening dosing of amlodipine, a calcium channel blocker, showed that in addition 

to reducing elevated blood pressure, fluctuations in blood pressure were dampened following 

morning dosing [147]. Thus, time of administration for hypertension treatment is an 

important consideration for maximizing efficacy with further adjustment for sex due to 

differences in systolic and diastolic blood pressure patterns and heart rate.Circadian-driven 

variability is a result of fluctuations in several biochemical process controlling absorption 

and drug disposition, leading to changes in physiology. Gastric pH, acid secretion, motility, 
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and gastric emptying demonstrate circadian rhythms which influence absorption from the 

gastrointestinal tract [131,147,148]. In practice, tablets administered at night time were 

shown to have longer gastric residence times and longer colon residence times than tablets 

administered during the day time due to patterns of bowel movement [17]. Blood flow, 

peripheral resistances to drug transport, and protein levels and binding also demonstrate 

fluctuations that alter distribution. Activity and rest periods relative to drug administration 

can also influence the distribution of the drug throughout the body [131]. Metabolism and 

elimination are altered by biological rhythms due to changes in perfusion, glomerular 

filtration rate, urine excretion rate, urine pH, and electrolyte balances [131,147,148]. 

Furthermore, circadian rhythms may modulate carrier-mediated transport activity 

significantly, leading to differences in absorption, intestinal metabolism, or even renal 

clearance [149,150,133]. Bioavailability of drugs that are P-glycoprotein substrates may 

have a dependence on circadian rhythms. Studies have shown that there is a link between 

circadian oscillation and time-dependent dose pharmacokinetic changes in rodents, but 

extrapolation from nocturnal rodents to diurnal humans is difficult [151]. PBPK modeling 

may be leveraged to study these circadian effects in humans by establishing time-dependent 

parameter values and running simulations over shorter time periods to reflect morning, 

afternoon or evening administration.

Overcoming Circadian Influence through Formulation and Dosing—
Synchronization of drug concentration to rhythms in disease or morbidity activity is 

achieved by carefully timing administration of formulated tablets or through special drug 

delivery systems with controlled release profiles [152,153]. In this context, formulation 

effects are an important consideration for chronopharmacokinetics. For example, lipophilic 

drugs are likely to absorb faster following morning administration relative to evening. 

Similarly, pharmacokinetic exposure is influenced by the extent of plasma binding which 

fluctuates differently for acidic or basic drugs [131]. Biological rhythms are likely more 

important for controlled-release formulations that result in sustained, rapid or pulsatile 

release depending on time of administration relative to biological cycles [154]. Controlled 

release for oral dosage forms is achieved through various drug delivery mechanisms 

including layered systems, enteric coatings, and press coated systems [143]. Drug release 

from such systems can be predicted through PBPK modeling, considering the 

physicochemical properties of the drug, the in vivo release profile, and physiological state of 

virtual patients. Thus, PBPK modeling is a critical tool in chronopharmacokinetics to 

determine the influence of circadian rhythms on dose-exposure-response relationships by 

treating model input variables with time-dependent values in accordance with physiological 

changes associated with internal biological rhythms or environmental influences (light). 

These models can tease out the effects of drug or formulation properties on release in 

accordance to changes in the ADME processes. Peng et al. successfully demonstrated how 

PBPK modeling could be utilized to predict the plasma concentration of melatonin, a 

compound with strong circadian rhythms [155]. This goal was achieved by de-lumping 

tissues (salivary and pineal gland) into individual compartments on the basis of strong 

circadian effects due to light. The model demonstrated how delivery of exogenous melatonin 

as a controlled release formulation could mimic the endogenous rhythms [155].
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Other Biological Rhythms

Biological rhythms exist with phases that extend beyond 24 hrs. A key example of such 

influence is the menstrual cycle which has a significant impact on pharmacokinetics in 

women. This 28-day biological cycle is associated with hormone surges that prolong 

gastrointestinal transit time, influence plasma protein binding, and alter metabolizing 

enzyme activity, amongst other factors, leading to significant differences in bioavailability 

[73,81,69,156,86,157]. Thus, PBPK modeling provides a way to study variability in 

pharmacokinetic responses due to sex hormone fluctuations by changing physiological input 

parameters in accordance with the menstrual cycle. Similarly, circannual rhythms of disease-

related symptoms have been documented for chronic immune and inflammatory conditions, 

particularly for rheumatoid arthritis in which patients are seasonally affected [145]. Again, 

PBPK models can be utilized to study these intrinsic or externally influenced rhythms by 

establishing the link between pathology and physiological with fluctuations in ADME model 

parameters throughout the seasons. In the broader context, biological rhythms due to 

intrinsic and extrinsic (or environmental) influences are achieved through time-dependent 

model parameterization, that is, model parameters are no longer treated as constant values 

for a given population. To date, this application of PBPK modeling is an underdeveloped 

area that requires a better understanding of rhythmic influences for accurate predictions of 

temporal variations.

Formulation Considerations for Special Populations

The extent and rate of absorption of an orally administered drug is thought to have a greater 

impact on bioavailability than post-absorptive processes, such as drug distribution and 

clearance [158]. Drug absorption depends on physicochemical properties of the drug, 

characteristics of the formulation, and interplay with the underlying physiological properties 

of the gastrointestinal tract [17]. In particular, three major factors that determine the rate and 

extent of intestinal absorption are the dissolution rate, solubility, and intestinal permeability 

[16,159]. Absorption is highly dependent on gastrointestinal physiology, which contributes 

significantly to the observed distribution in bioavailability for a population. The previous 

sections described model parameterization, independent of the drug under study, to establish 

population-specific gastrointestinal physiology on the basis of sex, age, disease and temporal 

variations due to biological rhythms. Necessary physiological input data included enzymatic 

constants for metabolism, passive diffusion clearance, transport clearances for influx or 

efflux at the basolateral membrane, transport parameters related to the apical membrane for 

secretion of the eliminating organ, and estimates of tissue to plasma or blood partitioning 

coefficients for weak bases and acids [160]. Built in physiological parameters, such as 

gastrointestinal transit time, pH, absorptive surface area, bile salt concentrations in each 

compartment, pore size and density, compartment dimensions, and fluid content are assigned 

default values that can be modified by the user to reflect specific physiologies [17]. Given an 

understanding of population-specific physiology, absorption can be optimized by altering 

drug-dependent factors to ensure the desired bioavailability is achieved. PBPK modeling is a 

critical tool to link the influences of drug and formulation input properties with physiology 

to achieve personalized medicine. Several drug and formulation dependent factors greatly 

affect exposure, including intrinsic drug properties and derived formulation properties, such 
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as disintegration of the dosage form and drug dissolution. Key input data related to 

formulation are the drug aqueous solubility-pH relationship, permeability, particle size 

distribution, and targeted release profile (immediate, controlled, delayed). PBPK modeling 

can be used to evaluate primary and higher level interactions between these properties under 

specific physiological states, exploring the link between formulation and exposure in special 

populations.

Influence of Solubility and Lipophilicity on Absorption

The in vivo release rate of a drug is contingent on solubility, which is often a function of 

gastrointestinal pH due to changes in the degree of drug ionization [161]. In general, drug 

release in gastrointestinal fluid is better for charged species while permeability through cell 

membranes favor neutral species [159]. Poor compound solubility at physiological pH is a 

major hurdle for formulators. In addition to the physical properties of the drug (i.e. particle 

size) or tablet (i.e. shape) [162], solubility can also be affected by polymorphism, hydration 

state, and the nature of excipients [162,21,159]. Crystalline forms tend to be more soluble 

than amorphous forms, and anhydrous forms are more soluble than hydrated states. Many 

drug candidates have high molecular weight, high hydrophobicity, and many hydrogen 

bonds, leading to poor solubility in water [163]. The degree of ionization (polarity) of a drug 

depends on its acid dissociation constant (pKa), which is the pH at which the concentrations 

of ionized and non-ionized drug forms are equal. If the pKa of a drug is equal to the 

physiological pH, then 50% of the drug is ionized and 50% is non-ionized. In an acidic 

environment like the stomach, weakly acidic drugs are present in non-ionic forms while 

weakly basic drugs are ionized, leading to higher absorption for weakly acidic drugs. In the 

intestine, weakly basic drugs are present in non-ionic forms while weakly acidic drugs are 

ionized, leading to higher absorption for weakly basic drugs [164]. Variations in 

gastrointestinal pH will, therefore, affect the rate of absorption and contribute to the 

observed distribution of pharmacokinetic responses for a population.

Considering sex as an example, studies showed that women typically exhibit higher pH 

levels in the stomach compared to men [78,71]. As such, varying in vivo release rates can be 

expected for drugs with pH-sensitive solubility. Since all formulations cannot realistically be 

tested in vivo, in vitro dissolution testing serves as a surrogate technique to understand and 

compare how formulation and drug properties influence solubility. In turn, in vitro 
dissolution profiles become key input to PBPK models to account for formulation effects. 

Emphasis is placed on customizing the dissolution method to emulate the physiology of 

interest to better capture the anticipated in vivo behavior. For a sex-dependent dissolution 

study, the composition of the female-specific biorelevant dissolution medium must be 

formulated with higher pH compared to the male-specific biorelevant dissolution medium, 

as done in a study by Magallanes et al. [165]. Therefore, these biorelevant dissolution 

profiles can be used as PBPK model input to evaluate the clinical significance of 

physiological differences, to establish the extent of sex-dependent differences in absorption, 

and to enable detection of population-specific risks for a given dosing regimen.

A drug’s lipophilicity is highly informative for determining ADME behavior and overall 

suitability of drug candidates. The degree of lipophilicity is affected by intermolecular 
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interactions which are largely dependent on the molecular structure, including positional 

isomerism, stereoisomerism, ionization, and molecular size [166]. Lipophilicity affects a 

drug’s solubility, permeability through membranes, potency, selectivity, promiscuity, 

metabolism, and ultimately the PK/PD/toxicological profiles [167,168]. Most lipophilic or 

non-ionized compounds are believed to diffuse rapidly across the cellular membranes of the 

intestinal epithelium, which is the main barrier for oral drug absorption [169]. Lipophilicity 

is reflected in the PBPK model by the drug’s partition coefficient (log P), which is the 

logarithmic ratio of drug concentrations in polar (water) and non-polar (octanol) phases. In 

general, a higher log P value is associated with improved drug distribution and clearance, 

where lower log P is associated with improved solubility, and reduced CYP inhibition [168]. 

Extremely lipophilic compounds are associated with low metabolic clearance, in vitro 
receptor promiscuity (undesirable interaction of drug with off-target proteins), and in vivo 
toxicity [167,168]. Continuing with the sex differences as an example, the distribution of a 

drug can vary considerably in males and females depending on its hydrophilicity and 

lipophilicity. Lipophilic compounds tend to distribute to and collect more in adipose tissue, 

leading to reduced circulation to other tissues. Since women typically have more adipose 

tissue than men, they tend to express lower plasma concentration and longer duration of 

action than men for lipophilic drugs such as benzodiazepines [71]. By contrast, a hydrophilic 

drug will exhibit a higher plasma concentration in females compared to males because males 

have a larger volume of body water than females and thus an increased volume of 

distribution. Similarly, age can contribute to different drug exposure due to the increase in 

adipose tissue in elderly populations. This fact must be kept in mind during the formulation 

stage of drug product development as the same dose for a highly hydrophilic or lipophilic 

compound can lead to very different drug exposure between sexes or in elderly patients.

Formulation Strategies for the Biopharmaceutical Classification System

Different formulation challenges are associated with the four classes of the 

Biopharmaceutical Classification System (BCS). BCS Class I drugs are characterized by 

high solubility that is independent of pH within the range of 1 to 8, which includes the 

physiological pH of the stomach, duodenum, and upper small intestine [170]. Therefore, the 

in vivo release of a BCS Class I drug from an immediate release formulation is expected to 

be rapid and not affected by physiological pH. With minimal absorption in the stomach, 

gastric emptying is likely to control the rate of absorption in the intestine rather than 

formulation effects unless a modified release profile is targeted [171,40]. Considering 

physiological influences of sex, age, and disease on gastric emptying, differences in 

absorption rate are anticipated for BSC Class I drugs across special populations. PBPK 

modeling could be leveraged to identify the clinical significance of these differences and the 

need, if any, for dose adjustment.

For a BSC Class II drug, solubility is low and likely to be pH dependent within the 

physiological range [172,173]. Class II drugs can be separated further into subclasses 

dependent on the drug’s pKa: weakly acidic (pKa ≤ 5, Class IIa), weakly basic (pKa ≥ 6, 

Class IIb), and neutral (Class IIc). Class IIa drugs are soluble at intestinal pH, whereas Class 

IIb are soluble in the stomach and may precipitate at intestinal pH. The solubility of Class 

IIc drugs is low at all physiological pH. Across all BCS Class II subclasses, the rate-limiting 

Hartmanshenn et al. Page 20

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



step to absorption will be the in vivo release. Thus, the interaction between gastrointestinal 

physiology and formulation will greatly affect the in vivo release profile. Sensitivity to 

formulation was previously shown for naproxen and ibuprofen, both BCS Class II drugs that 

have been extensively studied [174–176]. As such, subtle differences in gastrointestinal 

physiology may lead to significant differences in the release rate for the same formulation 

between patient subgroups. Drug developers counteract low solubility by formulating BCS 

Class II drugs in solubilized forms, as salts, or with reduced particle size to increase the rate 

of absorption [177,178]. Additional formulation strategies to improve solubility include 

precipitation inhibitors, metastable forms, solid dispersion, complexation, and lipid 

technologies [179]. PBPK modeling could be implemented to evaluate the sensitivity of 

special populations to these changes in solubility, determining the influence of specific 

gastrointestinal physiological conditions on the spectrum of pharmacokinetic responses, and 

the inherent sensitivity of exposure to inter-patient variability. Thus, PBPK modeling can 

prove useful for confirming that formulation design is actually capable of achieving the 

desired release rate and bioavailability in special populations by linking formulation 

physicochemical properties with the physiology under question.

The rate-limiting step to absorption of BCS Class III drugs is permeability, which presents a 

different set of challenges for formulators [40]. For this class of drugs, sufficient solubilized 

drug will be present in the gastrointestinal tract lumen, but active transport will be needed to 

overcome the intrinsic properties of the drug that contribute to poor permeability. Therefore, 

BCS Class III drugs are formulated to improve active transport [180]. These drug are usually 

poorly metabolized and eliminated primarily unchanged by renal and/or biliary routes. 

Given the extensive differences in transporter activity and clearance across physiologies, 

formulating BCS Class III drugs to overcome these challenges will be especially important 

for special populations. Formulation approaches to improve permeability include prodrugs, 

permeation enhancers, and ion pairing [179]. The ability of these changes to improve 

permeability in different physiological states can be evaluated using PBPK modeling. 

Finally, BCS Class IV drugs are generally associated with poor bioavailability due to low 

permeability and solubility [40]. Formulation must address both solubility and permeability 

challenges of which PBPK modeling can prove useful in understanding the impact of 

physicochemical properties. Formulation Design under the Quality by Design Paradigm

Kesisoglou and Mitra demonstrated how PBPK modeling could be implemented in the 

rational design of drug product under the Quality by Design (QbD) paradigm with the goal 

of linking the product critical quality attributes (CQAs) to the quality target product profile 

(QTPP) [44]. The first study evaluated the effects of gastric pH on absorption of a BCS 

Class II/IV compound relative to the QTPP, prior to first in human studies. Higher gastric pH 

reduced bioavailability, requiring the drug be formulated in such a way that mitigates pH 

sensitivity [44]. Since gastric pH is a common source of difference between special 

populations, this case study provides an example of how a drug may be formulated to 

accommodate these differences. In another study, the optimal drug release rate of a BCS 

Class II drug from a controlled release tablet was identified to maintain a specified plasma 

concentration 24 hours after administration and ensure Cmax did not exceed a given value. 

An immediate release formulation led to high Cmax, adverse side effects, and low 

concentration after 24 hrs whereas controlled release formulations were able to meet this 

Hartmanshenn et al. Page 21

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



criteria [44]. This example can be used to understand how controlled-release formulations 

may be adjusted to maintain the desired drug plasma concentration within the therapeutic 

window of a given population. The third case study assessed the impact of drug substance 

particle size and distribution of a low solubility compound on bioavailability during late 

stage formulation development. At low dose, minimal impact to bioavailability was observed 

whereas bioavailability was reduced at a higher dose with increasing particle size [44]. The 

sensitivity to particle size may vary across special populations due to differences in 

gastrointestinal physiology and so PBPK model can be leveraged to elucidate the 

contribution that particle size has to population variability. A fourth study explores the 

impact of drug form (salt vs. free base) in Caucasian and Japanese patients. Bioavailability 

decreased for larger free base fractions compared to the salt form. Simulations showed that 

higher stomach pH, common in Japanese populations, led to a decrease in absorption [44]. 

These case studies are excellent examples to demonstrate how PBPK modeling can be used 

to assess formulation risk and rationalize development decisions under the Quality by 

Design paradigm. Case studies such as these can easily be extended to other physiological 

states to address similar questions for special populations, enabling a better understanding of 

the anticipated variability and pharmacokinetic response spectrum in a clinical trial.

Implementation of PBPK Modeling for Personalized Medicine

A calibrated PBPK model for adesired physiology offers great potential for streamlining 

formulation design and understanding patient pharmacokinetic responses. Among other 

applications, the mechanistic aspect of PBPK modeling enables its utilization for 

personalized medicine in two valuable approaches: (1) determining the level of importance 

certain populations have within a distribution of pharmacokinetic responses for a given drug 

formulation and (2) establishing the formulation design space needed to attain a targeted 

drug plasma concentration profile. The first application leverages the predictive capabilities 

of PBPK modeling and its ability to adapt physiological parameters to represent specific 

populations to gain a better understanding of how various sections of the pharmacokinetic 

response distribution can be classified according to subpopulation effects. The second 

application adopts a reverse approach where a deconvolution technique is used to determine 

the formulation needed to match a desired plasma concentration profile for a special 

population. The latter can be particularly valuable when designing a product for a distinct 

group of patients, such as therapies for pediatric care.

Determining the Impact of Population Variability for a Given Formulation

Clinical studies are essential to maximizing knowledge about a drug’s possible mechanisms 

in the human body. In order to be truly effective, clinical design should ensure that 

participants represent the entire population in an unbiased manner by including patients 

from diversified profiles in terms of age, sex, ethnicity, extent of disease, and other special 

population classifications. The entire populationcan be incorporated in a PBPK model by 

modifying the physiological parameters that manifest variability between different special 

populations. For example, GastroPlus™ allows the generation of virtual clinical trials for 

overall or generic randomized populations as well as user-defined subpopulations [183]. 

Randomized population models can be conducted using default parameters from human 
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GastroPlus™ physiology through adaptation of the coefficient of variation (CV %) with a 

larger coefficient of variation correlating to wider distribution of input parameter values. 

Special population simulations are more complex since user-defined physiological and 

pharmacokinetic parameters are generally required. Thus, a significant portion of model 

development and validation is spent on model parameterization. These parameters can be 

especially difficult to source from publications for newer or less established drugs, leading 

to greater uncertainty in predictions. In some cases, the difficult search for physiological 

parameters can be circumvented by making use of Simcyp®. Simcyp® contains a 

subpopulation virtual trial feature and is widely used for subpopulation modeling since it 

partially predefines physiological and pharmacokinetic settings for gender and some 

ethnicities (European Caucasian and Japanese), as well as a specific interface for pediatric 

applications [184]. Several studies demonstrated the use and accuracy of these special 

population resources [44,185,186].

Overall population simulations for drug exposure can exhibit a wide distribution of 

pharmacokinetic responses for a given drug formulation. Repeating the simulation for the 

same formulation, but considering a different subpopulation physiology can help match and 

explain which subpopulations contribute to certain regions of the exposure spectrum for the 

larger generic population PBPK models could be used to correlate certain areas of the 

response spectrum with patient features such as age, sex, and disease state‥ For example, if 

an overall population simulation for a highly lipophilic drug shows a wide range of plasma 

concentration profiles, lower exposure may be affiliated with women while the higher 

exposure may be associated with men as more drug would be distributed to and accumulate 

in the increased adipose tissue of women.

Establishing the Formulation Design Space to Attain a Target Exposure As opposed to the 

first application which proposes a forward method involving the prediction of in vivo 
exposurefor a defined formulation, an alternative method of applying PBPK modeling is to 

reverse the process and use models to predict how a formulation should be manufactured to 

achieve a target in vivo profile. If a target bioavailability, Cmax, and Tmax are known for a 

given drug, a PBPK model can be used to determine the formulation design space which will 

yield the desired pharmacokinetic profile. This aspect of PBPK modeling has the potential to 

greatly optimize and improve the efficiency of drug design so that fewer formulations would 

need to be tested in clinical trials. In terms of personalized medicine, this concept can prove 

to be particularly useful in pediatrics, where differences in physiology between children and 

adults are significant enough that dosing for some drugs cannot simply be scaled according 

to body weight but ethical reasons often complicate the ease of clinical trials. A PBPK 

model suited to a child’s physiology could be used as a way to predict the ideal formulation 

design space for a target pharmacokinetic profile.

Starting from a desired or observed plasma concentration profile, deconvolution can be used 

to calculate the corresponding in vivo drug release profile directly from the target plasma 

concentration profile [183,187]. The in vivo release profile provides insight into the 

mechanism of absorption (i.e. zero order, first order, etc) and elucidates in vivo effects of 

formulation on solubility and permeability [188]. From this target in vivo release profile, a 

manufacturing design space can be established to describe how a tablet must be produced in 
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order to obtain the desired in vivo performance. This goal is achieved in several steps. First 

an in vitro-in vivo correlation (IVIVC) is needed to link the in vivo release profile to in vitro 
dissolution data. A point-to-point relationship is needed to predict the entirety of the in vitro 
dissolution profile for future formulations and thus a Level A IVIVR will be required 

[173,189]. Once the target in vitro dissolution profile is determined, experimental studies 

can be completed to determine the formulation and process conditions that are needed to 

achieve the desired rate. If an in silico approach is preferred, available software, such as the 

Optimization Module in DDDPlus™, may be used to translate the obtained release profile 

into manufacturing parameters such as tablet porosity, compression force, and particle size 

[190]. When put into perspective with personalized medicine, this reverse methodology can 

be applied for any subpopulation given an exposure profile (either simulated or 

experimental) for certain subpopulations, leveraging mathematical deconvolution and 

established IVIV correlations to relate in vivo release back to in vitro dissolution for the 

populations of interest.

Challenges and Opportunities

Although PBPK modeling has come a long way due to the advancements in technology and 

computing power, the emergence of user-friendly software, and improvements in in vitro 
methodologies, there is still a lengthy road before acceptance by pharmacologists and 

clinicians as a tool with the ability to replace clinical experiments completely. Currently, in 
silico models cannot predict bioavailability as well as in vitro tests, but can still be used for 

qualitative analysis. One study showed 84% successful prediction for in vitro tests for 

apparent permeability and intrinsic clearance compared to 53% accuracy for in silico models 

within ±20% acceptance interval [191]. Much of the hesitancy towards physiologically-

based modeling originates from doubt regarding the degree of accuracy and reliability of its 

input. This skepticism is understandable since a PBPK model is only as accurate as the 

quality of its input parameters. Therefore, if the incorporated data contain errors, 

inconsistencies or miscalculations, the resulting simulations may not truly emulate in vivo 
conditions and performance. Inaccuracies in input data may arise from a variety of reasons 

such as the high inherent variability of biological systems, imperfect experimental 

instrumentation, misinterpretation of collected data, or a fundamental misunderstanding of 

the drug compound [39,38]. Additionally, the severe lack of detailed databases for 

physiological parameters, particularly for specialized subpopulations, requires that much of 

the input data are drawn from several sources, which further increases the possibility of 

inconsistent information [50].

Incorrect model input may also stem from the significant gap in knowledge surrounding 

certain sections of the human physiology/anatomy. Literature reviews exposed limited 

understanding in the lower small intestine and the colon [17], issues in accurately estimating 

human drug clearance [28,10,6], and a lack of comprehensive knowledge regarding drug 

metabolism and transport. While PBPK simulations typically show adequate correlations 

between expected and observed plasma concentration profiles for drugs with passive 

transport mechanisms, poorer correlations are often obtained for actively transported drugs 

[38]. The complexity of the transport phenomena occurring throughout the body translates to 

an equally intricate model composed of a large number of mathematical equations with a 
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multitude of parameters. These gaps in knowledge, particularly with respect to metabolism 

and transporters, prove to be especially limiting in the field of personalized medicine, since 

these parameters are precisely what cause differences in physiology and thus variable 

responses between special populations [50]. Other poorly characterized physiological 

processes, such as drug absorption in newborns and infants, could also hinder the 

development of a drug adapted to the pediatric population [50].

Often times, pharmacokinetic properties used for calibration of the model are obtained from 

allometric scaling of animal studies or extrapolated from general populations other than the 

clinical scenario under evaluation. Scaling of these parameters demonstrates the complexity 

of prediction for humans, which is even more complicated in PBPK modeling given the 

increasing number of physiologically-based constants to describe absorption and the vast 

differences between species. Thus, interspecies allometric scaling and single species 

methods, such as linear scaling or direct proportionality, represent another variability in 

model input [192–194]. Conducting a sensitivity analysis to establish the influence of certain 

parameters on the predicted drug exposure can aid in understanding the strength of the 

model [31,195,196,33]. To date, no perfect PBPK model exists. However, as knowledge 

about ADME processes improves and as input parameters become more closely linked with 

biologically-representative in vitro data, PBPK models will become the key to effective and 

efficient drug manufacturing for the benefit of the patient.

Another challenge involves linking pharmacokinetics with pharmacodynamics. Much 

emphasis is placed on the prediction of exposure from PBPK models. However, this 

understanding needs to be extended to determine the exposure-response relationship, which 

is equally important to understanding the impact that a particular dose has on the efficacy of 

a drug. For example, methylprednisolone, a drug metabolized primarily by CYP3A 

isoenzymes, demonstrated sex-specific pharmacokinetics in regards to clearance and AUC, 

consistent with greater expression of CYP3A in women and increased metabolism compared 

to men [70]. However, women were shown to be much more sensitive to the effects of this 

drug. The reduced pharmacokinetic exposure balanced the increased response sensitivity so 

that the same dose had similar impact on cortisol secretion between sexes [70]. This study 

identifies yet another challenge for personalized medicine, indicating that the physiological 

state not only affects absorption and drug disposition, but also the mechanistic action of the 

drug and ultimately patient pharmacodynamics. To truly achieve personalized medicine for 

special populations, the interconnectivity between drug dose, exposure and response must be 

recognized.

Despite several challenges associated with PBPK modeling for special populations, in silico 
prediction presents several opportunities for the advancement of personalized medicine. A 

recent paper by Kesisoglou et al. evaluated five case studies to understand the impact of 

biopharmaceutics on formulation strategies across the drug development continuum from 

first in human (FIH) to late-stage development: (1) prediction of absorption prior to FIH 

studies; (2) optimization of formulation and dissolution method post-FIH data; (3) early 

exploration of a modified-release formulation; (4) addressing bridging questions for late-

stage formulation changes; and (5) prediction of pharmacokinetics in the fed state for a BCS 

Class I drug with fasted state data [24]. These case studies can be applied to various 
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physiological states to establish and explain the anticipated spectrum of pharmacokinetic 

responses. PBPK modeling for special populations can assess risk prior to FIH studies, 

enable formulation development and optimization for subgroups of patients, and evaluate 

whether dose adjustment is needed for certain subgroups of patients. When leveraged 

throughout drug product development, PBPK models can address several key patient-centric 

regulatory considerations to maximize therapeutic effectiveness and safety. PBPK models 

enable enhanced specificity of diagnostic and therapeutic technologies, differentiation of 

responders from non-responders, reduced inter-patient variability, and fewer adverse events 

[4]. A key opportunity for PBPK modeling is the evaluation of complex clinical scenarios 

associated with ethical concerns when testing in actual patients. One such consideration is 

pregnancy, which alters the physiology and pathology of women significantly, a special 

population that remains to be fully studied [197]. The full potential of PBPK models in 

translational research and formulation development for personalized medicines has yet to be 

realized.

Perspective and Outlook

Personalized medicine remains a very current and pressing challenge, despite a strong 

interest from researchers and physicians for decades. As knowledge in the field advances, 

the need for physiologically-suited therapies is more and more apparent. Important 

physiological and pharmacokinetic differences exist between patients according to sex, age, 

ethnicity, disease state, and pregnancy. This review article focused on the physiological 

differences associated with sex (male vs. female), age (pediatric vs. young adults vs. 

elderly), disease state (healthy vs. unhealthy), and temporal fluctuations (time of day, month, 

year), connecting them to drug product formulation development through PBPK modeling 

within the Quality by Design framework. Inter-patient and inter-subpopulation variability 

can be difficult to represent in clinical studies without very large numbers of patients and 

can be further complicated by technical and ethical obstacles for certain subpopulations such 

as pediatrics. For these reasons, clinical studies often omit or include limited numbers of 

patients whose physiological backgrounds may lead to higher variations in data. These 

complexities hinder the progress of personalized medicine which prompts for an alternative 

approach to lessen the financial and ethical burden of experimental trials. A solution lies in 

PBPK modeling, which offers a mechanistic approach to create virtual population trials with 

user-defined patient physiology from which oral bioavailability can be predicted in silico. 

These models leverage the interplay between drug specific characteristics and human 

physiology, portrayed by the model input parameters, to emulate specific physiological or 

pathological conditions and can aid in the development of a formulation for that particular 

physiology.

PBPK models operate under the AAD2 methodology which enables the tuning and refining 

of their inputs and structure to obtain biologically significant and accurate representations of 

the drug and population of study. Some improvements are still needed before PBPK models 

can be used as standalone evidence, particularly with respects to specific knowledge gaps in 

human anatomy. However, recent advancements in technology like the development of user-

friendly PBPK software and improvement of in vitro methods, have clearly enhanced the 

capabilities of PBPK modeling as a tool for effective and efficient drug manufacturing for 
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the benefit of the patient. Rowland et al. summarized this objective by stating that “One day, 

when sufficient information is available in a patient, clinicians will be able to link that 

person to his or her virtual twin within a PBPK model to provide safe, effective, 

individualized dosage” [6]. This concept lies at the heart of personalized medicine which 

emphasizes the goal of delivering the “right drug at the right dose at the right time”.
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Fig 1. 
Physiologically-based pharmacokinetics models for special populations within the AAD2 

(adopt, adapt, development, assess, amend, deliver) computation methodology, an iterative 

and integrative approach to model development
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