
Cellular and Molecular Mechanism Underlying Alcohol-induced 
Aggressiveness of Breast Cancer

Yongchao Wang1, Mei Xu1, Zun-ji Ke2, and Jia Luo1,2,#

1Department of Pharmacology and Nutritional Sciences, University of Kentucky College of 
Medicine, Lexington, KY 40536

2Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, 
China 201203

Abstract

Breast cancer is a leading cause of morbidity and mortality in women. Both Epidemiological and 

experimental studies indicate a positive correlation between alcohol consumption and the risk of 

breast cancer. While alcohol exposure may promote the carcinogenesis or onset of breast cancer, it 

may as well enhance the progression and aggressiveness of existing mammary tumors. Recent 

progress in this line of research suggests that alcohol exposure is associated with invasive breast 

cancer and promotes the growth and metastasis of mammary tumors. There are multiple potential 

mechanisms involved in alcohol-stimulated progression and aggressiveness of breast cancer. 

Alcohol may increase the mobility of cancer cells by inducing cytoskeleton reorganization and 

enhancing the cancer cell invasion by causing degradation and reconstruction of the extracellular 

matrix (ECM). Moreover, alcohol may promote the epithelial-mesenchymal transition (EMT), a 

hallmark of malignancy, and impair endothelial integrity, thereby increasing the dissemination of 

breast cancer cells and facilitating metastasis. Furthermore, alcohol may stimulate tumor 

angiogenesis through the activation of cytokines and chemokines which promotes tumor growth. 

Additionally, alcohol may increase the cancer stem cell population which affects neoplastic cell 

behavior, aggressiveness, and the therapeutic response. Alcohol can be metabolized in the 

mammary tissues and breast cancer cells which produces reactive oxygen species (ROS), causing 

oxidative stress. Recent studies suggest that the epidermal growth factor receptor (EGFR) family, 

particularly ErbB2 (a member of this family), is involved in alcohol-mediated tumor promotion. 

Breast cancer cells or mammary epithelial cells over-expressing ErbB2 are more sensitive to 

alcohol’s tumor promoting effects. There is considerable cross-talk between oxidative stress and 

EGFR/ErbB2 signaling. This review further discusses how the interaction between oxidative stress 

and EGFR/ErbB2 signaling contributes to the cellular and molecular events associated with breast 
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cancer aggressiveness. We also discuss the potential therapeutic approaches for cancer patients 

who drink alcoholic beverages.
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1. Introduction

Breast cancer is a leading cause of morbidity and mortality in women [1, 2]. Although the 

exact etiology of breast cancer is unclear, nutrition and life style have been considered 

important contributing factors [3, 4]. Heavy alcohol consumption has devastating health 

effects and is associated with many maladies such as infectious diseases, cancer, digestive 

diseases, diabetes, neuropsychiatric diseases, cardiovascular disease, liver and pancreatic 

disease [5]. It is now well-established that alcohol consumption is a risk factor for breast 

cancer [6–13]. Upon careful evaluation, it appears that alcohol may not only increase the 

risk, but also promote the malignancy of existing mammary tumors; that is, alcohol may 

promote both onset/carcinogenesis and progression/prognosis.

For the onset/carcinogenesis of mammary tumors, there are several potential contributing 

mechanisms. First, alcohol exposure may cause DNA damage and gene mutation. Although 

alcohol per se is not a direct carcinogen, acetaldehyde, a product of alcohol metabolism, is a 

mutagen which can form adducts with protein and DNA, inducing gene mutation, DNA 

crosslinks and chromosomal aberrations [9, 14–18]. Alcohol dehydrogenase (ADH), a key 

enzyme of alcohol metabolism, is expressed in the human breast epithelial cells; therefore 

the human mammary tissue has the capacity to metabolize alcohol [9]. Due to limited ability 

to detoxify acetaldehyde in the mammary tissue, acetaldehyde accumulates for prolonged 

periods, which enhances its toxicity [9]. It is proposed that alcohol exposure induces 

mammary carcinogenesis through the production of acetaldehyde [19]. Second, alcohol may 

promote mammary carcinogenesis by altering circulating sex hormone levels. Sex 

hormones, such as estrogen, play an important role in the etiology of breast cancer. 

Perturbed estrogen levels and increased expression and activity of estrogen receptor α (ER-

α) are identified upon chronic alcohol consumption [9, 17, 20–23]. Third, alcohol-induced 
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dysregulation of epigenetic regulation of gene expression, particularly abnormal DNA 

methylation may also contribute to mammary carcinogenesis, because epigenetic 

dysregulation is a key mechanism for tumor initiation and progression [9, 24]. Forth, alcohol 

may promote the carcinogenesis by disrupting the homeostasis of growth factors and 

nutrient status, such as IGF1 and vitamins [19, 25–27]. In addition to its carcinogenic effect, 

alcohol abuse is associated with advanced and invasive breast cancer [28–31], suggesting 

that alcohol may promote the progression of existing tumors and induce more aggressive 

phenotypes. Indeed, a number of recent experimental studies support this hypothesis and 

show that alcohol enhances the aggressiveness and malignancy of breast cancer [32–34]. 

Although alcohol-mediated carcinogenesis and progression/aggressiveness could share some 

common causes, distinct mechanisms may operate. A better understanding of these 

mechanisms is critical in developing effective therapeutic strategies for breast cancer 

patients who drink alcoholic beverages. This review will discuss the recent progress in this 

line of research.

Experimental studies clearly demonstrate that alcohol alters the behavior of breast cancer 

cells and changes them to more aggressive phenotypes. We will first review the effect of 

alcohol on cellular events and processes associated with cancer aggressiveness and 

malignancy, and then discuss the potential underlying cellular/molecular mechanisms.

2. Alcohol-induced aggressiveness of breast cancer

2.1. Alcohol promotes migration/invasion, growth and metastasis of breast cancer cells

Cancer metastasis is the spread of cancer cells to tissues and organs beyond where the tumor 

originated and the formation of new tumors. The metastatic cascade can be separated into 

three main processes: invasion, intravasation, and extravasation. The process of invasion 

involves the loss of cell-cell adhesion capacity which allows malignant tumor cells to 

dissociate from the primary tumor mass and invade the surrounding stroma. Intravasation is 

the invasion of cancer cells through the basal membrane into a blood or lymphatic vessel. 

This process enables cells to enter the circulatory system and metastasize to distant sites. 

The process of extravasation occurs when the tumor cells have arrived at the destination, 

they penetrate the endothelium and the basement membrane, forming new tumors.

Using Boyden chamber and wound healing assays, the data from our laboratory and others 

consistently show that alcohol enhances the migration of breast cancer cells [32, 33, 35–38]. 

Alcohol-induced mobility may result from the interaction with the extracellular matrix 

(EMC) and reorganization of the cytoskeleton system [38, 39]. Alcohol also increases the 

invasive potential of breast cancer cells [37, 40–42]. The increased invasion is likely 

mediated by the enhanced ability of breast cancer cells to degrade the EMC, in which matrix 

metalloproteinases (MMPs) play an important role [40, 41]. Alcohol-stimulated migration/

invasion is further demonstrated in a 3-dimension (3-D) Matrigel system [32, 33]. The 

aggressive breast cancer cells have a property to grow to scattering spheroids in the 3-D 

culture system. We show that alcohol exposure significantly increases the spreading of 

breast cancer cells in this 3-D system. More importantly, after chronic exposure to alcohol, 

less aggressive breast cancer cells are transformed into a more aggressive phenotype which 

is demonstrated by the scattering spheroids in the 3-D culture system [32, 33]. In some 
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studies, alcohol is shown to promote the growth of breast cancer cells both in vitro and in 
vivo [21–23, 43–45]. Alcohol-induced increase in the growth of breast cancer cells may 

result from either enhanced cell proliferation or promotion of survival. Animal studies 

confirm that alcohol consumption not only promotes the growth but also the metastasis of 

breast cancer cells to the lung and colon in mice [32, 33, 43, 44]. MMTV-neu transgenic 

mice are extensively used for the study of the tumorigenesis and progression of breast 

cancer. These mice express neu oncogene (homology to human ERBB2) under the 

transcriptional control of the mouse mammary tumor virus promoter/enhancer and develop 

spontaneous mammary tumors. Chronic alcohol consumption significantly promotes the 

metastasis of breast cancer cells to the lung and colon (Fig. 1) [33].

2.2. Alcohol disrupts extracellular matrix (ECM), endothelial integrity, and promotes 
epithelial- mesenchymal transition (EMT)

One of the key functions of MMPs is to degrade the ECM, a critical step for the 

intravasation and extravasation. MMPs play an important role in the malignancy of 

mammary tumors [46]. MMP2 and MMP9 are two typical collagenases secreted by tumor 

cells or stromal cells that catalyze the destruction of the surrounding ECM. It has been 

demonstrated that alcohol can promote the degradation of the ECM by activating MMPs. 

Etique et. al. [47] show that alcohol stimulates the secretion of MMP2 and MMP9 from 

breast cancer cells. In our studies, alcohol activates MMP2 in breast cancer cells by 

promoting the cleavage of the pro-enzyme and transferring to an active enzyme. Knocking 

down of MMP2 with small interference RNA or selective inhibitors partially blocks alcohol-

stimulated cell invasion [41]. Interestingly, alcohol can also stimulate the secretion and 

activation of MMP2 from stromal fibroblast cells which are a major cell type expressing 

MMP2 [40]. Moreover, the activation of fibroblast-derived MMP2 significantly contributes 

to the invasive phenotype of breast cancer induced by alcohol exposure [40]. Different from 

the report by Etique et al. [47], our studies show that alcohol selectively activates MMP2 but 

not MMP9 in mammary epithelial cells or fibroblasts [40, 41].

Another potential mechanism for alcohol promotion of cancer metastasis is to disrupt the 

endothelial integrity which facilitates the intravasation and extravasation. Alcohol-induced 

disruption of endothelial integrity is evident by the decrease of electric resistance across the 

endothelial monolayer and the appearance of an intercellular gap among endothelial cells 

[48]. The effect of alcohol is reversible once alcohol is removed. The disruption of the 

endothelial monolayer integrity was associated with an increased invasion of cancer cells 

through the endothelial monolayer. It appears the alcohol-induced disruption of endothelial 

integrity is caused by damaged adherens junctions resulting from the endocytosis of VE-

cadherin [48]. The epithelial–mesenchymal transition (EMT) is a developmental program 

but also plays an important role in cancer progression and metastasis. Studies suggest that 

alcohol can promote EMT phenotypic change and enhance aggressiveness of breast cancer. 

For example, vimentin, as a marker of mesenchymal cells or cells undergoing EMT, is 

upregulated by alcohol in breast cancer cells; conversely, E-cadherin, a hallmark for 

epithelial cells, is downregulated in breast cancer cells [49]. Other characteristics of EMT, 

such as increased expression of MMPs (MMP2, MMP7 and MMP9) and decreased 

expression of α-, β-, and γ-catenin are observed in breast cancer cells following alcohol 
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exposure [36, 41, 49]. Snail is a key regulator of EMT and alcohol increases the expression 

and phosphorylation of Snail through stimulating EGFR signaling [49]. Together, these 

results suggest that alcohol may induce the EMT in breast cancer cells.

2.3. Alcohol enhances tumor angiogenesis

Angiogenesis in tumor tissues is an essential process for cancer growth and metastasis. 

Several studies consistently show that alcohol promotes tumor angiogenesis [39, 43, 44, 50, 

51]. A number of mechanisms have been proposed for alcohol-induced angiogenesis; these 

include enhanced endothelial cell proliferation and migration, promotion of cancer/

endothelial cell interaction and alterations of tumor microenvironment. An in vitro study 

shows that alcohol can directly target endothelial cells and cause actin filament 

reorganization, resulting in enhanced migration and tube formation of endothelial cells [39]. 

Using a 3-D endothelial cell/breast cancer cell co-culture system, we show that alcohol 

significantly increases the angiogenesis in the presence of cancer cells [43, 44]. The effect of 

alcohol is likely mediated by the stimulation of vascular endothelial growth factor (VEGF) 

and monocyte chemoattractant protein-1 (MCP-1) signaling. VEGF is a key regulator of 

angiogenesis. Alcohol upregulates the expression of VEGF and its receptor Flt-1 in mice; 

inhibiting VEGF-mediated signaling partially blocks alcohol-stimulated angiogenesis and 

tumor growth [44, 51]. MCP-1, also called chemokine (CC motif) ligand 2 (CCL2), is a pro-

inflammatory chemokine, acting as a potent chemoattractant for monocytes and 

macrophages. Alcohol increases expression of MCP-1 and its receptor CCR2 in both 

mammary tumor tissues and breast cancer cells in vitro and in vivo [43]. CCR2 antagonist 

significantly inhibits alcohol-induced tumor angiogenesis and mammary tumor growth in 

mice [43].

2.4. Alcohol increases the cancer stem-like cells (CSCs) population in breast cancer cells

Breast cancers display considerable phenotypic and genetic heterogeneity. Cancer stem cells 

(CSCs), a subpopulation of cancer cells with self-renewal and differentiation capacity, play 

an important role in tumor initiation, progression, metastasis, recurrence, and therapy 

resistance [52, 53]. The recent evidence from both in vitro and in vivo studies suggests that 

alcohol may increase the CSC population in breast cancer. We show that alcohol exposure 

causes a drastic increase in the CSC population and mammosphere formation in breast 

cancer cells overexpressing ErbB2 and in MMTV-neu mice (Fig. 2) [33]. In breast cancer 

cells with low levels of ErbB2, the CSC population is relatively small. These cells are 

relatively insensitive to acute alcohol exposure. However, long term treatment of alcohol 

also significantly increases the CSC population in these cells, which is accompanied by an 

increase in cell migration/invasion, anchorage-independent colony formation and scattering 

spheroids in a 3-D Matrigel system [32]. The findings are confirmed by the animal studies 

which show that chronic alcohol exposure increases CSCs in the mammary tumors of 

MMTV-neu transgenic mice [33].
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3. Cellular and molecular mechanisms underlying alcohol-induced cancer 

aggressiveness

3.1. Role of oxidative stress in alcohol-promoted breast cancer aggressiveness

3.1.1. Alcohol-induced reactive oxygen species (ROS) and oxidative stress in 
mammary tissues and breast cancer cells—Excessive ROS accumulation and 

oxidative stress have been proposed as important mechanisms for mammary carcinogenesis 

and aggressiveness [54]. Alcohol-induced ROS and oxidative stress may be mediated by 

alcohol metabolism, damaged mitochondria, and an antioxidant response [55]. Alcohol is 

first oxidized to acetaldehyde in cytosol by alcohol dehydrogenase (ADH). Acetaldehyde is 

transported into the mitochondria and rapidly metabolized to acetate by aldehyde 

dehydrogenase 2 (ALDH2). In the mitochondria, acetate is converted to acetyl-CoA, which 

enters the citric acid cycle for ultimate oxidization. In both ADH and ALDH2 catalyzed 

reactions, NAD+, is used as an electron carrier to form NADH, which is eventually 

transported into the mitochondria for ATP production. Depending on oxygen supply and the 

demand of ATP, NADH may not be efficiently oxidized, which causes electrons to be 

diverted to form ROS, causing oxidative stress [55]. During chronic alcohol consumption or 

in tissues that lack ADH, cytochrome P450 2E1 (CYP2E1) is induced to engage in alcohol 

metabolism, which concomitantly oxidizes NADPH to generate ROS. Alternatively, alcohol 

can activate NADPH oxidase (NOX) which produces ROS [56]. Alcohol-metabolizing 

enzymes such as cytochrome CYP2E1, ADH and xanthine oxidoreductase (XOR), and NOX 

are expressed in mammary tissues and breast cancer cells, indicating alcohol can be 

metabolized in mammary tissues [57–63].

ROS mainly comprises four species including superoxide anion, hypochlorite ion, hydroxyl 

radicals, and hydrogen peroxide. They are highly active and interact with lipid, protein, and 

DNA. Using electron spin resonance (ESR), we demonstrate that alcohol is able to generate 

a whole spectrum of ROS in mammary epithelial cells and breast cancer cells [38, 64]. 

Alcohol also promotes ROS production and oxidative stress in breast cancer-associated 

stromal fibroblasts [65]. It appears that CYP2E1 is involved in alcohol-induced ROS 

production in mammary epithelial cells; the alcohol-induced ROS in turn activates the 

epidermal growth factor receptor (EGFR) [66]. Other evidence shows that alcohol exposure 

may cause oxidative stress by down-regulation of detoxification enzymes in mammary 

epithelial cells, which results in decreased clearance of ROS [67].

3.1.2.The role of ROS in alcohol-induced aggressiveness of breast cancer 
cells—ROS is involved in alcohol-stimulated migration/invasion of breast cancer cells, 

because scavenging alcohol-induced ROS production by antioxidants significantly inhibits 

alcohol-induced migration and invasion [38, 41, 64]. ROS also plays a role in alcohol-

induced MMP2 activation; antioxidants abrogate alcohol-induced MMP2 activation and 

inhibit the alcohol-stimulated invasion in mammary epithelial cells overexpressing ErbB2 

[41, 68]. It appears that ROS mediates alcohol-induced breast cancer cells/ECM interaction 

and cell mobility. Cyanidin-3-glucoside (C3G), an anthocyanin present in many vegetables 

and fruits, is a potent natural antioxidant. We show that C3G decreases alcohol-mediated cell 
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adhesion to the ECM as well as the amount of focal adhesions and the formation of 

lamellipodial protrusion [38].

It is well established that ROS promotes EMT in mammary epithelial or breast cancer cells 

through diverse mechanisms [69, 70]. It is suggested that the activation of EGFR is involved 

in alcohol-promoted EMT [49] and alcohol may activate EGFR through intracellular ROS 

accumulation [66]. However, more direct evidece is required to draw a conclusion regrading 

the role of ROS in alcohol-promoted EMT.

ROS is long known for being involved in tumor angiogenesis [54, 71–74]. It is generally 

accepted that low levels of ROS promote angiogenesis whereas high levels of ROS may have 

the opposite effect. ROS regulation of angiogenesis is mainly mediated by VEGF signaling 

[75, 76]. But ROS can also promote angiogenesis in a VEGF independent manner [77, 78]. 

We have previously shown that alcohol-induced ROS can directly promote the tube 

formation of endothelial cells [39]. We have also demonstrated that alcohol promotes 

angiogenesis in mammary tumors by stimulating MCP-1 signaling [43] and it is likely that 

alcohol-induced activation of MCP-1 is mediated by ROS [79].

In addition to promoting angiogenesis, alcohol-induced ROS may disrupt endothelial 

integrity, consequently increasing the permeability of blood vessels. We demonstrate that 

alcohol causes a reversible disruption of the endothelial barrier and an enhanced invasion of 

cancer cells through the endothelial monolayer [48]. Vascular endothelial cadherin (VE-

cadherin), a major component of endothelial adherens junctions, plays many functional roles 

in regulating endothelial barrier integrity. VE-cadherin is linked to the actin cytoskeleton 

through β- and α-catenin. The stabilization of the cadherin/catenin complex maintains 

endothelial integrity and inhibits tumor cell intravasation and extravasation. We show that 

alcohol inhibits VE-cadherin/β-catenin association and disrupts the endothelial barrier [48]. 

Since ROS can cause phosphorylation of the VE-cadherin and thereby result in disassembly 

of VE-cadherin/catenin complex and the breakdown of intercellular connections [80–82], 

the effect of alcohol on endothelial integrity may be mediated by ROS production.

3.2. Role of epidermal growth factor receptor (EGFR) family in alcohol-promoted breast 
cancer aggressiveness

3.2.1. The EGFR and ErbB2 signaling pathways in breast cancer—The EGFR 

family is comprised of four structurally similar receptors including EGFR (ErbB1 or HER1), 

ErbB2 (HER2), ErbB3 (HER3) and ErbB4 (HER4) [83, 84]. They are type I trans-

membrane kinase receptors, which upon ligand binding in the extracellular domain, undergo 

dimerization and subsequent trans-phosphorylation in the intracellular domain. EGFR and 

ErbB2 receive particular attention in the context of breast cancer etiology and therapy 

because of their frequent overexpression and hyperactivation in breast carcinomas [83]. 

Overexpression of EGFR and ErbB2 is associated with malignant breast cancers, increased 

metastasis, and poor prognosis [84–88].

EGFR is activated by a number of ligands including EGF, amphiregulin, transforming 

growth factor alpha (TGFα), neuregulin 2β, betacellulin, heparin-binding EGF-like growth 

factor, and epiregulin [84, 89]. So far there is no identified ligand for ErbB2; the activation 
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of ErbB2 is mediated through heterodimeric partners, e.g., EGFR, ErbB3 ErbB4 [85]. Upon 

activation, EGFR and ErbB2 trigger several important signaling cascades that play a key role 

in the carcinogenesis and aggressiveness of breast cancer, such as MAPK, PI3K/AKT/

mTOR, Src, JAK/STAT3, PLC-γ/PKC and GSK3β/β-catenin [84, 88, 90–93]. The activation 

of these signaling cascades frequently promotes the proliferation, migration/invasion, 

growth, and metastasis of breast cancer [84].

3.2.2. EGFR and ErbB2 signaling in alcohol-promoted aggressiveness of 
breast cancer—It has been proposed that EGFR may mediate some of alcohol’s tumor 

promoting effects [94]. Alcohol stimulates the phosphorylation of EGFR in mammary 

epithelial cells [66]. Snail, a transcriptional activator of EMT markers, is upregulated by 

alcohol in an EGFR-dependent manner [49]. Alcohol-induced migration of breast cancer 

cells is blocked by AG1478, an EGFR inhibitor [49]. Together, the evidence indicates that 

the activation of EGFR is involved in alcohol-promoted aggressiveness of breast cancer. 

There are several potential mechanisms underlying alcohol activation of EGFR; these 

include stimulation of EGFR phosphorylation by ROS, an increase in the expression of 

ligands for EGFR, and inhibition of phosphatases that regulate the dephosphorylation of 

EGFR [94].

More studies indicate the interaction between alcohol and ErbB2. Generally, there is a 

positive correlation between the expression level of ErbB2 and the sensitivity of breast 

cancer cells to alcohol-elicited migration/invasiveness. In a study we investigated the effect 

of alcohol on various breast cancer cell lines [35, 64]. For all human breast cancer cells and 

mammary epithelial cells examined, alcohol drastically increased the migration/invasion of 

cells overexpressing ErbB2, but only had a modest or little effect on cells with low ErbB2 

expression. For breast cancer and mammary epithelial cells that are less responsive to 

alcohol, artificial overexpression of ErbB2 enhances their sensitivity to alcohol and 

potentiates alcohol-stimulated cell migration/invasion [64]. Alcohol up-regulates the 

expression of ErbB2, ErbB3 and ErbB4, but not ErbB1 in human breast cancer cells (T47D) 

[35]. Heregulin β1 (ligand for ErbB3 and ErbB4) synergizes the alcohol-stimulated invasion 

of T47D [35]. Knocking down ErbB2 with an anti-sense oligonucleotide eliminates 

heregulin β1- and alcohol-promoted cell migration/invasion [35], supporting the conclusion 

that ErbB2 is involved in alcohol-stimulated migration/invasion of breast cancer cells. The 

enhanced sensitivity of breast cancer cells overexpressing ErbB2 may be mediated by 

alcohol-induced activation of ErbB2. We show that alcohol stimulates the phosphorylation 

of ErbB2 and its interaction with downstream effectors, such as cSrc and FAK (Fig. 3) [37].

In addition to migration/invasion, alcohol-induced MMP2 activation is also dependent on the 

expression of ErbB2 [41]. Both clinical and experimental data suggest that ErbB2 may 

regulate MMP production in breast cancer cells [41, 95]. The activation of ErbB2 signaling 

increases MMP2 and MMP9 production through p38 MAPK and PI3K pathways [41]. 

Alcohol drastically activates MMP2 in mammary epithelial cells that over-express ErbB2, 

but has little effect on cells with low ErbB2 expression [41]. Furthermore, alcohol-induced 

interaction of breast cancer cells with the ECM, such as cell adhesion to the fibronectin, is 

also likely mediated by ErbB2 [37, 38]. The in vitro observation is supported by animal 

studies which show that chronic alcohol consumption enhances ErbB2 signaling in MMTV-
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neu mice and promotes the metastasis of breast cancer cells to the lung and colon (Fig 1) 

[33]. In addition, one study investigates the effect of prenatal alcohol exposure on the 

development of mammary glands and tumorigenesis in MMTV-neu mice. The results 

indicate that prenatal alcohol exposure alters the development of mammary glands and 

increases multiplicity of breast tumors with high expression of neu (ERBB2) [96].

ErbB2 also plays an important role in the alcohol-induced increase of CSC populations [33]. 

Alcohol exposure causes a drastic increase in the CSC population and mammosphere 

formation in breast cancer cells overexpressing ErbB2, but it has a modest effect on breast 

cancer cells expressing low levels of ErbB2 [33]. Consistently, alcohol consumption 

increases the CSC population and ErbB2 phosphorylation in the mammary tumors of 

MMTV-neu mice [33]. Both in vitro and in vivo studies indicate that alcohol significantly 

increases the phosphorylation of ErbB2 in breast cancer cells and mammary epithelial cells 

expressing high levels of ErbB2, but has little effect on cells with low levels of ErbB2 [33, 

37, 64]. Together, these studies confirm the idea that alcohol induces ErbB2 activation and 

results in more aggressive neoplastic behavior.

3.2.3. Down-stream signaling of EGFR and ErbB2 in alcohol-induced 
aggressiveness of breast cancer—As discussed above, a number of signaling 

cascades down-stream of EGFR and ErbB2 may be involved in alcohol-induced 

aggressiveness of breast cancer, such as MAPK, PI3K/AKT/mTOR, Src, JAK/STAT3, PLC-

γ/PKC and GSK3β/β-catenin. Alcohol activates three members of MAPKs, namely, 

extracellular signal regulated kinase (ERK), c-Jun NH2 terminal protein kinase (JNK1/2) 

and p38 mitogen-activated protein kinase (p38 MAPK) in an ErbB2-dependent manner [64]. 

Only the selective inhibitors for JNK1/2 and p38 MAPK but not for PI3K and ERK inhibits 

alcohol-induced migration/invasion of breast cancer cells overexpressing ErbB2, indicating 

that JNK1/2 and p38 MAPK are involved in alcohol-promoted aggressiveness [64].

To further analyze the contribution of p38 MAPK to alcohol-promoted aggressiveness of 

breast cancer, we examined the effect of alcohol on p38 MAPK isoforms. So far, there are 

four p38 MAPK isoforms, p38α, p38β, p38γ and p38δ. We show that alcohol selectively 

activates p38γ but not other isoforms in an ErbB2-dependent manner [32]. p38γ is 

particularly implicated in breast cancer progression and aggressiveness [97]. We show that 

p38γ is down-stream of ErbB2 because inhibition of ErbB2 abolishes alcohol-induced 

activation of p38γ and its interaction with the substrate, SAP97/DLG. SAP97/DLG is a 

scaffold protein and is involved in cell migration [98, 99]. Moreover, the activation of 

ErbB2/p38γ/SAP97/DLG axis appears to mediate an alcohol-induced increase in migration/

invasion as well as CSC because blocking ErbB2 or p38γ significantly inhibits alcohol-

stimulated migration/invasion and increases CSC population [32].

RhoC, a member of Rho family of GTPase, has been suggested to enhance cell mobility and 

metastasis through the degradation and reconstruction of the ECM and induction of 

angiogenic factors [100–102]. Our results show that RhoC is a downstream effector of 

ErbB2 and p38γ. The alcohol-induced activation of p38γ upregulates RhoC levels by 

promoting RhoC stability which results in enhanced migration/invasion [32].
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FAK is a component of focal adhesions and regulates the formation of the focal complex. 

ErbB2/ErbB3 signaling has been reported to activate FAK, which leads to oncogenesis and 

invasiveness of breast cancer [103]. In addition, it has been suggested that FAK may regulate 

the activity of p38 MAPK and JNKs [104, 105]. We show that alcohol-induced activation of 

ErbB2 causes the phosphorylation of FAK (Y861) and cSrc (Y216), and promotes the 

interaction among them in breast cancer cells overexpressing ErbB2 (Fig. 3) [37]. 

Functionally, active FAK promotes cell adhesion to fibronectin, an important component of 

the ECM. AG825, an inhibitor for ErbB2, inhibits ErbB2 phosphorylation and its association 

with FAK, blocking alcohol-promoted formation of focal adhesions [37].

GSK3β/β-catenin pathway plays an important role in tumorigenesis and cancer therapy 

[106]. We show that alcohol activates this pathway by inhibiting GSK3β, which results in an 

increase in the migration/invasion of colon cancer cells [107]. However, the effect of alcohol 

on the GSK3β/β-catenin pathway in the context of breast cancer aggressiveness needs to be 

further verified.

3.3. The interaction between ROS and EGFR/ErbB2 signaling pathway in response to 
alcohol exposure

As discussed above, both oxidative stress and EGFR/ErbB2-mediated cell signaling play an 

important role in alcohol-promoted aggressiveness of breast cancer. There is considerable 

interaction between oxidative stress and EGFR/ErbB2. ROS may either activate EGFR/

ErbB2 or directly target their down-stream signaling components [108–110]. This is 

supported by the evidence showing that alcohol stimulates the phosphorylation of EGFR and 

ErbB2 in mammary epithelial cells and breast cancer cells in a ROS-dependent manner [38, 

66]. Cyanidin-3-glucoside (C3G), a potent antioxidant scavenges alcohol-induced ROS 

accumulation, blocks alcohol-induced phosphorylation of ErbB2 and the activation of down-

stream signaling proteins, such as cSrc, FAK and p130Cas [38]. We further demonstrate that 

alcohol-induced ROS may activate MMP2 through the conventional PKC pathway in 

fibroblasts, which promotes the migration/invasion of breast cancer cells [40].

On the other hand, the status of EGFR/ErbB2 may also contribute to alcohol-induced 

oxidative stress. For example, it appears that high levels of ErbB2 make breast cancer cells 

and mammary epithelial cells more susceptible to alcohol-stimulated production of ROS 

[64]. In ErbB2 over-expressed cells, alcohol causes more intracellular accumulation of •OH 

radicals than in cells with low ErbB2 levels. The high levels of ROS in turn activates ErbB2-

mediated signaling as well as enzymes that contribute to aggressive behaviors of breast 

cancer cells, such as p38γ, FAK, and MMP-2. The mechanisms underlying how ErbB2 

contribute to alcohol-induced ROS production remain unclear.

4 Conclusion, potential therapeutic targets, and future studies

The experimental studies support the epidemiological observations that alcohol enhances the 

aggressiveness of breast cancer. However, the underlying mechanisms are complex and 

likely involved in multiple factors. Available evidence clearly demonstrates that ROS and 

EGFR/ErbB2 signaling play an important role in this process. Therefore, the approaches 

targeting oxidative stress and EGFR/ErbB2 signaling should be preferentially considered. 
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First, scavenging alcohol-induced ROS using natural antioxidants is a practical strategy. For 

example, C3G, a potent natural antioxidant rich in many vegetables and fruits, proves to be 

very effective in alleviating alcohol-induced oxidative stress in breast cancer cells and 

neurons while it has a low cytotoxicity [38, 111]. C3G has been proved to significantly 

attenuate alcohol-induced phosphorylation of ErbB2 and migration/invasion of breast cancer 

cells. Second, breast cancer cells with high levels of EGFR/ErbB2 appear to be more 

sensitive to alcohol. A further analysis of clinical data is necessary to establish the 

association of EGFR/ErbB2 status and the aggressiveness of breast cancer in the context of 

alcohol consumption. Reagents targeting these receptors, such as erlotinib (Tarceva) and 

trastuzumab (Herceptin), should be considered in patients who drink alcoholic beverages. 

Since alcohol specifically affects some signaling components and enzymes, such as p38γ 
and MMP2, drugs targeting these proteins may alleviate the aggressive behaviors associated 

with alcohol consumption. For example, selective inhibition of p38γ is sufficient to 

attenuate alcohol-stimulated CSC in breast cancer [33]. The inhibitors targeting MMP2 is 

also effective in blocking alcohol-stimulated invasion of breast cancer cells [41]. Third, 

targeting alcohol-promoted tumor angiogenesis may also be an important approach. For 

example, the growth factor VEGF and chemokine MCP-1 is involved in alcohol-promoted 

tumor angiogenesis [43, 44]; blocking VEGF and MCP-1-mediated signaling inhibits 

alcohol-induced tumor angiogenesis, growth and metastasis of breast cancer cells. Since 

alcohol affects multi-components/cascades involved in tumor progression and 

aggressiveness, future experimental studies may need to simultaneously target multiple 

components or cascades, which will likely yield more effective therapeutic outcomes 

particularly for alcoholic cancer patients. Finally, owing to the evidence that alcohol 

increases breast cancer progression, primary care givers should question each breast cancer 

patient about her alcohol intake. If the consumption is determined excessive, the patient 

should be informed about its consequences and recommend that alcohol intake be prohibited 

or reduced.
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ADH alcohol dehydrogenase

ALDH2 aldehyde dehydrogenase
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CCL2 chemokine (CC motif) ligand 2

CCR2 chemokine (CC motif) receptor 2

CSC cancer stem cells

CYP2E1 cytochrome P450 2E1
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ECM extracellular matrix

EGFR epidermal growth factor receptor

EMT epithelial-mesenchymal transition

MCP-1 monocyte chemoattractant protein 1

MMPs matrix metalloproteinases

NOX NADPH oxidase

ROS reactive oxygen species

VEGF vascular endothelial growth factor
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Figure 1. 
Alcohol promotes cancer metastasis and the activation of ErbB2. A: FVB MMTV Neu mice 

were fed with liquid diet containing ethanol (0 or 6.7%). After tumors reached a maximal 

diameter of 20 mm, mice were sacrificed and analyzed for tumor metastasis. Alcohol 

consumption significantly increased the metastases in the lung and colon. B: After alcohol 

exposure, the mammary tumor tissues were assessed for the expression of phosphorylated 

ErbB2 (pErbB2) and p38γ MAPK (p-p38γ) by immunoblotting. The relative levels of 

pErbB2 and p-p38γ were quantified and normalized to the loading control. * denotes 

significant difference from control groups (p < 0.05). Alcohol consumption significantly 

increased the phosphorylation of ErbB2 and p38γ ([33].
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Figure 2. 
Alcohol increases the cancer stem-like cell (CSC) population. A: Human breast cancer cell 

lines MCF7 or MCF7 overexpressing ErbB2 cells (MCF7-ErbB2) were exposed to alcohol 

(0 or 100 mg/dl) for 10 days, and then evaluated for CSCs by the ALDEFLUOR assay. * 

denotes significant difference from respective control groups. # denotes significant 

difference from alcohol-treated MCF7 cells. B: MCF7-ErbB2 cells were exposed to alcohol 

(0, 100 mg/dl) for 10 days and then mammosphere formation was evaluated under the 

microscope. C: MCF7, MCF7-ErbB2 or BT474 cells were exposed to alcohol (0, 100 

mg/dl) for 10 days. The number of mammospheres was determined. * denotes significant 

difference from respective control groups. # denotes significant difference from alcohol-

treated MCF7 cells. D: FVB MMTV Neu mice were fed with a liquid diet containing 
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ethanol (0 or 6.7%). After alcohol exposure, the mammary tumor tissues were assessed for 

the expression of CD44. * denotes significant difference from respective control groups. 

Alcohol significantly increased CSC population in vitro and in vivo [33].
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Figure 3. 
Alcohol stimulates the phosphorylation of ErbB2, FAK and cSrc. A: MCF7-ErbB2 cells 

were pretreated with alcohol for 48 hours and plated to fibronectin-coated coverslips, 

allowing attachment for 1 hour. Phosphorylation of FAK (Tyr861) and ErbB2 (Tyr1248) was 

detected with immunofluorescent staining. Arrows indicate the co-localization of pErbB2 

and pFAK. B: MCF7-ErbB2 cells were pretreated with alcohol for 6–48 hours, and allowed 

to attach for 3 hours. Cell lysates were collected and analyzed for the phosphorylation of 

FAK and cSrc with immunoblotting. The relative levels of pFAK and pcSrc were quantified 

and normalized to the expression of FAK and cSrc, respectively. * denotes significant 

difference from respective control groups. Alcohol significantly increased the 

phosphorylation of ErbB2, FAK and cSrc [37].
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