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Brain hemodynamics serve as a proxy for neural activity in a range
of noninvasive neuroimaging techniques including functional mag-
netic resonance imaging (fMRI). In resting-state fMRI, hemodynamic
fluctuations have been found to exhibit patterns of bilateral syn-
chrony, with correlated regions inferred to have functional connectiv-
ity. However, the relationship between resting-state hemodynamics
and underlying neural activity has not been well established, making
the neural underpinnings of functional connectivity networks unclear.
In this study, neural activity and hemodynamics were recorded
simultaneously over the bilateral cortex of awake and anesthetized
Thy1-GCaMP mice using wide-field optical mapping. Neural activity
was visualized via selective expression of the calcium-sensitive
fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Character-
istic patterns of resting-state hemodynamics were accompanied by
more rapidly changing bilateral patterns of resting-state neural
activity. Spatiotemporal hemodynamics could be modeled by convolv-
ing this neural activity with hemodynamic response functions derived
through both deconvolution and gamma-variate fitting. Simultaneous
imaging and electrophysiology confirmed that Thy1-GCaMP signals
are well-predicted by multiunit activity. Neurovascular coupling
between resting-state neural activity and hemodynamics was robust
and fast in awake animals, whereas coupling in urethane-anesthetized
animals was slower, and in some cases included lower-frequency
(<0.04 Hz) hemodynamic fluctuations that were not well-predicted by
local Thy1-GCaMP recordings. These results support that resting-state
hemodynamics in the awake and anesthetized brain are coupled to
underlying patterns of excitatory neural activity. The patterns of
bilaterally-symmetric spontaneous neural activity revealed by wide-
field Thy1-GCaMP imaging may depict the neural foundation of
functional connectivity networks detected in resting-state fMRI.
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Functional magnetic resonance imaging (fMRI) measures local
changes in deoxyhemoglobin concentration [HbR] as a surro-

gate for neural activity. In stimulus-evoked studies, the positive
fMRI blood oxygen level-dependent (BOLD) signal corresponds
to a decrease in [HbR] caused by a local increase in blood flow
leading to over-oxygenation of the region. However, a growing
number of studies are now using resting-state functional connec-
tivity fMRI (fc-fMRI) in which spontaneous fluctuations in the
BOLD signal are recorded in the absence of a task (1). Spatio-
temporal correlations in these hemodynamic signals across the
brain have been found to be bilaterally symmetric and synchro-
nized in distant brain regions. This synchrony is interpreted as
representing the connectivity of intrinsic neural networks (2–6).
Many studies have identified changes in these resting-state networks
during brain development (7, 8) and in neurological and even psy-
chological disorders (9–11). However, understanding the meaning of
both normal and altered functional connectivity networks requires a

clearer picture of the neural activity underlying the hemodynamic
fluctuations detected by resting-state fMRI.
Prior studies using electrophysiology (12), electrocorticography

(13), and magnetoencephalography (14) have observed synchro-
nous patterns of neural activity in distant, often bilateral brain
regions, consistent with a neural representation of functional
connectivity networks. Studies combining acquisition of electro-
physiology and fMRI data in both anesthetized (15, 16) and awake
(17) primates have also found correlations between resting-state
BOLD signals and local field potentials (LFPs). However, the
highest correlations reported to date are around 0.3 for gamma-
band powers between 40 and 100 Hz. Questions thus remain
regarding the extent to which resting-state hemodynamics corre-
spond to neural activity, the kinds of neural activity represented by
resting-state fMRI signals, and whether additional hemodynamic
components contribute to and confound fc-MRI analysis.
In this study, simultaneous wide-field optical imaging of

hemodynamics and neural activity was performed in awake and
anesthetized mice expressing the genetically encoded calcium-
sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neu-
rons. This experimental approach enabled high-speed imaging
across the entire dorsal surface of the mouse cortex, depicting
both spontaneous neural activity and hemodynamics in parallel
(18, 19). Single-site electrophysiology with simultaneous GCaMP
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imaging was used to confirm that recorded fluorescence, after
hemodynamic correction, represents local multiunit activity (MUA).
The relationship between spontaneous activity in excitatory neurons
and resting-state hemodynamics was then assessed using both
deconvolution and a gamma-variate fit-based convolution model.
This analysis demonstrates that resting-state hemodynamics in the
awake brain can be well predicted by resting-state neural activity
over the entire bilateral field of view. This result suggests that
resting-state hemodynamics are dominated by the summation of
successive increases in blood flow coupled to spontaneous neural
events. Urethane anesthesia resulted in slower coupling, and in
some cases introduced slow trends in hemodynamics that were not
accounted for by Thy1-GCaMP signals. The spontaneous neural
activity found to be coupled to resting-state hemodynamics exhibits
strong bilateral synchrony in both awake and anesthetized states,
with spatial patterns consistent with resting-state functional
connectivity networks.

Results
To visualize both neural activity and hemodynamics, awake (Thy1-
GCaMP6f) and urethane-anesthetized (Thy1-GCaMP3) mice were
imaged using simultaneous fluorescence and multispectral wide-field
optical mapping (WFOM) through a thinned-skull cranial window
(18, 20). Cyan light (490 nm) provided excitation of GCaMP fluo-
rescence, whereas green (530-nm) and red (630-nm) reflectance
signals were converted into images of changes in oxyhemoglobin,
deoxyhemoglobin, and total hemoglobin concentrations (Δ[HbO],
Δ[HbR], and Δ[HbT] = Δ[HbO] + Δ[HbR]) (Fig. 1B). Hemody-
namic signals were also used to correct recorded GCaMP fluores-
cence for the time-varying effects of hemoglobin absorption. All
imaging and analysis methods are described in SI Materials and
Methods (18, 20, 21).
Awake mice were imaged head-fixed but positioned on a saucer

wheel and were free to run during imaging. The motion of the
wheel was monitored throughout imaging using a webcam syn-
chronized with image acquisition. All periods of running were re-
moved, and “resting-state” epochs were defined as periods of at
least 30 s of continuous rest.

ValidatingWide-Field GCaMP Fluorescence Imagingwith Electrophysiology.
Thy1-GCaMP lines were chosen because of their selective expres-
sion of calcium-sensitive GCaMP in excitatory pyramidal neurons
in cortical layers 2/3 and 5, as shown in Fig. 1A (22). Changes in
GCaMP fluorescence reflect changes in intracellular calcium,
and have been widely shown to correspond to neural spiking
activity in studies using two-photon microscopy (22–24). The
kinetics of GCaMP3 and GCaMP6f are similar (25). High-speed
wide-field imaging of GCaMP fluorescence provides a depth-
integrated, ensemble measurement of neural events over a much
larger field of view compared with two-photon microscopy (18,
19, 24, 26). However, an essential consideration when using
wide-field GCaMP imaging is the spectral overlap between he-
moglobin absorption and GCaMP excitation and emission bands
(Fig. 1B) (18). Simultaneous measurement of cortical hemody-
namics and GCaMP fluorescence in our experiments enabled a
correction for these absorption effects as described in detail in SI
Materials and Methods.
To verify that hemodynamics-corrected wide-field Thy1-GCaMP

signals represent underlying neural activity, WFOMmeasurements
were acquired simultaneously with MUA in urethane-anesthetized
animals (Fig. 1C). GCaMP andMUA, at the same cortical locations,
were compared before and after hemodynamic correction, with
MUA convolved with a best-fit gamma-variate function mimicking
the kinetics of neural calcium and GCaMP’s calcium response
(Fig. 1D). Significantly higher correlation coefficients between Thy1-
GCaMP fluorescence and convolved MUA were found after he-
modynamic correction (Fig. 1E, and Fig. S1 for GCaMP6f). Fig. 1F
shows an example of spontaneous MUA with simultaneously

recorded hemoglobin-corrected GCaMP3 fluorescence from the
same region and the gamma-variate–based convolution fit between
the two. Best-fit parameters agree well with two-photon characteriza-
tion of GCaMP using cell-attached recordings (22) (GCaMP3: time
to peak, 0.18 ± 0.01 s; width, 0.35 ± 0.02 s; GCaMP6f time to peak,
0.29 ± 0.09 s; width, 0.36 ± 0.18 s; mean ± SD). We conclude that
hemodynamics-corrected wide-field fluorescence signals in Thy1-
GCaMP mice provide an accurate representation of the integrated
spiking activity of excitatory neurons.
Movie S1 shows recorded GCaMP6f data in the awake brain

before and after hemodynamic correction, with concurrent Δ[HbT]
(also shown as plots in Fig. S1). Fig. S2 shows data acquired on a
Thy1-YFP mouse demonstrating expected strong hemodynamic
cross talk, but only small variance attributable to intrinsic flavo-
protein fluorescence after hemodynamic correction (19).

Spatiotemporal Patterns of Resting-State Neural and Hemodynamic
Activity. Fig. 2A shows a sequence of the spatial patterns of spon-
taneous neural activity recorded in the awake mouse brain during a
period of rest using wide-field GCaMP6f imaging (after hemody-
namic correction), along with concurrent maps of hemodynamics
given by Δ[HbT]. The patterns of spontaneous neural activity
evolve rapidly, exhibiting synchronization between regions and
bilateral symmetry. Changes in [HbT] occur at a much slower pace,
yet the [HbT] spatial pattern at t = 25.3 s can be seen to resemble
the neural spatial pattern at t = 24.1 s (corresponding patterns
marked by a, b, and c). Fig. 2C shows time courses of corrected
GCaMP6f fluorescence with concurrent changes in [HbT], [HbO],
and [HbR] for the two regions indicated in Fig. 2B during the same
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Fig. 1. Validating wide-field GCaMP fluorescence with point electrophysiol-
ogy. (A) Thy1-GCaMP3 mouse brain section at 4× (Left) and 20× (Right) shows
selective expression of GCaMP in layers 2/3 and 5 pyramidal neurons. (B) Ab-
sorption spectra of HbO and HbR (left axis) and the fluorescence excitation and
emission spectra of GFP (right axis). Blue, green, and red shading represent the
wavelength bands of the LEDs used for imaging. (C) Field of view for simul-
taneous imaging and microelectrode recording in the somatosensory hindpaw
region (urethane anesthetized). Star indicates bregma. (D) Average best-fit
gamma-variate function ΓG fitting convolved MUA to hemodynamics-
corrected Thy1-GCaMP3 fluorescence. (E) Hemodynamic correction of GCaMP
fluorescence yielded significantly higher correlations with convolved MUA
compared with raw fluorescence (rCorr = 0.72 ± 0.01; error bars show mean ±
SEM; n = 9 mice). (F, Top) Example of recorded MUA at the microelectrode.
(F, Bottom) Comparison of corrected GCaMP ΔF/F and the best fit of MUA
convolved with the gamma function in D (correlation coefficient, 0.86).
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awake, resting-state trial. Increased [HbT] and [HbO] and de-
creased [HbR] can be seen to occur following peaks in the GCaMP
signal (black arrows), consistent with stimulus-evoked functional
hyperemia (27). Although the need to correct GCaMP fluorescence
measurements for hemodynamic contamination is a potential con-
found, these time sequences underscore that patterns of neural
activity are detected many frames before hemodynamic changes, yet
are clearly coupled to spatially-correlated hemodynamics.
Changes in [HbR] are the primary contributor to the fMRI

BOLD signal (28). However, [HbR] can be affected by changes in
oxygen consumption, blood flow, and blood volume, making it
ambiguous to interpret. Conversely, Δ[HbT] represents a change
in the concentration of blood in tissue, independent of local
changes in oxygenation, and thus should provide a more pure
measure of a physical change in vascular tone. Calculating the
average peak amplitude of the cross-correlation between Δ[HbR]
and Δ[HbT] across anesthetized resting-state trials and mice
(allowing for relative temporal delays), we find a −0.86 ± 0.10
(n = 6 mice) correlation between Δ[HbT] and Δ[HbR]. This
result suggests that, as in stimulus-evoked fMRI, the driving
component of changes in [HbR] in the resting state are evoked
increases in local blood flow causing increased oxygenation [leading
to positive BOLD responses (27)] rather than modulations in oxy-
gen consumption. Analysis here thus focuses on [HbT] dynamics
rather than [HbR], in order to examine physical coupling of vascular
modulations to neural activity.

Analysis of Spatiotemporal Neurovascular Coupling. Although a
qualitative relationship between neural activity and hemodynamics
can be appreciated from the data shown in Fig. 2, a more quan-
titative approach is needed to evaluate the properties of resting-
state neurovascular coupling. A commonly used approach is to
assume a linear model of neurovascular coupling, such that he-
modynamics would correspond to the convolution of neural activity
and a gamma-shaped hemodynamic response function (HRF) (29,
30). Here, three different strategies were developed to test this

linear relationship: gamma-variate fitting, deconvolution, and spike-
triggered averaging.
Gamma-variate fitting analysis has been performed previously

to analyze stimulus-evoked neurovascular coupling data (30–32).
Here, a three-parameter gamma-variate function was used to ap-
proximate an HRF. Parameters were optimized to yield the best-fit
(minimized least-squares error) between measured Δ[HbT] and
the HRF convolved with corrected GCaMP-based recordings of
neural activity (30, 33). The resulting best-fit HRF at each pixel
was then convolved with the GCaMP time course of that pixel and
compared with measured Δ[HbT] at the same position using
Pearson’s correlation coefficient to quantify goodness of fit. Unlike
correlation-based analysis of LFP band power (15, 34, 35), this
method assumes a clear linear model of neurovascular coupling
where excitatory activity is expected to generate a proportional,
localized increase in [HbT] (local hyperemia).
Deconvolution is an alternative approach that similarly assumes

a linear convolved model of neurovascular coupling but does not
impose constraints on the temporal shape of the convolved HRF.
A diagonal loading method was used to deconvolve each pixel of
Δ[HbT] data from corrected GCaMP data, yielding a similar
spatially resolved HRF for each dataset. The resulting HRF at
each pixel was then temporally cropped and reconvolved with the
pixel’s GCaMP time course, and compared with the pixel’s mea-
sured Δ[HbT] using Pearson’s correlation.
Spike-triggered averaging (15, 36) was also used to demonstrate

the form of coupling between resting-state neural events and he-
modynamic activity independent of GCaMP corrections and
model dependencies as described further below.
Model-based analysis of awake, resting-state data. Fig. 3 shows fitting
results for awake, resting-state mice. For two cortical locations
within the same trial, traces of corrected GCaMP6f are plotted
along with measured Δ[HbT], gamma-variate fit Δ[HbT], and
deconvolution-predicted Δ[HbT]. Before fitting, both GCaMP6f
and Δ[HbT] data were preconditioned using a 0.02-Hz high-pass
filter (HPF) to remove slow drifts, as well as a 2-Hz low-pass filter
(LPF) to reduce physiological noise (although all corrected
GCaMP traces are shown without low-pass filtering). Both fits
show good agreement with measured Δ[HbT] and resemble
characteristic fluctuations of resting-state hemodynamics. HRFs
derived using both methods exhibit similar temporal shapes and
correlation coefficients (Fig. 3C).
Performing fitting analysis for each pixel individually permits

HRFs to vary spatially over the field of view. Fig. 3D shows a map
of the Pearson correlation coefficient between measured and
gamma-variate modeled Δ[HbT], and maps of optimized fit
parameters (gamma function amplitude AH, peak time TH, and
width WH) from the same trial shown in Fig. 3B. Fit parameters
vary somewhat across the cortex, with A tracing the distinct shapes
of the cortical arteries reflecting the higher amplitude contribution
of surface vessels to WFOM hemodynamics (18, 37).
Fig. 3E shows a sequence of images from the same trial including

corrected GCaMP6f, measuredΔ[HbT], the best-fit (gamma-variate)
prediction of Δ[HbT], and fit residuals over the full field of view.
Even though the spatial patterns of neural activity have a much faster
pace compared with the observed hemodynamics, convolution of the
GCaMP signal with fitted HRFs yields a predicted Δ[HbT] that is a
close match to the measured Δ[HbT] dynamics. Both increases and
decreases in Δ[HbT] are accurately modeled from the observed in-
creases and decreases in excitatory neural activity. Movies S2 and S3
show the full 60 s of this trial with gamma-variate and deconvolution
models, respectively.
Equivalent analysis was performed for all nonrunning epochs

lasting >30 s from six awake mice, each imaged multiple times on
different days (two recording days were removed owing to exces-
sive motion artifacts). To summarize fit quality across all trials and
all mice, a region over the somatosensory cortex was binned to
16 × 16 pixels (equivalent to a 1-mm2 region) and analyzed using
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Fig. 2. Wide-field imaging of GCaMP fluorescence and hemodynamic activity
in the awake mouse brain. (A) (Top) Consecutive maps of corrected GCaMP6f
ΔF/F showing spontaneous, symmetric events across the bilaterally exposed
cortex of an awake mouse and (Bottom) concurrent maps of hemodynamics
(given by Δ[HbT]) showing similar spatial patterns (a–c) but with a time delay.
(GCaMP maps show average over each 600-ms window.) (B) Schematic and
example of chronic bilateral thinned-skull window imaged in awake animals.
Grayscale image shows raw fluorescence; star indicates bregma. (C) Time
courses of simultaneously acquired resting-state GCaMP6f ΔF/F (black), Δ[HbO]
(red), Δ[HbR] (blue), and Δ[HbT] (green) are shown from the two regions
marked in B. Dotted lines indicate neural events with arrows indicating corre-
sponding hyperemias given by increased Δ[HbO], Δ[HbT], and decreased
Δ[HbR].
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both deconvolution and gamma-variate fitting. Fig. 3F shows average
Pearson’s correlation coefficients and their standard deviations over
these regions for individual trials in chronological order for the
deconvolution model (see Fig. S3 for gamma-variate equivalent).
The overall distribution of averaged correlation coefficients across
trials, days, and animals is also shown. Correlation coefficients
ranged from 0.3 to 0.9, with an average across all animals and

trials of 0.63 ± 0.02 over six animals (0.53 ± 0.03 for gamma-
variate fitting, where the temporal shape of the HRF is more
constrained).
Fig. S4 shows additional examples of time courses and fits

from three different awake animals, comparing trials that yielded
higher and lower correlation coefficients. In all cases, general
trends are well modeled, whereas noise, motion artifacts, and
low hemodynamic variance can be seen to degrade fit correlation
coefficients. Fig. S5 shows time series fits for different cortical
locations within the same trials, demonstrating that hemody-
namics are well predicted by local neural activity and evenly
correlated across the cortex.
Frequency dependence of neurovascular correlations. Mathematically,
convolution of a broadband signal with a gamma function will act
primarily as a low-pass filter, integrating faster activity into a
moving average over time. The fits above thus suggest that a low-
frequency component of resting-state neural activity accounts for
resting-state hemodynamic fluctuations. The frequency depen-
dence of the cross-correlation between corrected GCaMP6f and
[HbT] data was assessed by bandpass filtering (BPF) both datasets
with a 0.35-Hz sliding frequency-domain window from 0.035 to
5.2 Hz with an increment of 0.035 Hz. The peak amplitude and
phase delay of the cross-correlation between neural activity and
hemodynamics for each frequency band was calculated for all awake
resting-state epochs in all animals. Peak correlations were found at
a frequency of around 0.21 Hz, decreasing both toward 0 Hz and
above 0.4 Hz (Fig. 4A). The average temporal delay of the cross-
correlation at 0.21 Hz was 0.86 ± 0.05 s across all animals repre-
senting the phase shift between neural activity and [HbT] (Fig. 4B).
As a simple demonstration of this result, Fig. S6 and Movies

S4 and S5 show Thy1-GCaMP6f data low-pass filtered at 0.4 Hz.
A clear correlation to [HbT] is seen, with an evident phase delay.
Strong correlations within the 0- to 0.4-Hz frequency band imply
that hemodynamics act as a temporal integrator of neural spiking
activity. The clear time shift further confirms that HRF-based
fitting results do not originate from hemodynamic cross talk or
the correction of GCaMP fluorescence.
Model-based analysis of anesthetized resting-state data. In urethane-
anesthetized Thy1-GCaMP3 animals (n = 6), data were acquired
using both bilateral and unilateral thinned-skull windows
(unilateral with simultaneous electrophysiological recordings).
Model-fitting analysis was performed using the full 180-s dura-
tion of each imaging trial. Because anesthesia caused much
higher variability in physiological state, mice were excluded from
analysis if poor physiological state led to nontypical patterns of
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Fig. 3. Spatiotemporal modeling of hemodynamics from wide-field Thy1-
GCaMP6f recordings in the awake, resting brain. (A) Field of view under blue
illumination. (B) Sixty-second examples of awake, resting-state GCaMP6f ΔF/F
time courses (after hemodynamic correction) with simultaneously recorded
Δ[HbT] from the two regions indicated in A (same trial). Red and blue traces
show the results of convolving corrected GCaMP fluorescence with hemody-
namic response functions (HRFs) derived via deconvolution or gamma-variate
fitting, respectively. (C) Deconvolved HRF and best-fit gamma-variate HRF for
the time series shown in B illustrating the amplitude AH, time of peak as TH,
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Gamma-variate HRF best-fit parameters (AH, TH, andWH) for the trial shown in
B. (E) Example epoch, top row: corrected Thy1-GCaMP6f ΔF/F; second row:
Δ[HbT]; third row: gamma-variate model fit to Δ[HbT] based on the GCaMP
signal; bottom row: fit residuals. Arrows highlight specific neural events that
are mirrored in later hemodynamics. Movies S2 and S3 show the full time
sequence for this trial for gamma-variate and deconvolution fits, respectively.
(F) Plot of mean average and SD [over 16 × 16 regions (1 mm2) over S1]
Pearson’s correlation coefficients for the deconvolution model for all resting-
state epochs in all six mice (histogram at Right shows overall distribution for all
trials). Values are chronological with dotted lines indicating different days and
colors indicating different mice, M1–M6.
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neural activity or hemodynamics, or if physiological monitoring
implied poor health.
An example of analysis on a urethane-anesthetized mouse

exhibiting a high overall correlation coefficient is shown in Fig. S7.
Both gamma-variate and deconvolution models show excellent
agreement with measured Δ[HbT] values, with Pearson’s corre-
lation coefficients of 0.89 and 0.85, respectively.
However, other anesthetized trials yielded poorer fits. A trial

with a correlation coefficient of 0.19 is shown in Fig. 5B. The
measured Δ[HbT] time course in this case exhibits a large decrease
in [HbT] in the middle of the trial that is not accounted for in
either deconvolution or gamma-variate–based model fitting. High-
pass filtering of hemodynamic time courses at 0.04 Hz was found
to remove these slow trends, yielding resting-state hemodynamics
that more closely resemble those seen in awake data. Performing
deconvolution and gamma-variate fitting after 0.04-Hz high-pass
filtering of both GCaMP and Δ[HbT] data dramatically improved
fit correlation coefficients as shown in Fig. 5C (Movie S7 shows this
fit sequence, while spatial patterns of fit parameters for this trial
are shown in Fig. S8). Repeated across all anesthetized animals,
fitting before and after <0.04-Hz slow-trend removal, the average
correlation coefficients across all anesthetized animals and trials
improved from 0.44 ± 0.05 to 0.68 ± 0.04 for gamma variate fitting
and 0.41 ± 0.06 to 0.70 ± 0.03 for deconvolution (P = 0.005 and
P = 0.006, respectively; n = 6; paired t test) (Fig. 5 F and G).
Fig. S8 provides additional examples of urethane-anesthetized

Δ[HbT] fits following 0.04-Hz high-pass filtering, comparing
trials with different levels of correlation coefficient. Fig. S9 shows
successive trials from one animal over a 4-h period, demonstrating
that, despite clear changes in the nature of the resting-state neural
activity, hemodynamics provide an equivalent representation of
this activity, including almost no hemodynamic variability during
dense firing (consistent with HRF convolution).
Spatial properties of <0.04-Hz slow trends. It is possible to visualize
the spatiotemporal properties of <0.04-Hz slow hemodynamic
trends. Fig. 5D maps 0.04-Hz low-pass–filtered frames across the
duration of the large decrease in [HbT] seen in Fig. 5B, showing
a large trend across the field of view with a clear structure of pial
arterioles. Fig. 5E shows a shorter epoch, separating frequency
components of Δ[HbT] below and above 0.04 Hz, and demon-
strates that faster [HbT] components >0.04 Hz are still modeled
by gamma-variate fitting to Thy1-GCaMP3 data during slow he-
modynamic trends (Movie S8 shows equivalent data), whereas
frequencies <0.04 Hz show vascular detail consistent with arterial
dilations and constrictions across the field of view. Fig. S10 repeats
this analysis for multiple urethane-anesthetized animals. In all
cases, slow trends in Δ[HbT] are not well predicted by Thy1-
GCaMP data and have vascular structure. In animals with bilateral
cortical exposures, slow trends exhibit bilateral symmetry.
Slow trends in awake vs. anesthetized animals. To determine whether
slow hemodynamic trends are unique to urethane anesthesia,
<0.04-Hz slow-trend removal analysis was repeated on all awake
data (Fig. S11 shows all analysis in Fig. 3 repeated after >0.04-Hz
HPF). With the caveat that awake but nonrunning data epochs
were shorter in duration (30–60 s), and thus trends <0.033 Hz may
not be fully represented, high-pass filtering awake data at 0.04 Hz
before fitting had a much smaller effect on fit correlation coeffi-
cients than for anesthetized data (Fig. 5G) (average correlations
changed from 0.51 ± 0.02 to 0.58 ± 0.02 for gamma-variate fitting
and 0.64 ± 0.01 to 0.63 ± 0.01, n.s. P = 0.63, for deconvolution, all
for n = 6, paired t test. Fig. 5H shows that high-pass filtering at
0.04 Hz removes significantly more variance from anesthetized
data than data acquired in the awake brain (P = 0.015; n = 6;
paired t test).

Comparison of Resting-State Coupling in Awake and Anesthetized
States. HRFs generated in awake and anesthetized conditions
across all trials and mice, calculated using both gamma-variate
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Fig. 5. Analysis of urethane-anesthetized animals and the presence of slow
hemodynamic trends. (A) A smaller, unilateral window over S1. (B) Time
courses of original Δ[HbT] and Thy1-GCaMP3 fluorescence (2-Hz LPF only) with
“best-fit” deconvolution and gamma-variate fits. Yellow shows <0.04-Hz slow
trend in [HbT]. (C) Plots as in B after 0.04- to 2-Hz bandpass filtering (BPF) of
both [HbT] and GcaMP3 fluorescence to remove slow trends yielding improved
fits. (D) Image sequence showing <0.04-Hz component of Δ[HbT] from 40 to
170 s for the same trial. (E) Image sequence from 57 to 63 s showing from Top
to Bottom: original [HbT] (<2-Hz LPF), slow trend [HbT] (<0.04-Hz LPF), [HbT]
>0.04- to 2-Hz BPF, gamma-variate fit to 0.04- to 2-Hz BPF Δ[HbT] from 0.04 to
2-Hz BPF-corrected GCaMP3. (F) Mean average Pearson’s correlation coeffi-
cients and SD over S1 for deconvolution model for all anesthetized animals
(M1–M6) before (circles) and after (crosses) >0.04-Hz HPF of [HbT] and GCaMP3
fluorescence. Histogram to Right shows summary distributions for before
(white) and after (gray) >0.04-Hz HPF. Gamma-variate fit results shown in Fig.
S7. (G) Pearson’s correlation coefficients for gamma-variate fitting with only a
2-Hz LPF and after 0.04- to 2-Hz BPF of Δ[HbT] for both anesthetized and
awake data for each mouse. n.s., P = 0.05. (H) SD of Δ[HbT] (2-Hz LPF) over
time before and after >0.04-Hz HPF for awake and anesthetized data.
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fitting and deconvolution, are compared in Fig. 6. The HRF in
awake Thy1-GCaMP6f animals (using 0.02- to 2-Hz BPF) was
consistently found to have a shorter time to peak (P < 0.005 for
both models) and a narrower peak than anesthetized Thy1-
GCaMP3 mice (0.04- to 2-Hz BPF) (Fig. 6C) (P < 0.005 for both
models, double-sided Student’s t test; n = 6). These temporal
features agree well with stimulus-evoked HRFs measured in
awake and urethane-anesthetized rats (31), including the obser-
vation of stronger poststimulus undershoots in the awake state
(38). Differences cannot be accounted for by the minimal (<0.1-s)
difference between the temporal properties of these two GCaMP
types, as demonstrated in Fig. 1 and Fig. S1 (25). However, HRF
amplitudes between awake (all GCaMP6f) and anesthetized (all
GCaMP3) conditions are not compared for this reason. Higher
variance of HRF parameters in anesthetized animals may be due
to the more widely varying physiological states of the animals
during acute experiments compared with robust HRFs in awake
animals (Fig. 6B).
Spike-triggered averaging was also performed on data from

both awake and anesthetized mice, averaging hemodynamic
changes in [HbT], [HbO], and [HbR], corresponding to events
identified within resting-state GCaMP recordings (Fig. 6D) (36).
This method is not constrained to an expected hemodynamic model
and was performed on GCaMP data without hemodynamic cor-
rection, and without high or low-pass filtering of hemodynamic
data. Results show clear correlated increases in [HbT] and [HbO]
with decreases in [HbR], consistent with functional hyperemia, and
agree well with the properties of awake and anesthetized HRFs
modeled by gamma-variate fitting and deconvolution (Fig. 6D).
The anesthetized response agrees well with results reported in
resting-state, urethane-anesthetized rats (36). Spike-triggered av-
eraging provides strong, independent evidence that spontaneous
neural activity in the resting-state awake or anesthetized brain is
coupled to local, correlated functional hyperemia.

Discussion
This study used wide-field optical imaging of both neural GCaMP
and cortical hemodynamics in awake and anesthetized mice to vi-
sualize underlying neural correlates of resting-state hemodynamics.
Electrophysiological recordings demonstrated that measured Thy1-
GCaMP signals (after hemodynamic correction) could be pre-
dicted from MUA, corresponding to spiking of excitatory neurons.
Thy1-GCaMP imaging of the bilaterally exposed cortex revealed
rapidly changing patterns of symmetric, spontaneous resting-state
neural activity in both awake and anesthetized conditions.These
patterns of neural activity were shown to predict resting-state he-
modynamics across the cortex via a linear HRF-based convolution.
Both gamma-variate and deconvolution-based fitting performed
well, although slow hemodynamic trends in some anesthetized
animals (<0.04 Hz) were not well predicted by Thy1-GCaMP re-
cordings. Together, these results demonstrate that successive hy-
peremias coupled to distinctive patterns of neural network activity
are a major contributor to resting-state hemodynamics.

Comparison with Prior Studies of Resting-State Neurovascular
Coupling. Prior studies exploring resting-state neurovascular cou-
pling have reported relatively low correlations between fMRI
BOLD signals and electrophysiological recordings, typically
around 0.3 (15–17). We attribute the higher correlation values
shown here to a number of factors: (i) high-speed wide-field
GCaMP imaging acts as a spatiotemporal integrator, averaging
ensemble activity of multiple neurons at a given site and over the
time between measurements. The use of Thy1-GCaMP mice en-
abled selective sensitivity to spiking activity in excitatory neurons,
without contributions from other brain cells, other types of elec-
trical activity, or interference from confounds such as simulta-
neous fMRI acquisition. This integration and selectivity combined
might more readily reveal correlations and trends between distant

groups of neurons that cannot be appreciated from single-unit
recordings, or two-photon microscopy observations of small, uni-
lateral fields of view. (ii) Improvements in GCaMP, illumination
sources, and cameras enabled high-speed, large–field-of-view im-
aging of spontaneous neural activity and concurrent hemody-
namics with good signal-to-noise with no averaging. The resulting
clear view of patterns of bilaterally synchronous spontaneous
neural activity in the awake brain ensure that signals are not con-
taminated by movement artifacts or other experimental confounds,
which can be difficult to distinguish in single-point measures. (iii)
The analysis approach used here assumed a neurovascular coupling
model in which neural events would (directly or indirectly) evoke a
stereotyped Δ[HbT] response, a model with a strong physiological
basis (28). HRF parameters were allowed to vary over the cortex to
account for expected differences in the dynamics of different vessel
types (18, 37, 39, 40). It should be noted that best-fit HRFs were
generated for each run and were not assumed to stay constant over
time. Our methods therefore test the goodness of fit of an HRF-
based linear convolution model but do not cross-validate this
model assuming a time-invariant HRF. Finally, analysis focused on
modeling Δ[HbT] rather than Δ[HbR], assuming a linear neuro-
genic hyperemia model and removing the need to account for
oxygen consumption as another variable (although Δ[HbT] was
shown to be strongly correlated to Δ[HbR], and thus anticipated
BOLD signals). (iv) fMRI data are typically acquired at <0.5-Hz
volume rates, although longer epochs give access to lower frequencies
than examined here. Our HRF analysis revealed that the awake
mouse brain has a temporally narrow resting-state hemodynamic
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response, and frequency-dependent correlation analysis revealed a
peak correlation at 0.21 Hz. The temporal resolution of prior
fMRI comparisons may thus not have been sufficient to capture
hemodynamic coupling at its peak correlated frequency. (v) The
removal of hemodynamic cross talk and baseline trends was found
to be important in performing fitting analysis. Slow hemodynamics
trends seen in some anesthetized animals strongly degraded fitting
and correlations. Bilateral imaging enabled the different spatio-
temporal patterns of slow trends to be distinguished from higher-
speed events predicted by GCaMP imaging.
Together, these factors combined to yield fits across multiple

trials and animals exceeding correlations of 0.8 in both awake
and anesthetized states.

What Do Observed Patterns of Spontaneous Neural Activity Represent?
Wide-field Thy1-GCaMP imaging revealed bilaterally symmetric,
synchronous fluctuations in neural activity across the brain, in both
awake and anesthetized states, which were shown to be spa-
tiotemporally coupled to resting-state fluctuations in hemody-
namics (Movies S2, S3, and S7). Previous reports using both
voltage-sensitive dyes and wide-field GCaMP imaging have
noted similar bilaterally symmetric cortical patterns of neural
activity, inferring functional connectivity between temporally
correlated regions (26, 41). Kozberg et al. (19) demonstrated
the transition of spontaneous cortical neural events from uni-
lateral to bilateral in mice between postnatal day 7 (P7) and
P14, a period of postnatal development where transcallosal
axonal projections are establishing, suggesting a direct link
between neural activity patterns and physical networks. Wide-
spread correlations and apparent waves of activity given by
correlations between fMRI and discrete LFP recordings have
also been noted in the primate brain (16). However, the origin
and the physiological meaning of these patterns of neural ac-
tivity remain controversial (42).
Waves and bursts of neural activity in the cortex are typically

reported under conditions of non-rapid eye movement sleep (43),
anesthesia (urethane, ketamine), and quiet wakefulness (41, 44).
Such events are characterized by alternating subthreshold cortical
membrane depolarization and hyperpolarization (UP/DOWN
states), slow-wave activity that has been associated with memory
consolidation (45), and shaping responses to incoming stimulation
(46). Although electrophysiological recordings in both animals (12,
47) and awake human subjects (13) have demonstrated symmetry
of spontaneous neural activity, characterization of brain-wide
patterns of spontaneous neural activity in the awake brain has
been limited (14).
We propose that resting-state neural fluctuations observed

here might represent modulations in local excitability within
specific functional circuits. A modulation in excitability would
increase the likelihood of neuronal firing within a region, but
would not necessarily cause the same neuron to fire each time
excitability increased. This mechanism could explain why neural
network correlations are less evident in cellular-level recordings
but are clear in spatiotemporally-integrated wide-field Thy1-
GCaMP recordings.
Examining raw Thy1-GCaMP traces and movies (e.g., Movie

S4), symmetric neural patterns can be seen to change rapidly
from frame to frame. However, a clear enveloping of neural
activity can also be seen in most cases, where neural events pe-
riodically become more frequent or cluster to form higher am-
plitude GCaMP signals, preempting subsequent increases in
local [HbT]. Fig. S9 shows how this slow enveloping is essential
to observe hemodynamic variance. Frequency-resolved cross-
correlations (Fig. 4) confirm that hemodynamics and GCaMP
share a low frequency component from which neurovascular
correlations arise (48) (although we note from Movie S4 that
higher frequency coherence between neural activity in functionally-
connected regions is also evident).

A relationship between this neural enveloping and rhythmic
neocortical UP and DOWN states may relate the detectability of
functional connectivity networks to brain state (13). Synchroni-
zation of activity in the LFP gamma band during UP states (49)
might explain previous findings of correlations between gamma
band LFP and fMRI signals (15, 17, 35). However, since Thy1-
GCaMP measurements provide sensitivity to spiking activity,
with no expected representation of subthreshold membrane
potential, our results demonstrate that resting-state hemody-
namics result from a pathway of events that includes modulation
in the spike rate of excitatory neurons, an effect that may be
causally or otherwise coupled to modulations in gamma band
LFP (16).
It should also be noted that our results do not exclude the

contribution of other cellular activity to resting-state hemody-
namics. Interneurons, for example, have been implicated to play
a role in neurovascular coupling (38, 50), although there has also
been significant debate regarding the BOLD response that
should result from interneuron activation (51–54). Our results
demonstrate that the activity of excitatory neurons is correlated
to resting-state hemodynamics. However, any other form of
cellular activity in the brain that is spatiotemporally coupled to
neural spiking could thus also be correlated to resting-state he-
modynamics. For example, spontaneous interneuron activity
could feasibly be correlated to the modulation of excitatory
neural activity and could therefore share a correlation with
resting-state hemodynamics. This possibility also underscores
that correlation does not imply causality. Similarly, synchronous
activation of astrocytes, pericytes, or interneurons in the context
of neurovascular coupling could contribute to the properties of
the HRF, with the delayed undershoot observed in our awake,
deconvolved HRFs (Fig. 6A) being particularly interesting in the
context of interneuron involvement (38). Thus, although our
studies here focused on correlations between excitatory neural
activity and resting-state hemodynamics, further work is needed
to chart the cellular pathways and dependencies of both neuro-
modulation, and neurovascular coupling in the resting state.

Effects of Anesthesia and Slow Hemodynamic Trends. Despite dif-
ferences in the temporal shape of HRFs between urethane-anes-
thetized and awake mice, our results demonstrate that resting-state
coupling between excitatory neurons and hemodynamics is intact
in both conditions. In some cases, anesthetized animals were found
to exhibit large, slow (<0.04-Hz) hemodynamic trends that were
not well predicted by simultaneous GCaMP recordings. However,
despite poor fitting, these periods did not represent complete
“uncoupling,” because removal of the slow hemodynamic com-
ponent using a 0.04-Hz HPF left residual hemodynamics that
could still be well predicted by local GCaMP fluctuations.
In considering the origin of these slow hemodynamic trends, it

should again be noted that Thy1-GCaMP fluorescence selectively
reports spiking activity in excitatory neurons in layers 2/3 and 5.
Slower hemodynamic trends could thus be driven by other neu-
ronal or cellular components of the brain whose activity is not
spatiotemporally coupled to excitatory neural activity. Many prior
studies have reported that activation or inhibition of structures
such as the basal forebrain (nucleus basalis of Meynert) and the
locus coeruleus (55, 56) can modulate cortical blood flow and
might be expected to have lower spatial specificity, consistent
with the spatial patterns of slow trends shown in Fig. S10.
Pisauro et al. (57) demonstrated “global” hemodynamic fluc-
tuations in awake mice that correlated with pupil diameter,
which infers brain arousal or alertness, whereas similar results
were also found in awake behaving primates by Cardoso
et al. (30). Interneuron subtypes capable of altering blood
flow may also play a role here (50), whereas systemic blood
pressure changes (23), or even activities such as running (58)
and anticipation (59) have been shown to cause blood flow
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modulations. Hemodynamics caused by these mechanisms may
not be driven by the same neural pathways captured through re-
cordings of local cortical spiking in Thy1-GCaMP mice. If the
spatial dependencies of these alternative coupling mechanisms
are different from local coupling, they could feasibly influence
derived functional connectivity networks if present in resting-state
fMRI data.

Implications for Resting-State fMRI. The results presented here
demonstrate the clear presence of network-like, bilaterally-
symmetric spontaneous neural events in the awake and anesthetized
brain that are predictive of spatiotemporal patterns of resting-state
hemodynamics. These findings suggest a firm basis for resting-state
functional connectivity mapping as resolving the properties of net-
work-based modulations in the spike rate of excitatory neurons.
Coupling was most robust in the awake mouse brain, a closer state
to awake human studies than conditions under anesthesia. Model-
based fitting results imply a linear relationship between neural ac-
tivity and hemodynamics in the resting state, although best fits were
achieved using region-specific HRFs (60–63).
However, our ability to visualize excitatory neural activity also

underscored that linearly-coupled resting-state hemodynamics
are accompanied by noise, experimental variance, and additional
hemodynamic trends that might represent other neural, cellular,
or systemic components. Isolation of neurally-coupled signals in
resting-state fMRI data is thus a major challenge. Nonspecific

preconditioning such as low-pass filtering and global regression
could feasibly yield inferred networks with different dependencies
on brain state, physiology, epoch duration, or other components
of brain activity. The results presented here are the first step to-
wards characterizing both the properties and dependencies of
neural network activity and its spatiotemporal coupling to he-
modynamics, and could ultimately yield new, more robust ap-
proaches to fc-fMRI analysis.

Materials and Methods
Simultaneous WFOM of hemodynamics and GCaMP fluorescence data were
acquired on Thy1-GCaMP3 mice (n = 6) under urethane anesthesia, and
awake Thy1-GCaMP6f mice (n = 6). All of the data were processed using a
zero-phase temporal filter. No spatial smoothing was used. All of the results
are expressed as mean ± SEM, unless otherwise stated. For detailed in-
formation, see SI Materials and Methods. All experimental procedures were
reviewed and approved by the Columbia University Institutional Animal
Care and Use Committee.
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61. Yeşilyurt B, Uğurbil K, Uludağ K (2008) Dynamics and nonlinearities of the BOLD

response at very short stimulus durations. Magn Reson Imaging 26(7):853–862.
62. Devor A, et al. (2003) Coupling of total hemoglobin concentration, oxygenation, and

neural activity in rat somatosensory cortex. Neuron 39(2):353–359.
63. Jones M, Hewson-Stoate N, Martindale J, Redgrave P, Mayhew J (2004) Nonlinear

coupling of neural activity and CBF in rodent barrel cortex. Neuroimage 22(2):956–965.
64. Kozberg MG, Chen BR, DeLeo SE, Bouchard MB, Hillman EM (2013) Resolving the

transition from negative to positive blood oxygen level-dependent responses in the

developing brain. Proc Natl Acad Sci USA 110(11):4380–4385.
65. Mayhew J, et al. (1999) Spectroscopic analysis of changes in remitted illumination:

The response to increased neural activity in brain. Neuroimage 10(3 Pt 1):304–326.
66. Kohl M, et al. (2000) Physical model for the spectroscopic analysis of cortical intrinsic

optical signals. Phys Med Biol 45(12):3749–3764.
67. Selesnick I (April 17, 2013) Least Squares with Examples in Signal Processing. OpenStax

CNX. Available at cnx.org/contents/5d13ca71-5821-41d6-a40a-d5278652fc11@1. Accessed

July 24, 2015.
68. Shibuki K, et al. (2003) Dynamic imaging of somatosensory cortical activity in the rat

visualized by flavoprotein autofluorescence. J Physiol 549(Pt 3):919–927.

Ma et al. PNAS | Published online December 14, 2016 | E8471

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S

http://cnx.org/contents/5d13ca71-5821-41d6-a40a-d5278652fc11@1

