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Abstract

Background—Alcohol use typically begins during adolescence and escalates into young 

adulthood. This represents an important period for the establishment of alcohol use and misuse 

patterns, which can have psychosocial and medical consequences. Although changes in alcohol 

use during this time have been phenotypically characterized, their genetic nature is poorly 

understood.

Methods—Participants of the Avon Longitudinal Study of Parents and Children (ALSPAC) 

completed the Alcohol Use Disorders Identification Test (AUDIT) four times from age 16–20. We 

used Mplus to construct a growth model characterizing changes in AUDIT scores across time 

(N=4545, where data were available for at least two time points). The slope of the model was used 

as the phenotype in a genome-wide association study (GWAS; N=3380), followed by secondary 

genetic analyses.

Results—No individual marker met genome-wide significance criteria. Top markers mapped to 

biologically plausible candidate genes. The slope term was moderately heritable (h2
SNP=0.26, 

p=0.009), and replication attempts using a meta-analysis of independent samples provided support 

for implicated variants at the aggregate level. Nominally significant (p<0.00001) markers mapped 

to putatively active genomic regions in brain tissue more frequently than expected by chance.
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Conclusions—These results build on prior studies by demonstrating that common genetic 

variation impacts alcohol misuse trajectories. Influential loci map to genes that merit additional 

research, as well as to intergenic regions with regulatory functions in the central nervous system. 

These findings underscore the complex biological nature of alcohol misuse across development.
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Introduction

Alcohol use frequently begins in adolescence, with upwards of 50% of US 10th graders 

(Johnston et al., 2013) and over 40% of UK eleven to fifteen-year-olds (Lifestyle Statistics, 

2014) reporting initiation of alcohol use. Consumption typically increases into young 

adulthood before stabilizing or tapering off (Johnston et al., 2013). The pattern of use 

established during adolescence into young adulthood can be predictive of later alcohol use 

problems (Blozis et al., 2007; Duncan et al., 1997; Nixon and McClain, 2010), which are 

associated with a host of social, economic, and medical costs (McCambridge et al., 2011; 

Sacks et al., 2015; Secretary of State for the Home Department, 2012a; Secretary of State 

for the Home Department, 2012b). Thus, clarifying the etiology of alcohol misuse has 

significant implications for public health.

Genetic factors are known to substantially impact alcohol use phenotypes. A recent meta-

analysis of twin and adoption studies reported a heritability estimate of .49 for alcohol use 

disorders (Verhulst et al., 2015). Other studies have reported heritabilities of .21–.55 for 

associated phenotypes such as frequency of use, intoxication frequency, and problem 

drinking (Derks et al., 2014; Edwards et al., 2011a; Edwards et al., 2011b; Geels et al., 2012; 

Sartor et al., 2013; Wu et al., 2014). Furthermore, evidence suggests that the heritability of 

alcohol use phenotypes increases from early adolescence into young adulthood (Bergen et 

al., 2007).

Most prior studies investigating the genetic etiology of alcohol outcomes have focused on 

either cross-sectional data or lifetime measures. However, abundant evidence suggests that 

alcohol-related behaviors develop over time and vary across individuals (Casswell et al., 

2002; Duncan et al., 1997; Tucker et al., 2003; Wiesner et al., 2007; Windle et al., 2005). 

Cross-sectional or collapsed (i.e., lifetime) measures fail to capture the dynamic nature of 

change in alcohol use across time; consequently, genetic studies employing these measures 

are limited in the extent to which they identify variants or genes that impact the course of 

alcohol use. Given the complex nature of alcohol use phenotypes, complementary genetic 

analyses will likely be needed to comprehensively dissect their etiology: Distinct or only 

partially overlapping genetic factors might impact different aspects such as alcohol use 

initiation, acceleration of use, alcohol use disorder, recovery, persistence, etc.

While phenotypic analyses of alcohol use/misuse trajectories are common, corresponding 

genetic analyses are not. To our knowledge, only one prior study has examined genetic 

influences underlying changes in alcohol outcomes over time. In a study involving three US 

cohorts longitudinally assessed from childhood into young adulthood, Adkins and 
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colleagues (2015) modeled developmental trajectories of alcohol consumption, followed by 

genome-wide association analysis of the resulting slope parameter. Results were meta-

analyzed across cohorts, and while no marker met genome-wide significance criteria for 

association with the slope, biologically plausible suggestive markers were identified, and 

secondary analyses implicated genes involved in axon guidance and development. Parallel to 

the analysis of the slope, Adkins et al. conducted association tests for mean alcohol 

consumption across time. Importantly, distinct genetic loci and pathways were implicated 

across phenotypes, indicating that the genetic factors impacting changes in alcohol 

consumption differ from those impacting a measure that is effectively cross-sectional.

The current study aims to address the deficit in our understanding of genetic influences on 

the course of alcohol misuse. We employ data from the Avon Longitudinal Study of Parents 

and Children (ALSPAC), a prospectively assessed cohort study in the southwest UK, to 

quantify growth in alcohol misuse from adolescence to emerging adulthood. As only one 

prior study has subjected a comparable outcome to genetic analysis (Adkins et al., 2015), the 

current study represents a relatively novel approach to conceptualizing the genetic risk of 

alcohol use problems.

Materials and Methods

Sample

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a cohort-based sample 

recruited in southwest England. ALSPAC recruited 14,541 pregnant women resident in 

Avon, UK with expected dates of delivery 1st April 1991 to 31st December 1992. 14,541 is 

the initial number of pregnancies for which the mothers enrolled in the ALSPAC study and 

had either returned at least one questionnaire or attended a “Children in Focus” clinic by 19 

July 1999. Of these initial pregnancies, there was a total of 14,676 fetuses, resulting in 

14,062 live births and 13,988 children who were alive at 1 year of age. Subsequent phases of 

enrolment increased the sample size over time. The phases of enrolment are described in 

more detail elsewhere (Boyd et al., 2013; Fraser et al., 2013). For the current analyses, full 

or partial phenotypic data were available for 4545 participants (see below). The study 

website contains details of all the data that is available through a fully searchable data 

dictionary (http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). Ethical 

approval for the study was obtained from the ALSPAC Ethics and Law Committee and the 

Local Research Ethics Committees.

Measures

Participants completed the 10 items of the Alcohol Use Disorders Identification Test 

(AUDIT; (Babor and Grant, 1989)) at approximately ages 16.5, 17.5, 18.75, and 20.75. At 

age 17.5, data was collected at a clinic, at which participants completed the AUDIT on a 

computer. Otherwise, data was collected via postal or online questionnaire. Scores for each 

AUDIT item range from 0–4 as a function of how frequently (e.g., “Never” to “Daily or 

almost daily”) the respondent has experienced that item. Total scores could range from 0–40.
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Genotyping

Samples were genotyped on the Illumina HumanHap550 quad SNP genotyping platform by 

the Wellcome Trust Sanger Institute (Cambridge, UK) and Laboratory Corporation of 

America (Burlington, NC, US). Individuals were excluded on the basis of gender mismatch; 

minimal or excessive heterozygosity; individual missingness >3%; and insufficient sample 

replication (IBD<0.8). Population stratification was assessed using multidimensional scaling 

analysis and compared to Hapmap II populations; individuals not of European ancestry were 

excluded. Markers with MAF<1%, call rate <95%, and violations of Hardy-Weinberg 

equilibrium (p<5e–7) were removed. Individuals with evidence of cryptic relatedness were 

removed (IBD>0.1). After quality control filters were applied, data were available for 9,048 

subjects and 526,688 SNPs. Haplotypes were estimated using ShapeIT (v2.r644), and 

imputation was conducted using a phased version of the 1000 Genomes reference panel 

(Phase 1, Version 3), using Impute V2.2.2 and all reference haplotypes to maximize 

imputation quality.

Statistical Analyses

Growth model—In Mplus version 7.11, we fit a latent growth model (Muthén and 

Muthén, 2012) for the four waves of AUDIT scores. We estimated an intercept (I), slope (S), 

quadratic (Q), and cubic (C) term, and conducted a series of tests to identify the most 

parsimonious model that provided a good fit to the data, using Root Mean Square Error of 

Approximation (RMSEA), the Tucker-Lewis Index (TFI), and Comparative Fit Index (CFI) 

to interpret fit.

Genetic analyses—We conducted GWAS on the imputed (dosage) genetic data using 

Plink v1.07 (Purcell et al., 2007). Only autosomal markers were analyzed. We included sex 

and 10 ancestry-informative principal components as covariates. Slope was the focal 

phenotype; other relevant growth factors (I and Q, see Results) as covariates.

We used VEGAS2 (Mishra and Macgregor, 2015) to perform gene-based analyses. Such 

tests represent a biology-based approach to interpreting marker-level results, as they 

consider aggregate effects across a functionally meaningful genomic region. VEGAS2 

mapped markers falling within 50kb to known genes; this flanking region was selected in 

order to capture potentially influential regulatory regions. VEGAS2 accounts for linkage 

disequilibrium among markers mapping to a given gene based on the selected 1000 

Genomes (The 1000 Genomes Project Consortium et al., 2012) reference population (in this 

case, the European subset). We considered both VEGAS2’s gene-based p-values and 

Benjamini-Hochberg false discovery rates (FDR); the latter were derived using p. adjust in R 

version 3.2.3.

We used Genome-wide Complex Trait Analysis (GCTA; (Yang et al., 2011)) to calculate the 

proportion of phenotypic variance attributable to genetic variation (h2
SNP), using only 

observed variants. The genetic relationship matrix was constructed using a relatedness cut-

off of 0.025. We included sex, non-focal growth parameters, and 10 ancestry-informative 

principal components as covariates.
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Replication—We selected promising (p<0.0001) markers for individual SNP-based 

replication attempts using the only available published study of a similar phenotype (Adkins 

et al., 2015). P-values were combined across the current study and the meta-analytic results 

from Adkins et al., using Fisher’s method. In addition, we conducted sign tests, using a 

subset of markers: markers were first selected for their availability in the replication sample; 

redundant markers were removed, and reference alleles were aligned across the current 

results and the replication sample. Because the replication sample was a meta-analysis, 

combined t-statistics were used rather than betas. Markers were next selected for 

independence using Plink’s --clump option in two stages: first, we applied a LD threshold of 

r2=0.5 within a 250kb window; we then applied a threshold of r2=0.2 within a 5mb window. 

Selected markers were binned by p-value for sign tests.

Epigenomic annotations—SNPs were annotated for various epigenetic and functional 

features using data obtained from HaploReg (v4.1) (Ward and Kellis, 2016). These data 

included DNaseI hypersensitive sites (DHS), histone modification sites and chromatin state 

segmentations (15-state) produced by the RoadMap Epigenomics Project for various cell 

types and biological samples (Roadmap Epigenomics et al., 2015). For each of these cell 

type-specific features we calculated the frequencies with which they overlapped any of the 

assayed SNPs. We then compared the overlap among SNPs nominally associated with 

growth in alcohol misuse to the background frequencies in order to calculate a cell type-

specific fold enrichment score. The background for this analysis comprised a set of 

8,887,107 markers, which represents the overlap of markers assayed in this study and 

included in dbSNP release b137. Enrichment relative to this background was calculated 

using a binomial statistic. Within each class, we limited our assessment to feature-threshold 

combinations to which at least 3 markers mapped.

Results

Descriptive statistics

Individuals who did not endorse alcohol use initiation are coded as missing as they did not 

satisfy the screening condition for administration of the AUDIT items. A total of 1332 

individuals participated in all 4 waves; N=1681 participated in 3 waves; N=1532 participated 

in 2 waves; and N=2026 participated in only 1 wave. AUDIT scores at each wave of data 

collection are provided in Table 1; scores increased gradually across time.

Growth model fitting

We fit a model based on the AUDIT scores across 4 waves, specifying within Mplus the 

average temporal lag between waves of data collection. We began with a multi-group model 

where males were group 1 and females were group 2; we estimated an intercept (I), slope 

(S), quadratic (Q), and cubic (C) term. The variance of C was constrained to 0 to facilitate 

model convergence; in addition, within sex, the residual variances of the AUDIT scores were 

constrained to be equal across waves (Grimm and Widaman, 2010). The model provided an 

excellent fit to the data (CFI=1.000, TLI=0.999, RMSEA=0.012). We next assessed sex 

differences by testing whether the means of I, S, Q, and C differed across sexes, and found 

that they did not (p>0.1); this model also provided an excellent fit (CFI=0.998, TLI=0.998, 
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RMSEA=0.017). Therefore, subsequent models combined the sexes. We next restricted the 

model to individuals for whom at least 2 AUDIT scores were available (N=4545) 

(CFI=0.995, TFI=0.991, RMSEA=0.029). Within this sample, we tested models that 

dropped the C and/or Q growth parameters or restricted Q variance to 0, all of which 

resulted in a decrement in fit (e.g., RMSEA>0.05, CFI/TLI<0.99). Therefore, we selected 

the model with all four growth parameters, with C variance constrained to 0, as our final 

model. Individual scores on each parameter were exported for use in the subsequent GWAS.

Genomewide association analysis

We used the slope term (Grimm et al., 2013) from the growth model as the focal phenotype 

in a GWAS. Of the 4545 individuals with phenotypic data, genotypic data were available for 

N=3380 individuals. After restricting to markers with INFO≥0.50 and minor allele 

frequency (MAF) ≥0.01, results were available for 8,972,921 markers. There was no 

evidence of inflation (λ=1.01, SE=1.11e-6). No marker met genome-wide significance 

criteria (p<5e-8). The top marker, rs143795029, is located on chromosome 2p12 in an 

intronic region of LRRTM4 (leucine rich repeat transmembrane neuronal 4). However, low 

MAF (0.01) and local linkage disequilibrium suggest that this association is potentially 

artifactual. The next marker, rs6506977 (p=7.88e-7), along with 9 neighboring markers with 

p<1e-7, maps to the region 45kb 3′ of KLHL14 (kelch-like family member 14) on 

chromosome 18q12.1 (Figure 1). The next most strongly implicated region, with top marker 

rs17397108, maps to 66kb 3′ of LMX1A (LIM homeobox transcription factor 1, alpha) on 

chromosome 1q24.1.

Gene-based analysis

Markers with MAF≥0.01 and INFO≥0.50 were submitted to VEGAS2 for gene-based 

analysis. These markers mapped to 24,233 defined genes. No gene survived corrected 

significance criteria (q<0.05). The top gene was NSMCE3 (NSE3 homolog, SMC5-SMC6 
complex component; alias NDNL2; p=0.000037; q=0.51), on chromosome 15, which plays a 

role in chromatin remodeling. The 2nd ranking gene, DHX34 (DEAH box polypeptide 34; 
p=0.000105; q=0.51), maps to chromosome 19 and is involved in RNA regulation (Longman 

et al., 2013).

Genomewide Complex Trait Analysis

We used GCTA to investigate whether, in aggregate, common genetic variants account for a 

significant proportion of the phenotypic variance of the slope term. The h2
SNP estimate was 

0.26 (SE=0.11, p=0.009), indicating moderate heritability that differed significantly from 0. 

Although slope was the primary phenotype of interest, we also computed the heritability of 

the intercept and quadratic terms, which were h2
SNP=0.11 (SE=0.11, p=0.1) and h2

SNP=0 

(SE=0.11, p=0.5), respectively. We further tested the genetic correlation between I and S (Q 

was excluded due to its 0 estimate), and obtained an estimate of 0.05 (SE=0.60, ns).

Replication

We selected markers with p<0.0001 (a threshold chosen to balance statistical support and 

sample size) for comparison to results reported by Adkins and colleagues (Adkins et al., 
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2015). Of 9397 markers selected, target sample results were available for 1141 due to the 

use of different imputation reference panels across studies. The Fisher’s combined p-values 

were <0.05 for 1115 of these markers; however, we observed little support for specific 

variants across the current study and the 3 component studies of the Adkins et al. meta-

analysis (Supplementary Table 1).

We conducted sign tests using independent markers selected for their availability in both the 

current study and the replication study (N=465,265). We then binned according to discovery 

sample p-value and determined the number of markers within each bin with the same 

direction of effect across studies. Results are provided in Table 2. At stringent significance 

thresholds (p≤0.0001) we observed modest evidence of agreement across studies, though 

these results are based on small numbers of markers. At more inclusive thresholds (p≤0.10 

to p≤0.50), results indicated more consistently significant overlap.

Localization of implicated markers to putative functional regions

Enrichment analyses were conducted for three classes of epigenetic features: i) chromatin 

marks, which are subdivided into 15 classes; ii) DNase Hypersensitivity Sites (DHS); and 

iii) histone mark peaks. Table 3 provides the 5 highest enrichment scores for each class; 

Supplementary Table 2 provides complete results. For DHS, the top categories included 

markers with p<0.00001; the two top categories correspond to putatively active genomic 

regions in fetal brain tissue. Top active chromatin mark categories, all of which included 

markers with p<0.0001, correspond to transcription start sites or enhancers across a variety 

of tissues, including hippocampal cells, ovary, and hematopoietic stem cells. Finally, top 

enrichment scores for histone marks correspond to markers with p<0.00001, and map to 

brain, lung, spleen, blood, and embryonic stem cells.

Discussion

Genetic factors are known to influence alcohol use phenotypes including initiation, 

frequency of use, and alcohol use disorder. Prior studies have illustrated that there is 

variation in the development of alcohol use over time, with adolescence into young 

adulthood comprising a critical period for the establishment of alcohol use patterns that can 

be predictive of later problems. We demonstrate that growth in alcohol misuse is moderately 

heritable (h2
SNP=0.26), and that genes contributing to growth represent biologically 

plausible candidate genes. Furthermore, the low co-heritability between initial (age 16.5) 

alcohol misuse and slope indicates that genetic factors influencing distinct aspects of the 

development of alcohol misuse are largely, though not entirely, independent. Indeed, risk 

factors, genetic or otherwise, impacting alcohol misuse may only partially overlap with risk 

factors for alcohol consumption, initiation, etc. We observed support for implicated variants, 

in aggregate, in a US replication sample, suggesting that genetic factors influencing changes 

in alcohol misuse in the UK are generalizable to an ethnically similar population. 

Exploratory in silico molecular analyses indicate that implicated variants map to genomic 

locations transcriptionally active during brain development.

The growth model demonstrates that AUDIT scores increase from age 16.5 through 20.75 in 

a non-linear fashion, with the inclusion of both quadratic and cubic terms contributing to 
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model fit. Previous studies of samples in a similar age range have also shown that alcohol 

use/misuse increases during this period (Casswell et al., 2002; Jackson et al., 2008; Tucker 

et al., 2003). Though not all prior studies have included a non-linear growth term in their 

longitudinal models, Marmorstein (2009) reported that a quadratic term improved model fit 

when examining alcohol use-related problems in a large sample of individuals in their 

adolescence into early adulthood. In that sample, alcohol problems peaked at 22, followed 

by a gradual decline. Similarly, Walden et al. (2007) reported nonlinear growth in alcohol 

consumption and alcohol dependence symptom counts. We included the quadratic term as a 

covariate in our analyses (the cubic term was excluded as its variance was fixed to 0), but 

focused on the slope term as the outcome of interest given its interpretable nature. Future 

studies may benefit from analysis of genetic influences on the non-linear components of 

growth in alcohol misuse, and we note that the current study’s focus on the slope represents 

a limited perspective on genetic influences on change in alcohol misuse. Joint consideration 

of the growth factors (e.g., a multivariate GWAS) may have had an impact on our results and 

their interpretation.

Walden et al. (2007), using a sample of adolescent twins, found that a parental history of 

alcohol problems and/or higher parental alcohol consumption predicted greater rates of 

change in offspring alcohol outcomes. Given that a proportion of the risk conferred by 

parental problems is genetic, those results are conceptually consistent with the current 

findings, in that genetic liability contributes to the course of alcohol misuse during this 

critical developmental period.

The heritability estimate of the slope obtained from observed variants is consistent with, 

though modestly lower than, estimates for other alcohol-related phenotypes. Evidently, and 

unsurprisingly, environmental factors account for a substantial proportion of risk in course of 

alcohol problems during this time frame. Such factors might include peer behavior (Barnett 

et al., 2014; Bertholet et al., 2013) or college attendance (Carter et al., 2010; Slutske, 2005). 

Though outside the scope of the current analyses, future studies might assess whether 

genetic liability for increasing alcohol problems over time is moderated by specific 

environmental protective or risk factors.

Our findings suggest two genes, KLHL14 and LMX1A, warrant further investigation based 

on SNP-level findings. KLHL14 is expressed in neuronal cell bodies, and the protein 

interacts with the TOR1A protein (encoded by torsin family 1, member A), which is 

expressed in the substantia nigra pars compacta, a region that is responsive to ethanol 

infusion (Asyyed et al., 2006) and ethanol withdrawal (Kozell et al., 2005) in mice. 

LMX1A, proximal to the set of SNPs nominally implicated (p≤1.19e-6) on chromosome 1, 

is of potential interest based on its known function: in addition to its role in insulin gene 

transcription, it is involved in the embryonic development of dopaminergic neurons (Doucet-

Beaupre et al., 2015), which are central to the neurobiology of drugs of abuse (Korpi et al., 

2015). In addition, preliminary evidence suggests an association between variation in 

LMX1A and cognitive functioning and psychiatric disorders (Bergman et al., 2010; Rolstad 

et al., 2015). Thus, although these genes have not been directly associated with alcohol-

related outcomes in prior studies, they represent biologically plausible candidates for follow-
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up. Molecular follow-up of implicated genes and putatively functional polymorphisms is 

ongoing.

Our attempts at replication using meta-analytic results, which were derived from three 

longitudinally assessed samples of comparable ages (Adkins et al., 2015), provide additional 

support for our results, and suggest that the current findings are generalizable. Although 

comparisons of significance of individual markers did not strongly implicate specific loci, 

sign tests indicate that the direction of effect is consistent across studies more frequently 

than expected by chance. This was true for markers meeting relatively stringent significance 

thresholds as well as for markers meeting higher p-value thresholds. This is consistent with 

the polygenic nature of alcohol use phenotypes: we expect many genetic variants to 

incrementally impact the trajectory of alcohol use from adolescence into emerging 

adulthood. We note that the strength of the replication using this method is modest: only a 

small number of markers meet the more stringent thresholds, thereby reducing statistical 

power, and while the large number of markers meeting less stringent thresholds conveys 

higher power, the proportion of markers with the same direction of effect at those thresholds 

only slightly exceeds 50%. We therefore caution against over-interpretation of the sign test 

results.

Our exploratory enrichment analysis provides insight as to the potential functional role of 

markers implicated at various p-value thresholds. Results suggest that markers with 

p<0.00001 disproportionately map to open chromatin (indicated by DHS or H3K4me1 

marks) in brain tissue. Fetal brain tissue is of particular relevance, implying that these 

markers play a role in CNS development. Further analyses are planned to investigate 

whether genotypes at the implicated loci have potential functional consequences, such as 

differential expression of proximal genes, in the interim the current findings should be 

considered preliminary.

Limitations

The refined phenotype limited our ability to attempt replication in other datasets. While the 

AUDIT does include items related to alcohol consumption, the total score used in the current 

analyses is designed to capture problems/misuse, and in particular our analysis of growth in 

this construct was relatively novel. Though comparable phenotypic analyses (i.e., growth 

models of alcohol misuse) exist, there is, to our knowledge, only one published report of a 

genetic analysis of the slope of a longitudinally assessed alcohol outcome (Adkins et al., 

2015). We observed inconsistent evidence of replication, with top markers failing to 

replicate across studies. However, sign tests, which investigate replication at the aggregate 

level, did provide modest support for common SNP effects across samples. These findings 

warrant confirmation in additional studies. However, we note that phenotype definition is 

critical for valid replication attempts: the low (and non-significant) coheritability between 

the intercept and slope terms within the current sample suggests that replication using a 

more standard phenotype (e.g., a cross-sectional measure of alcohol misuse) would not be 

informative, as variants would not be expected to impact both measures. Furthermore, this 

may have impacted the somewhat modest level of replication we observed, as Adkins and 

colleagues employed a measure of alcohol consumption rather than problems: there is likely 
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incomplete overlap among the factors – genetic or otherwise – that impact various alcohol-

related outcomes such as problems vs. consumption.

The ALSPAC sample is homogenous with respect to ethnicity. While this makes the sample 

ideal for genetic analysis, it does present limitations with respect to generalizability to other 

samples. Environmental factors that impact alcohol outcomes differ across cultures; for 

example, the legal drinking age in the UK is younger than in the US, and light alcohol 

consumption among early adolescents is sanctioned within some cultures but not others. One 

straightforward consequence of cross-sample comparability is that such environmental 

influences affect heritability estimates. However, the genetic etiology of alcohol problems is 

not known to differ substantially across populations, with the important exception of 

variation within alcohol metabolizing genes being far more common within East Asian 

populations (Edenberg, 2007).

Despite these concerns, the results presented herein represent a contribution to emergent 

evidence that the course of alcohol use phenotypes has a substantial genetic component. 

While phenotypic studies have long acknowledged the essential developmental aspect of 

alcohol problems, the application of genetic approaches to this aspect of etiology is 

relatively nascent. Further clarification of these genetic factors is critical to improving our 

understanding of how alcohol misuse unfolds during development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Regional association plot of the top marker (rs6506977, in purple) mapping to the region 3′ 
of KLHL14, created by LocusZoom (Pruim et al., 2010).

Edwards et al. Page 14

Alcohol Clin Exp Res. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Edwards et al. Page 15

Ta
b

le
 1

M
ea

n 
(S

D
) 

A
U

D
IT

 s
co

re
s 

an
d 

nu
m

be
r 

of
 p

ar
tic

ip
an

ts
 w

ith
 v

al
id

 d
at

a 
at

 e
ac

h 
ag

e.

A
ge

N
%

 M
al

e
M

ea
n 

(S
D

)
Sk

ew
ne

ss
C

ro
nb

ac
h’

s 
α

16
.5

0
46

60
41

.2
6.

29
 (

5.
29

)
1.

09
0.

78

17
.5

0
39

29
43

.9
6.

94
 (

4.
89

)
1.

10
0.

76

18
.7

5
31

00
36

.2
7.

80
 (

5.
06

)
0.

78
0.

78

20
.7

5
37

72
39

.4
8.

88
 (

5.
45

)
0.

81
0.

77

Alcohol Clin Exp Res. Author manuscript; available in PMC 2018 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Edwards et al. Page 16

Table 2

Sign test results.

P-value Bin # with Consistent Sign Total # in Bin P-value

p≤0.00001 9 13 0.1334

p≤0.0001 69 114 0.01539

p≤0.001 411 821 0.5

p≤0.01 4105 8240 0.6336

p≤0.10 36312 71856 0.002109

p≤0.25 81360 161723 0.00663

p≤0.50 144472 286659 9.95E-06
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