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Visual scene analysis in humans has been characterized by the presence of

regions in extrastriate cortex that are selectively responsive to scenes com-

pared with objects or faces. While these regions have often been interpreted

as representing high-level properties of scenes (e.g. category), they also exhibit

substantial sensitivity to low-level (e.g. spatial frequency) and mid-level

(e.g. spatial layout) properties, and it is unclear how these disparate findings

can be united in a single framework. In this opinion piece, we suggest that

this problem can be resolved by questioning the utility of the classical low-

to high-level framework of visual perception for scene processing, and discuss

why low- and mid-level properties may be particularly diagnostic for the

behavioural goals specific to scene perception as compared to object recog-

nition. In particular, we highlight the contributions of low-level vision to

scene representation by reviewing (i) retinotopic biases and receptive field

properties of scene-selective regions and (ii) the temporal dynamics of scene

perception that demonstrate overlap of low- and mid-level feature represen-

tations with those of scene category. We discuss the relevance of these

findings for scene perception and suggest a more expansive framework for

visual scene analysis.

This article is part of the themed issue ‘Auditory and visual scene analysis’.
1. Introduction
Our natural visual input—what we might intuitively refer to as a visual scene—

consists of a complex array of reflected light from the objects and surfaces that

constitute our daily environment. This scene information impinges on our retinae,

stimulating neural signals that ultimately give rise to internal representations that

enable adaptive behaviour. Although the sensation of seeing occurs extremely

rapidly and is seemingly effortless, the visual input is highly complex and

dynamic, changing with each fixation as we move our eyes. Correspondingly,

the underlying neural architecture comprises multiple stages of processing

from the retina through sub-cortical structures to the cortex, where multiple dis-

tinct visual areas have been defined. In particular, functional magnetic resonance

imaging (fMRI) studies in humans have identified scene-selective areas that

respond more when viewing scenes compared with objects or faces and may

be specialized for representing specific aspects of the environment. However,

the exact contribution of these areas to scene perception is just beginning to

be explored, and there is considerable debate about what scene information is

processed in each. In this opinion piece, we shall discuss scene analysis in the con-

text of the classic hierarchical view of visual processing and argue that the

distinctions that are often made between low- and high-level processing may

not be applicable directly to scene perception.

Despite the intuition for what constitutes a scene, the concept itself is notoriously

difficult to define. For our current purposes, it is useful to distinguish the notion of a

scene from that of an object. Experimentally, scenes and objects are operationalized

very differently. While objects are often presented as segmented, isolated stimuli,

scenes are commonly everyday photographs selected to be representative of
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real-world environments. Thus, while objects have a bounding

contour, defining a shape, the boundary of a scene stimulus is

typically arbitrary (e.g. circular or rectangular aperture). In

some cases, a collection of objects is considered a scene (e.g.

visual search arrays [1]) or objects are pasted onto a background,

(e.g. [2]). However, the natural scene input is more than just a col-

lection of objects, and objects are not always easily segmented

from the background. Theoretically, scenes are thought to form

a ‘context’ to objects, their structural embedding [3]. However,

scenes also encompass these objects, i.e. the objects are an integral

part of the scene. While some proposals suggest that scenes can

be seen as the sum of their constituent objects (e.g. sand þ
water þ palm tree ¼ beach, e.g. [4]), others have pointed out

that scenes cannot merely be reduced to a list of object labels

[5]: they have features that are not necessarily object-bound

such as spatial layouts, boundaries and textures, which are

somehow combined seamlessly into a coherent scene percept.

Scenes and objects can also be distinguished in terms of

relative scale. While scenes can typically be thought to

encompass the whole visual field, objects are smaller com-

ponents of a scene that are commonly fixated. Thus, while

a specific object might dominate high acuity foveal vision,

the scene in which that object is located also engages lower

acuity peripheral vision, which has important implications

for the type of information that can be extracted.

Given all these considerations, for the purpose of this

opinion piece, we shall adopt the definition of a scene as a

multi-element stimulus that encompasses both foveal and per-

ipheral vision and contains both object and spatial features with

real-world contextual associations between them. To under-

stand how visual scene analysis is implemented in the brain,

we shall next briefly review the classic hierarchical view of

visual processing, before discussing scene processing in

particular.
2. Hierarchical view of visual processing
Visual processing is typically considered in a hierarchical

framework, comprising a series of discrete stages that succes-

sively produce increasingly abstract representations [6]. These

different stages are often considered in terms of low-, mid-

and high-level representations (figure 1). Low-level vision is

thought to involve the representation of elementary features,

such as local colour, luminance or contrast. Such processing

is typically linked to the flow of information to primary

visual cortex (V1) via the retinogeniculate and geniculostriate

pathways (see also [7]), which translate light intensity at the

retina into an orientated edge representation by means of

small receptive fields (RFs) tiling the entire visual field [8].

The immediate stages beyond V1, V2–V4 are often con-

sidered to encompass mid-level vision, but are comparatively

much less well understood [9]. Overall, these areas can be

thought of as containing the representation of conjunctions of

elementary features and properties such as surfaces, higher

order image statistics, disparity and intermediate shape fea-

tures [10–12]. Recent studies have linked fMRI responses

from these areas to representation of locally pooled low-level

representations in computational models [13–15].

Finally, high-level vision is considered to reflect abstraction

of the visual input into categorical or semantic representations

that enable classification or identification. One of the major chal-

lenges and goals of high-level vision is often stated to be the
building of invariant representations that are robust to incidental

viewing conditions, such as illumination, size and position [16].

One of the most striking findings in visual neuroscience is that

multiple distinct brain regions exhibit selective and highly

reliable responses to stimuli from particular categories. Indeed,

monkey inferotemporal cortex contains neurons that respond

selectively to specific objects and categories, and human neuroi-

maging has identified entire brain regions that respond

selectively to faces, bodies and objects [17].

Interestingly, three scene-selective brain regions have also

been identified by contrasting responses elicited by viewing

scenes compared to objects or faces: the parahippocampal

place area (PPA), occipital place area (OPA) and retrosplenial

complex (RSC) [18]. How these regions fit into the larger hier-

archical framework of visual processing is, however, a topic

of considerable debate, as we shall discuss in §3.
3. Is scene perception low- or high-level?
It is often reported that at least some of the scene-selective

regions contain high-level representations of scenes; for

example, scene category [19,20], contextual associations [21]

or familiar places and landmarks [22,23] that generalize

across viewpoints [24]. On the one hand, this view makes a

lot of sense: scenes can be considered the ultimate goal of

abstraction, a higher level of representation than even individ-

ual objects, residing ‘above’ the low-, mid- and high-levels of

information depicted in figure 1, for example representing

object co-occurrence statistics [4]. On the other hand, however,

a number of studies have shown that these areas are also sensi-

tive to what in the classic view would be considered low-level

features, such as spatial frequency, line orientation, contrast

and texture [25–28]. Others have stressed the role of mid-

level features [29] or spatial properties that might depend on

such features [30–32].

As a result of these disparate findings, the role of scene-

selective regions is heavily debated. The low-level view is

supported by the finding that responses in scene-selective

regions can be elicited using minimal stimuli [25,26] or can be

explained by low-level models of scene representation [33]. How-

ever, responses to low-level information are not necessarily

sufficient to explain scene selectivity [34], and high-level scene

percepts have been reported for small sets of carefully controlled

stimuli in which low-level differences were minimized [35].

Moreover, a common argument in favour of high-level repre-

sentations comes from running control experiments in which

low-level features are either isolated or superimposed (e.g.

[32]), often contrasting response patterns from scene-selective

areas with those of earlier stages in visual processing, to highlight

that the representations are not the same as in V1 [19,30].

How to resolve this debate? It is important to realize that the

standard framework of visual perception sketched above is lar-

gely informed by object recognition [36], where the goal of the

system is typically characterized as achieving a categorical or

identity label for an individual object (figure 1, left). To achieve

such an invariant representation, low-level information is often

assumed to be an impediment that needs to be ‘thrown out’ in

order to distil the abstract meaning of stimuli. Although theor-

etical frameworks involving three-dimensional high-level

models that need to be explicitly matched to low-level input

[37] have become more relaxed in favour of a distributed

coding framework in which objects are represented via neural
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tuning to shape similarity [38], the notion that the incidental,

low-level features of the input must be discarded to achieve a

high-level invariant percept remains pervasive. Essentially,

high-level vision is thought to decode the stimulus from the

distributed patterns of information in lower level areas [6].

An important caveat of this view, however, is that for scenes

it might not be possible to separate low- and high-level features

in this way, as they are inherently correlated in our real-world

environments. Beach scenes, for example, have a higher likeli-

hood to be dominated by low spatial frequencies, due to the

presence of a prominent horizontal boundary and large
homogeneous sections (sky þ beach), resulting in an open

spatial layout. Indeed, it has recently been shown that low-,

mid- and high-level features of scenes largely explain the

same variance in brain responses in scene-selective regions [39].

We propose taking a step back and question whether behav-

iourally useful, or invariant, information in scenes can only be

found at the highest level of representation. As highlighted

above, scenes contain many more sources of information

beyond the (foveated) objects, including texture and spatial

layout, which typically extend into the periphery. It is likely

that all this information, be it low-, mid- or high-level, can be
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useful for some aspects of scene vision (figure 1, right). In §4, we

shall highlight aspects of scene perception that may require

different levels of representation.
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4. The relevance of low-level information for
scene perception

An extensive body of computational and behavioural research,

which developed largely independently from the neuro-

imaging literature, has shown that many aspects of scene

recognition can be carried out without explicit segmentation

or labelling of objects in scenes. Instead, observers can rely

on global scene features that can be derived from summary

statistics of localized responses to local orientated spatial

frequency filters [40,41] or texture [42]. Supporting this view,

behavioural performance in rapid scene categorization is

affected by manipulations of low-level features [43–47] and

human participants are able to perceive global, non-object-

based properties of scenes, even before they are able to

categorize them [48,49]. The difficulty of some scene category

distinctions compared to others, as well as apparent high-

level effects in scene categorization such as the superordinate

advantage, has recently been shown to be entirely predictable

from differences in low-level visual features [50].

In these rapid scene perception tasks, peripheral represen-

tations appear to be at least as important as foveal information

[51,52]. Thus, this literature suggests that some aspects of scene

perception, such as rapid recognition, can rely on low-level

features that are extracted from peripheral parts of the visual

field (figure 1, bottom right). In line with this idea, it has

been proposed that scene-selective regions might rely more

on global representations, while object–object relations are

represented in a complementary pathway comprising object-

selective areas [53,54] which might nevertheless interact with

information represented in scene-selective regions [55,56].

So far we have discussed scene categorization or identifi-

cation, but scene perception entails more than just deriving a

label of the environment. Indeed, we rarely need to rapidly

categorize environments when we interact with them in our

daily life. Instead, we tend to act in scenes. A primary example

of action in scenes is navigation, getting from point A to point

B. Indeed, human observers can determine scene navigability

rapidly and consistently, possibly relying on a combination

of global and local scene features [48,49]. It has been proposed

that despite their shared category-selectivity, scene-selective

regions may represent different aspects of scenes relevant to

navigation, with the most posterior region OPA purportedly

more involved in the representation of large-scale visual fea-

tures [57], such as boundaries [58], whereas PPA and RSC are

thought to undertake more complex computations relating to

landmark coding [59], spatial memory [57] and navigation

[60]. Importantly, however, even though navigation can be

thought of as a high-level behavioural goal, it can be argued

that the brain might still make use of low-level information

for this task. For example, localized information in scenes is cru-

cial to identify paths in the scene and to navigate around

obstacles (figure 1, top right). Surface reflection and texture

may be useful for identifying the accessibility of regions to be

navigated, e.g. whether they are rough or slippery, while the

spatial layout and three-dimensional surfaces may be important

for identifying spatial boundaries that restrict movement.
These arguments suggest that low- or mid-level level fea-

tures may in fact play a pervasive and potentially useful role

in scene perception. In §5 we shall review neural evidence

supporting this view in both the spatial and temporal

domains as obtained with fMRI and magneto- and electro-

encephalography (MEG/EEG), respectively. We will show

that despite earlier claims of position invariance, scene-

selective areas contain plentiful information about position,

evidenced by retinotopic biases towards specific parts of

the visual field. Then we review recent EEG and MEG evi-

dence of sensitivity to low- and mid-level information

representation across multiple stages of processing in scene

perception.
5. Visual field biases in scene-selective cortex
One of the most basic low-level properties is visual field position

relative to fixation or retinotopic location. Historically, category-

selective regions of visual cortex have been considered to

either lack or contain weak retinotopic organization. Indeed, a

general assumption is that visual representations become

increasingly more position-invariant along the visual hierarchy.

Recently, however, the presence and influence of retinotopic

information, in the form of visual field biases, have been

shown to extend beyond classical retinotopic cortex (V1–V4)

and persist across both lateral and ventral cortex. Visual field

biases can be characterized across three major retinotopic

dimensions: (i) contralateral versus ipsilateral, (ii) foveal versus

peripheral and (iii) upper versus lower. Below we discuss

recent work demonstrating the influence of each dimension

within scene-selective cortices (figure 2). While we restrict our

discussion to these scene-selective regions, similar effects have

been reported in other category-selective areas [61,64–66].

(a) Contralateral versus ipsilateral
During the initial stages of processing, visual inputs from the

left and right visual fields are processed contralaterally within

sub-cortical structures, such as the lateral geniculate nucleus

(LGN), and this contralateral representation persists into V1.

A similar contralateral preference is also observed in scene-

selective cortices OPA, PPA and RSC, evidenced by larger

fMRI responses to contralaterally over ipsilaterally presented

scenes [57,61]. Beyond simple response magnitudes, more

recent work has taken advantage of population receptive field

mapping (pRF) techniques, which allow estimation of the effec-

tive RFs of individual voxels [67,68]. By sweeping a bar

stimulus systematically across the visual field, the position

(x-, y-coordinate) and extent (pRF size) of the visual field to

which each voxel is maximally responsive can be estimated.

Using bars filled with fragments of scenes, voxels in scene-

selective regions have been shown to exhibit a strong bias for

the contralateral field with more voxel pRFs centred within,

and more representation of the contralateral over ipsilateral

visual field [61,62].

(b) Foveal versus peripheral
Over a decade ago, Levy et al. [69] demonstrated that face- and

scene-selective cortices are organized according to a foveal–

peripheral gradient, whereby face-selective areas co-localize

with more foveal representations, and scene-selective areas

co-localize with representations of the periphery. Extending
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Figure 2. Retinotopic biases in scene-selective cortical regions. (a) Group average (n ¼ 16) scene-selectivity (contrast of scenes . faces) and visual field coverage.
(i) PPA on ventral temporal cortex, (ii) OPA on the lateral cortical surface and (iii) RSC in medial parietal cortex. All three scene-selective regions show a clear bias
for the contralateral visual field. In addition, PPA and OPA show a bias for the upper and lower visual field, respectively. (b) Quantification of visual field biases in
scene-selective regions. Left column: bars depict the contralateral biases (contralateral minus ipsilateral pRF value) exhibited by PPA (i), OPA (ii) and RSC (iii), respectively.
Right column: bars depict the elevation biases (contralateral upper minus contralateral lower pRF value) exhibited by all regions. Dots indicate individual subjects. Adapted
from [61 – 63].
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this further, recent studies employing the pRF mapping para-

digm demonstrate that the locations and sizes of pRFs within

OPA, PPA and RSC are not only more eccentric, but also sig-

nificantly larger than those within face-selective regions,

confirming the peripheral bias within scene-selective cortices

[61,62]. Functional connectivity with V1 suggests that RSC is

more peripherally biased than either OPA or PPA [70], a

pattern consentient with direct eccentricity measurements

within these regions [61,62].

(c) Upper versus lower
Throughout retinotopic visual cortex, the representations of the

contralateral visual field are segregated into upper (V1v–V3v)

and lower (V1d–V3d) quadrants, and biases for the upper

and lower fields extend into lateral and ventral extrastriate

cortex, respectively [61,62,71]. On the lateral surface of visual

cortex, OPA exhibits larger response magnitudes for stimuli

presented in the contralateral lower than upper visual field,

whereas on the ventral surface, PPA shows stronger response

magnitudes for stimuli presented in the contralateral upper

visual field [61]. pRFs within OPA and PPA also demonstrate

differential representations of the contralateral lower and

upper visual fields, respectively [62]. Relative to the largely

quadrant representations within OPA and PPA, RSC contains

a more complete hemifield representation and may therefore

be able to mediate scene information from both the upper and

lower visual fields [63].
(d) Retinotopic divisions of scene-selective regions
While these scene-selective regions exhibit retinotopic biases,

there is no one-to-one relationship between scene selectivity

and a given retinotopic map. For instance, OPA has been

shown to overlap multiple maps, including V3d, V3A, V3B,

LO1 and LO2 [62,72]. Similarly, PPA shows overlap with puta-

tive maps VO2, PHC1 and PHC2 [61,73]. The presence of

retinotopic map divisions of scene-selective cortex, brings

with it the possibility that each map undertakes multiple dif-

ferent computations of specific scene features and, moreover,

that these computations are undertaken independently. For

example, both fMRI [67] and transcranial magnetic stimulation

[74] data support a dissociation between LO1 and LO2 (two

adjacent maps in lateral occipital cortex with the same visual

field coverage), with each computing orientation and shape

independently [74].
(e) Functional significance of retinotopic biases
Taken together, the evidence discussed above (§5a–d) demon-

strates the ubiquitous influence of retinotopy even within

regions often thought to reflect high-level processing of

visual scenes. Importantly, the presence of these retinotopic

biases does not explain away the category selectivity observed.

Rather, these retinotopic biases may provide important insight

into their functional roles and need to be taken into account

when theorizing about the computations performed by
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scene- and other category-selective cortices. For example, the

relatively large, peripheral pRFs in all three scene-selective

regions make them sensitive to larger scale summary statistics

of the input that may be particularly relevant for both rapid

scene recognition and navigation. The upper field bias in

PPA is consistent with a specific role in representing landmarks

[75,76], large immovable objects that will typically occupy

peripheral vision. Similarly, the lower field bias in OPA may

reflect a role in representing the relative spatial layout of objects

within a scene, which typically occurs in the lower field [77], for

reaching and orientating the body in space. Finally, the retino-

topy within RSC was recently proposed to reflect a functional

subdomain (referred to as medial place area [63]) that is

grounded in the visual input and that may be distinct from

more anterior regions of medial parietal cortex that appear to

be more involved in memory for scenes than immediate

visual scene analysis [59,63,78].

This pervasive influence of retinotopy provides one

example of how and why low-level information may be rele-

vant for scene representation in the human brain. In §6, we

shall discuss another example, by reviewing findings from

time-resolved techniques such as EEG and MEG on object

and scene perception.
6. Temporal dynamics of object and scene
perception

Given the hierarchical view of visual processing, the different

processing stages are commonly considered to be reflected in

the temporal domain, with low-level vision associated with

the initial responses of the system. Indeed, areas V1, V2 and

V3 are often referred to as ‘early’ visual cortex. From detailed

studies of event-related potentials (ERPs) extracted from the

EEG signal, the general view has emerged that early ERP com-

ponents are prominently involved in visual processing [79].

The earliest component, C1, can appear as soon as 40 ms after

stimulus onset and is likely generated in V1, as it is highly

sensitive to stimulus contrast and spatial frequency [80]. Sub-

sequent components, such as the P1 (onset 60–90 ms; peak

amplitude 100–130 ms) and N1 (onset 100–150 ms; peak

150–200 ms) may reflect activity in extrastriate and higher

order visual regions, respectively, and become progressively

less sensitive to stimulus parameters, with the N1 in particular

being reflective of visual discrimination [81]. Representations of

objects in natural scenes (e.g. ‘animal’) are thought to be present

at the N1 level, arising around 150 ms after stimulus onset [82].

By contrast, activity beyond 200 ms, indexed by components

such as the P2 and P3, are thought to reflect cognitive proces-

sing beyond visual encoding, such as task context, target

probability or expectation [79].

(a) Dissociation of high- and low-level information
in the temporal domain

Analogous to the fMRI literature, attempts have been made to

dissociate high-level from low-level information in the early

ERP components. Numerous studies have examined whether

a face-selective component in the N1 time window, the N170,

is driven by generic stimulus properties or a face-specific

representation [83]. For objects, high-level categorical differ-

ences have been reported to occur as early as 80 ms, but since

behaviour only correlated with ERP differences after 150 ms
following stimulus onset [84,85], such early differences were

suggested to be driven by low-level, task-irrelevant properties,

whereas activity beyond 150 ms was thought to reflect task-

relevant target representations. Distinct stages of processing

were also proposed based on a study using objects embedded

in phase noise [86,87]. In that study, comparison of single-trial

ERP amplitudes with behavioural discrimination performance

demonstrated that both the N170 and a late component at

300 ms correlated with behaviour [86]. However, this correl-

ation was much stronger for the second component, which

was also sensitive to the level of noise as reflected in an inter-

mediate component at 200 ms, and the authors took this to

reflect task difficulty [87].

However, other findings show that these three putative

successive stages of (i) encoding, (ii) recognition and (iii)

decision-making, are not always as easily separated. For

example, stimulus luminance—arguably one of the most

basic low-level properties—can affect ERP time courses well

beyond the initial 100 ms of processing into ‘high-level’ time

windows [88]. Moreover, whether or not an object-specific

signal in the N1 window can be achieved depends on the

degree of luminance information provided [89], indicating an

interaction between low-level properties and object recog-

nition. Furthermore, the aforementioned component at

200 ms was not observed in ERPs when task difficulty was

manipulated by changing stimulus similarity rather than

adding phase noise, suggesting that ERP activity around

200 ms may still be stimulus-tied, indexing visual noise instead

of domain-general task difficulty [90]. Moreover, using the

same object discrimination paradigm with more phase noise

levels, ERPs were found to be sensitive to both noise and task

in a relatively broad window between 140 and 300 ms [91],

suggesting at least some overlap between processing stages.

(b) Temporal evidence for processing of low-level
scene features

The majority of studies reviewed in §6a focused on detection

of objects in scenes or background noise. Studies that investi-

gated scene perception rather than object recognition cast

further doubt on the discreteness of low- and high-level

visual stages in the temporal dynamics of scene analysis. Intra-

cranial recordings obtained during scene viewing indicate that

PPA responds from very early on in visual processing, with

initial responses distinguishing scenes from non-scenes at

80 ms, and buildings from non-buildings at 170 ms [92]. In a

series of meticulous psychophysical experiments, Hansen

et al. [93,94] demonstrated that C1, P1 and N1 amplitude were

all modulated strongly and differentially by the spatial fre-

quency content of scene patches. This ERP sensitivity was

itself modulated by the structural sparseness of the scenes

reflected in the overall number of edges [95], indicating that

the EEG signal is highly sensitive to several different kinds of

natural image statistics at multiple stages of visual processing.

In line with this suggestion, ERP modulations by two sum-

mary statistics derived from local contrast have been observed

when participants view real-world scenes [96]. These two stat-

istics, which the cortical visual system could plausibly read out

from the population response of LGN neurons [97], summarize

the mean and variance of the local contrast distribution and

thereby index the level of stimulus energy (contrast energy)

and degree of fragmentation or clutter (spatial coherence) of

the scene [98]. Together, these parameters describe a feature
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space (figure 3a) that appears to be diagnostic of the degree of

naturalness of a scene, due to the association of natural scenes

with clutter (low spatial coherence) and of man-made scenes

with organized structure (high spatial coherence). Indeed,

these statistics have been shown to predict behavioural natural-

ness judgements for a large set of natural scenes (n ¼ 1600) [99]:

spatial coherence correlated strongly with the average natural-

ness rating, while contrast energy predicted reaction times

(figure 3b). At the same time, contrast energy modulated

ERPs in a discrete time window centred around the N1, while

spatial coherence modulated ERPs up to 300 ms, thus extending

well beyond early stages of visual processing (figure 3c). Impor-

tantly, the naturalness decision could already be decoded from

single-trial ERPs as early as 100 ms (figure 3d) and the degree to

which this was possible was also modulated by spatial coher-

ence, with better decoding for scenes with more disparate

spatial coherence values. Collectively, these results illustrate

that diagnostic low-level summary statistics can affect the

speed and accuracy of rapid scene categorization.

In a follow-up study [100], scene category distinctions

beyond 200 ms disappeared when the scenes were task-

irrelevant, consistent with the view that later time ERP win-

dows are reflective of recognition and decision-making.

Interestingly, however, when the scenes were task-relevant,

categorical ERP differences were still associated with pro-

longed sensitivity to spatial coherence (figure 3e). Thus,

rather than a separate stage of visual encoding followed by a

recognition or decision phase, the presence of diagnostic
stimulus information continued to modulate neural activity

into later time windows, but only when it was task-relevant.

Consistent with a strong interaction between low-level infor-

mation and behavioural outcomes, another EEG study

recently showed that behavioural ratings of naturalness and

openness as well as image statistics both affected ERP ampli-

tude at the P2 level, with these measures largely sharing the

same variance in neural responses [101].

(c) Perceptual similarity overlaps with low-level feature
similarity

Rather than looking at broad categorical differences in ERPs,

recent studies have started to examine the time course of

visual processing with novel information mapping approaches

such as representational similarity analysis [102] (see also [103]).

These studies confirm that representations of stimulus category

occur very early in visual processing, but they also indicate that

low-level features are often represented very close to or overlap-

ping with time segments that are predictive of perceptual

similarity of the visual input. Consistent with the ERP literature,

decoding of isolated object categories from MEG signals was

found to be possible from 80 ms onwards and peaked at

120 ms, while high-tier distinctions (e.g. animate/inanimate)

peaked at later time points [104]. Comparison of represen-

tational dissimilarity matrices (RDMs) of isolated objects

across MEG and fMRI showed that while early RDMs correlated

most strongly with V1 and late RDMs with category-selective
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cortex [105], there were also persistent correlations between

early and late time points, suggesting that there was similarity

in information content between early and late stages of visual

processing. Another MEG study showed that neural dissimilar-

ity of abstract patterns correlated most strongly with low-level

similarity and with perceptual similarity at different time

points (90 versus 145 ms, respectively), but these models also

overlapped for a substantial period starting as early as 50 ms

[106]. Similarly, EEG studies examining representational simi-

larity of naturalistic image categories [107] and textures [108]

found that time points with the highest correlations with

image statistics (110 and 150 ms, respectively) were also predic-

tive of perceptual similarity of the same stimuli. Importantly,

when participants are engaged in a rapid scene categorization

task, MEG correlations with global scene properties and behav-

ioural categorization become near-simultaneous [109].

Similarly, decoding of scene identity and scene size

overlapped with representations of both low- and high-level

features represented in convolutional neural networks [110].

In sum, these studies highlight that while there are

moments in scene processing at which various stimulus fea-

tures are represented more strongly than others, these

effects do not always occur in a neat progression from low

to high level, and there is evidence for dynamic interactions

between low- and high-level representations over time.
7. Low and high roads to visual scene analysis in
the human brain

In §§3–6 we have highlighted how in scene vision, compared

to object recognition, the contributions of low- and high-level

information are more difficult to separate than suggested by

the standard model of visual processing (figure 1). First, we

emphasized that retinotopic information is present through-

out scene-selective visual cortex. Second, we discussed how

modulations of neural signals by low-level features tend to

overlap and interact with those associated with recognition

or categorization.

In the classic hierarchical view, low-level information tends

to be dismissed as irrelevant, as it is thought to hinder the con-

struction of invariant high-level object representations. In this

opinion piece, we have therefore chosen to emphasize the uti-

lity of what is typically considered low-level information for

scene vision. As alluded to above, however, we do not mean

to suggest that these low-level features ‘explain away’ more

complex neural representations that are most certainly required

for many aspects of scene vision. However, in trying to reveal

these representations, it is important to question the utility of

classic hierarchical models for scene vision, and instead to con-

sider which level of representation might be most fitting for a

specific behavioural goal. For example, contour junctions

might be particularly useful for representing scene category

[29], while image statistics may be useful for rapid extraction

of scene naturalness [48,99]. In line with a previous proposal

made for object recognition [111], we suggest that considering
the ‘diagnosticity’ of multiple scene properties and their rep-

resentations in scene-selective regions under various tasks

[112], or for specific scene functions [113], will lead to a more

expansive framework for scene understanding.

We have also highlighted both (i) the highly dynamic

nature of real-world scene perception, which until recently

had not been studied extensively with time-resolved techniques

[92,99–101,109,110] and (ii) the possibility that representations

in scene-selective regions may arise via inputs from multiple

pathways, including object-selective areas [54,75], possibly in

addition to inputs from posterior areas carrying summary stat-

istics [33]. Collectively, these considerations are consistent with

an interactive parallel neural architecture with extensive recip-

rocal connections [71]. Such reciprocal connections may be

particularly important for processes such as object grouping

in real-world scenes [114] or to facilitate sensory processing in

V1 by means of feedback from other cortical visual regions

in both the dorsal and ventral stream [115], or non-visual sen-

sory regions [116]. It is important to realize that traditional

hierarchical models [117] as well as modern computational

implementations of those models [118] do not typically allow

for such dynamic interactions. The ubiquity of retinotopic

biases in higher level visual cortex also raises the intriguing

question of how information from multiple maps is combined,

e.g. between left and right hemisphere representations [119].

Time-resolved techniques that are sensitive to the dynamics of

scene perception may provide more insight into these ques-

tions; for example, by showing that contralateral information

dominates early, but not late, visual evoked responses [120,121].

Moving forward, we propose that to understand how brain

pathways and neural mechanisms subserve scene analysis, the

focus should be on understanding the contribution of multiple

scene properties to scene perception, rather than explicitly

labelling them as either low or high level. The pertinent ques-

tion then changes from ‘how is low-level information

discarded to achieve an invariant representation of a scene?’

to ‘what kind of neural representation is needed in order to

achieve particular goals in scenes (e.g. recognition, naviga-

tion)?’ [122]. This approach opens up exciting research

questions for future work such as: in what way is the retinal

input summarized or transformed to achieve these represen-

tations? How do neural representations in scene-selective

areas change dynamically over time with different behavioural

goals? Answering these questions will help us better under-

stand the neural mechanisms underlying scene analysis in

the human brain.
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1. Wolfe JM, Võ ML-H, Evans KK, Greene MR. 2011
Visual search in scenes involves selective and
nonselective pathways. Trends Cogn. Sci. 15,
77 – 84. (doi:10.1016/j.tics.2010.12.001)
2. Hong H, Yamins DLK, Majaj NJ, DiCarlo JJ. 2016
Explicit information for category-orthogonal object

http://dx.doi.org/10.1016/j.tics.2010.12.001


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160102

9
properties increases along the ventral stream. Nat.
Neurosci. 19, 613 – 622. (doi:10.1038/nn.4247)

3. Oliva A, Torralba A. 2007 The role of context
in object recognition. Trends Cogn.
Sci. 11, 520 – 527. (doi:10.1016/j.tics.2007.
09.009)

4. Stansbury DE, Naselaris T, Gallant JL. 2013 Natural
scene statistics account for the representation of
scene categories in human visual cortex. Neuron 79,
1025 – 1034. (doi:10.1016/j.neuron.2013.06.034)

5. Edelman S. 2002 Constraining the neural
representation of the visual world. Trends Cogn. Sci.
6, 125 – 131. (doi:10.1016/S1364-6613(00)01854-4)

6. Yamins DLK, DiCarlo JJ. 2016 Using goal-driven
deep learning models to understand sensory cortex.
Nat. Neurosci. 19, 356 – 365. (doi:10.1038/nn.4244)

7. Veale R, Hafed ZM, Yoshida M. 2017 How is visual
salience computed in the brain? Insights from
behaviour, neurobiology and modelling. Phil.
Trans. R. Soc. B 372, 20160113. (doi:10.1098/rstb.
2016.0113)

8. Carandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y,
Olshausen BA, Gallant JL, Rust NC. 2005 Do we
know what the early visual system does?
J. Neurosci. 25, 10 577 – 10 597. (doi:10.1523/
JNEUROSCI.3726-05.2005)

9. Peirce JW. 2015 Understanding mid-level
representations in visual processing. J. Vis. 15, 5 – 9.
(doi:10.1167/15.7.5)

10. Freeman J, Ziemba CM, Heeger DJ, Simoncelli EP,
Movshon JA. 2013 A functional and perceptual
signature of the second visual area in primates. Nat.
Neurosci. 16, 974 – 981. (doi:10.1038/nn.3402)

11. Welchman AE, Deubelius A, Conrad V, Bülthoff HH,
Kourtzi Z. 2005 3D shape perception from combined
depth cues in human visual cortex. Nat. Neurosci. 8,
820 – 827. (doi:10.1038/nn1461)

12. Roe AW, Chelazzi L, Connor CE, Conway BR, Fujita I,
Gallant JL, Lu H, Vanduffel W. 2012 Toward a
unified theory of visual area V4. Neuron 74, 12 – 29.
(doi:10.1016/j.neuron.2012.03.011)

13. Khaligh-Razavi SM, Kriegeskorte N. 2014 Deep
supervised, but not unsupervised, models may
explain IT cortical representation. PLoS Comput. Biol.
10, e1003915. (doi:10.1371/journal.pcbi.1003915)
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