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Voltage-gated sodium channels are crucial determinants of neu-
ronal excitability and signaling. Trafficking of the voltage-gated
sodium channel NaV1.7 is dysregulated in neuropathic pain. We
identify a trafficking program for NaV1.7 driven by hierarchical
interactions with posttranslationally modified versions of the bind-
ing partner collapsin response mediator protein 2 (CRMP2). The
binding described between CRMP2 and NaV1.7 was enhanced by
conjugation of CRMP2 with small ubiquitin-like modifier (SUMO)
and further controlled by the phosphorylation status of CRMP2.
We determined that CRMP2 SUMOylation is enhanced by prior phos-
phorylation by cyclin-dependent kinase 5 and antagonized by Fyn
phosphorylation. As a consequence of CRMP2 loss of SUMOylation
and binding to NaV1.7, the channel displays decreased membrane
localization and current density, and reduces neuronal excitability.
Preventing CRMP2 SUMOylation with a SUMO-impaired CRMP2-
K374A mutant triggered NaV1.7 internalization in a clathrin-
dependent manner involving the E3 ubiquitin ligase Nedd4-2
(neural precursor cell expressed developmentally down-regulated
protein 4) and endocytosis adaptor proteins Numb and epidermal
growth factor receptor pathway substrate 15. Collectively, our
work shows that diverse modifications of CRMP2 cross-talk to con-
trol NaV1.7 activity and illustrate a general principle for regulation
of NaV1.7.
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The tetrodotoxin-sensitive (TTX-S) voltage-gated sodium chan-
nel NaV1.7 generates thresholds for action potential firing in

sensory neurons. Genetic and functional studies have established
NaV1.7 as a major contributor to pain signaling in humans and have
demonstrated that mutations in SCN9A, the gene encoding NaV1.7,
produce distinct human pain syndromes (1–4). Pain also results
from up-regulated NaV1.7 expression (5–7); however, dysregulation
of NaV1.7 is poorly understood.
In search of NaV1.7 trafficking/regulatory events, we reported

that surface expression and current density of NaV1.7 was con-
trolled by SUMOylation of the cytosolic axonal collapsin response
mediator protein 2 (CRMP2) (8). CRMP2 regulates multiple pro-
cesses in neurons and was initially discovered to regulate mecha-
nisms of neuronal polarity (9, 10). CRMP2 phosphorylation by
cyclin-dependent kinase 5 (Cdk5) (11), glycogen synthase kinase
3β (10), Rho-associated protein kinase (12), or the Src-family
kinases Fyn (13) and Yes (14) drives its diverse cellular functions,
including neurite outgrowth, endocytosis, and ion-channel traf-
ficking (8, 15–17). Studies of CRMP2 trafficking functions have
revealed that CRMP2 facilitates endocytosis of L1-cell adhesion
molecule by interacting with the endocytic protein Numb (18) that
recruits epidermal growth factor receptor pathway substrate 15
(Eps15), an initiator of clathrin-mediated endocytosis (19).
In neuropathic pain, NaV1.7 surface localization is augmented

by loss of Nedd4-2 (neural precursor cell expressed developmen-
tally down-regulated protein 4), an E3 ubiquitin ligase that labels
NaV1.7 for endocytosis (6). Inspired by these observations, we
tested the hypothesis that a cross-talk between distinct CRMP2
posttranslational modifications is a key factor in determining

NaV1.7 trafficking and localization. Here, we (i) demonstrate a path-
way of NaV1.7 regulation dependent upon CRMP2 SUMOylation
and phosphorylation states, (ii) identify interactions between
CRMP2 and NaV1.7, and (iii) map molecular determinants of
NaV1.7 endocytosis that result from altered CRMP2 interactions.
We also report that the CRMP2-NaV1.7 signaling is conserved
between rodent and human sensory neurons, supporting the excit-
ing possibility that this pathway could be the target of future ther-
apeutic agents aimed at controlling NaV1.7 in patients with
neuropathic pain.

Results
CRMP2 Is Necessary for Maintaining TTX-S Sodium Currents in Sensory
Neurons. If CRMP2 loss of SUMOylation inhibits NaV1.7 activ-
ity, a similar reduction in NaV1.7 currents should be seen if
CRMP2 expression is reduced, particularly if CRMP2 is neces-
sary for maintaining NaV1.7 currents. NaV1.7 currents can be
analyzed by whole-cell patch-clamp electrophysiology of mouse
catecholamine A differentiated (CAD) cells, a central nervous
system-derived catecholaminergic cell line that expresses high
levels of NaV1.7 (20) and isolated dorsal root ganglia (DRG)
sensory neurons responsible for transmission of noxious stimuli
from glabrous skin through the sciatic nerve and to the spinal
cord. A decrease in CRMP2 expression (Fig. S1A) caused a re-
duction in TTX-S sodium currents in rat DRG neurons (Fig. 1A, B)
and in NaV1.7 currents in CAD cells without altering biophysical
properties of the channels (Fig. S1 B–E and Table S1). Notably,
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Understanding the role of cross-talk between CRMP2 modifica-
tions in modulation of NaV1.7 activity opens routes to exploit this
system for pain.
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sodium currents were normalized by “add-back” of a CRMP2 re-
fractory to knockdown (Figs. 1 A and B and S1 A–C), confirming
that CRMP2 is necessary for selectively maintaining TTX-S sodium
currents.

Interplay Between CRMP2 Modifications Selectively Alter NaV1.7
Trafficking. A loss of CRMP2 expression via knockdown (Fig. 1)
or loss of CRMP2 SUMOylation via expression of SUMO-impaired
mutant reduces sodium currents (8), but whether CRMP2 phos-
phorylation events also modulate sodium currents is unknown. To
examine possible priming by CRMP2 modifications in modulation
of NaV1.7 and to identify the relationships between CRMP2
modifications and their effects on NaV1.7, CRMP2 mutants with
SUMO-site impaired, phospho-null sites, or both (Fig. 2A) were
engineered. Consistent with previous findings (8), loss of CRMP2
SUMOylation reduced NaV1.7 surface fraction and currents
(Fig. 2 B, C, and E). NaV1.7 surface localization and current
density were reduced by mutations in CRMP2 at the site phos-
phorylated by Cdk5 (i.e., S522A) but not sites phosphorylated by
other kinases [Fyn (Y32F), Yes (Y479F), GSK-3β (T509A/A514A),
RhoK (T555A)]; Fig. 2 B, C, and E). Expression of WT CRMP2
or SUMO-impaired (i.e., K374A), or phospho-deficient mutants
did not alter NaV1.7 protein expression (Fig. 2D). Concomitant
elimination of CRMP2 SUMOylation and phosphorylation (Cdk5
site) did not further decrease NaV1.7 surface fraction or current
compared with that observed with either mutation alone (Fig. 2
B, C, and E), suggesting a convergent mechanism of modula-
tion. Concomitant elimination of CRMP2 SUMOylation and Fyn
phosphorylation had no effect on NaV1.7 surface fraction or
currents (Fig. 2 B, C, and E), suggesting that Fyn phosphorylation
of CRMP2 is obligatory for eliciting the negative regulation
induced by loss of CRMP2 SUMOylation. These results illus-
trate that at least three different posttranslational modifications of

CRMP2, namely SUMOylation, Cdk5 phosphorylation, and Fyn
phosphorylation, collaborate to control NaV1.7 trafficking and
currents.
The reduction in DRG sodium currents imposed by loss of

CRMP2 SUMOylation and loss of Cdk5 phosphorylation was
limited to NaV1.7, as no changes were observed in TTX-resistant
(TTX-R) currents (predominantly NaV1.8; Fig. 3A) or in non-
NaV1.7 TTX-S (predominantly NaV1.1 and NaV1.6) currents
upon their isolation with electrophysiological and pharmaco-
logical protocols (Fig. 3A). Additionally, hNaV1.1, rNaV1.3, or
the cardiac hNaV1.5 expressed in heterologous cells were also
unaffected by loss of CRMP2 SUMOylation (8) or phosphory-
lation (Table S1).

CRMP2 Modifications Control Excitability of DRG Neurons. NaV1.7
contributes to DRG excitability as evident in human gain-of-
function mutations that increase action potential firing (21), a
phenomenon directly correlated to and underlying transmission
of painful stimuli. Consequently, we tested excitability properties
of DRGs expressing SUMO-impaired or Cdk5 phospho-null
CRMP2. Loss of these CRMP2 modifications reduced evoked
action potential frequency by half (Fig. 3B). Rheobase, the
current required to initiate an action potential, was increased in
cells expressing the Cdk5 phospho-null CRMP2; however, in-
terpretation of this result as dependent on CRMP2 SUMOyla-
tion status or NaV1.7 trafficking is made difficult by previously
described relationships between CRMP2 phosphorylation by
Cdk5 and modulation of N-type voltage-gated calcium (CaV2.2)
channels that may also modulate rheobase (22) (Fig. 3C). The
resting membrane potential, action potential spike height, and
action potential half width were equivalent among all conditions
(Fig. 3 D–F). These findings strengthen the hypothesis that
CRMP2 modifications are linked to NaV1.7 activity.

Biochemical Mapping of CRMP2 Modifications and Binding to NaV1.7.
Next, we asked if CRMP2 modifications influence each other
to choreograph CRMP2’s activity toward NaV1.7. Eliminating
CRMP2 SUMOylation did not affect CRMP2 phosphorylation
(Fig. 4 A and B). In contrast, elimination of the CRMP2 Cdk5
phosphorylation site prevented CRMP2 SUMOylation in CAD
cells (Fig. 4 C and D). Additionally, Cdk5, together with its co-
factor p25, facilitated in vitro SUMOylation of recombinant
CRMP2 (Fig. 4E). Finally, loss of CRMP2 SUMOylation alone
or together with loss of Cdk5 phosphorylation of CRMP2 reduced
NaV1.7–CRMP2 binding (Fig. 4 F and G). Together, these ob-
servations place Cdk5-mediated phosphorylation of CRMP2 up-
stream of SUMOylation to control NaV1.7 surface expression,
current density, and DRG neuron excitability.

Interfering with SUMOylation and Cdk5-Mediated Phosphorylation of
CRMP2 Promotes Clathrin-Mediated Endocytosis of NaV1.7. CRMP2
SUMOylation controls surface, but not total, NaV1.7 expression
(Fig. 2 B–D), suggesting that CRMP2 can relocalize the channel
away from the membrane to produce reduced current densities.
Because CRMP2 interacts with the endocytic adaptor Numb (18)
to regulate L1-cell adhesion molecule internalization via clathrin
mediated endocytosis (19), we asked if loss of CRMP2 SUMOyla-
tion prevents NaV1.7 membrane localization by inducing its en-
docytosis. Pitstop2, a clathrin assembly inhibitor (23), prevented
current density reductions imposed by loss of CRMP2 SUMOyla-
tion or Cdk5 phosphorylation (Fig. 5A), arguing for an involvement
of clathrin-mediated endocytosis in NaV1.7 regulation by CRMP2.
The internalized NaV1.7 relocalized to early (Fig. 5 B and C) and
recycling (Fig. S2 A and B) endosomal compartments when these
CRMP2 modifications were lost. The proteasome inhibitor Lacta-
cystin did not rescue the reduction in NaV1.7 current imposed by
loss of CRMP2 modifications (Fig. S2C), thus ruling out a degra-
dation of the channel. These results identify a trafficking route
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Fig. 1. CRMP2 is necessary for maintaining TTX-S sodium currents in sensory
neurons. Sodium current traces representing TTX-S (A) and TTX-R (C) currents.
Quantitative analysis of TTX-S (B) and TTX-R (D) DRG peak sodium current
densities (picoamps/picofarad; pA/pF). DRG currents were 13.8 ± 4.2 nA
and recorded from cells with conductances of 28.9 ± 9.1 pF. Unless other-
wise indicated, for this and subsequent figures, all data represent mean ±
SEM. Individual data points and n values are indicated by diamonds over-
laid on the bar graphs [n = 5–7; *P < 0.05 vs. knockdown-resistant (kdres)
CRMP2; #P < 0.05, Kruskal–Wallis test with Dunnett’s post hoc compari-
sons]. Voltage protocols and post hoc subtraction used to investigate DRG
cell peak TTX-R and TTX-S currents are described in SI Materials and
Methods.
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followed by NaV1.7 under control of CRMP2 modifications and
demonstrate that CRMP2’s activity toward NaV1.7 involves
clathrin-mediated endocytosis.

CRMP2 Recruits an Endocytic Complex to Down-Regulate NaV1.7.
Having demonstrated that CRMP2 regulates endocytosis of
NaV1.7, we next investigated the molecular mechanism involved.
CRMP2 reportedly controls trafficking of membrane proteins
and vesicles (8, 15, 18). As NaV1.7 endocytosis requires mono-
ubiquitination by the ubiquitin ligase Nedd4-2 (24) and Numb—a
CRMP2 protein partner acts as a scaffold between Nedd4 (25)
and the endocytic machinery (19)—we hypothesized that re-
cruitment of these proteins by CRMP2 may promote NaV1.7
internalization. Additionally, Numb can recruit Eps15 (19, 26, 27).
Together, these proteins compose the machinery required to mark
a protein for endocytosis (28) and initiate clathrin-mediated en-
docytosis by enabling interactions between Eps15 and a mono-
ubiquitinated cargo. To test this hypothesis, we examined CRMP2
interactions with endocytic proteins Numb and Eps15 and Numb-
interacting E3 ubiquitin ligases Nedd4-2 and Itch (29). Loss of
CRMP2 SUMOylation, but not Cdk5-mediated phosphorylation or
simultaneous loss of both modifications, increased CRMP2’s asso-
ciation with each of these proteins (Fig. 5 D and E). If these
CRMP2-interacting proteins participate in NaV1.7 internalization,
eliminating their expression should prevent CRMP2-mediated re-
ductions of current density. Indeed, following specific reduction of
these CRMP2-interacting proteins (Fig. S3 A and B), the inhibition
in NaV1.7 currents forced by loss of CRMP2 modifications was
rescued (Fig. 5F). Taken together, our data support the conclusion
that CRMP2 association with proteins Numb, Eps15, and Nedd4-2
triggers endocytosis of NaV1.7 (Fig. 5G).

Hierarchical Interactions Between CRMP2 Modifications Modulate
NaV1.7 Endocytosis. To further investigate the underlying mech-
anism by which CRMP2 Cdk5 phosphorylation and SUMOylation
control NaV1.7 endocytosis and current density, Cdk5 phosphory-
lation levels were enhanced with a Cdk5 site phospho-mimetic
CRMP2 (i.e., pseudophosphorylated) mutant or overexpression of
Cdk5 itself. CRMP2 SUMOylation was unaffected by mimicking
constitutive phosphorylation by Cdk5 (Figs. 6 A and B and S4 A and
B). Whereas CRMP2 loss of SUMOylation decreased NaV1.7–
CRMP2 interaction (Fig. 4 F and G), mimicking constitutive
phosphorylation by Cdk5 prevented this effect (Figs. 6 A and B and
S4 A and B). Supporting these results, mimicking constitutive Cdk5
phosphorylation in CAD cells and in DRG neurons prevented loss
of NaV1.7 currents imposed by non-SUMOylated CRMP2 (Figs. 6
C andD and S4C). Finally, inhibition of NaV1.7 currents by a Cdk5
phosphorylation-deficient CRMP2 mutant (CRMP2-S522A;
Figs. 2E and 3A) was refractory to rescue by simultaneous Cdk5
overexpression (Fig. S4C). These outcomes demonstrate domi-
nance of CRMP2 Cdk5 phosphorylation over SUMOylation in
control of NaV1.7 currents.
Cdk5 phosphorylation of CRMP2 could regulate NaV1.7

trafficking by preventing assembly of a CRMP2-endocytic com-
plex. To test this hypothesis, interactions between CRMP2 and
Numb, Eps15, or Nedd4-2 were examined. Mimicking constitu-
tive phosphorylation of CRMP2 by Cdk5 (Fig. 6 E and F) and
overexpression of Cdk5 inhibited the CRMP2–Numb interaction
(Fig. S4 D and E). Furthermore, enhanced interactions between
non-SUMOylated CRMP2 and Numb, Eps15, or Nedd4-2 (Fig. 5
D and E) were prevented by constitutive phosphorylation of
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CRMP2 by Cdk5 (Fig. 6 E and F and Fig. S4 D and E). These
findings identify that a non-SUMOylated, nonphosphorylated
(by Cdk5) CRMP2 recruits Numb to trigger NaV1.7 endocytosis
(Fig. 6G) and illustrate that CRMP2’s activity on NaV1.7 is nega-
tively regulated by Cdk5 phosphorylation of CRMP2.

Antagonism Between CRMP2 Fyn Phosphorylation and SUMOylation
Contributes to NaV1.7 Endocytosis. Simultaneous loss of Fyn phos-
phorylation and SUMOylation of CRMP2 overcame the NaV1.7
current reduction imposed by loss of SUMOylation alone (Figs. 2E

and 7A). Although loss of Fyn phosphorylation did not change
CRMP2’s SUMOylation state (Fig. S5A), it prevented the loss of
binding to NaV1.7 imposed by loss of SUMOylation (Fig. S5B).
Concomitant loss of Fyn phosphorylation and SUMOylation of
CRMP2 suppressed the internalization of NaV1.7 imposed by loss
of SUMOylation alone (Fig. 2 B and C). Loss of Fyn phosphory-
lation prevented the increased binding to Numb, Eps15, and Nedd4-2
imposed by loss of CRMP2 SUMOylation (Fig. S5 C and D).
Thus, loss of Fyn phosphorylation is dominant over CRMP2
SUMOylation in the control of NaV1.7 internalization.
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To further resolve the hierarchy of CRMP2 posttranslational
modifications in control of NaV1.7, we asked if loss of Fyn phosphory-
lation could be dominant over loss of Cdk5 phosphorylation of
CRMP2. NaV1.7 current reductions induced by (i) SUMO-impaired

CRMP2 mutant; (ii) SUMO proteases SENP1/2, which remove
SUMO from conjugated proteins; or (iii) loss of Cdk5-mediated
phosphorylation were prevented when Fyn phosphorylation was
also eliminated (Fig. S5E). Additionally, a dominant-negative Fyn
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kinase (DNFyn-K299M) (30) normalized the current density re-
ductions observed with loss of CRMP2 SUMOylation or phos-
phorylation (Cdk5 site; Figs. 7B and S5F). Therefore, loss of Fyn
phosphorylation of CRMP2 dominates all CRMP2-dependent
posttranslational modifications that reduce NaV1.7 currents.
To determine the mechanism by which Fyn phosphorylation of

CRMP2 regulates NaV1.7, we next investigated CRMP2
SUMOylation and CRMP2’s interactions with NaV1.7 and en-
docytosis proteins. Overexpression of a competent Fyn kinase in-
creased CRMP2 phosphorylation (at Y32), decreased CRMP2
SUMOylation (Fig. 7C), decreased CRMP2’s interaction with
NaV1.7 (Fig. 7D), and increased CRMP2’s interaction with the
endocytic scaffolding protein Eps15 (Fig. 7 E and F). Because loss of
CRMP2 SUMOylation translates into a reduction in NaV1.7 cur-
rent density (Fig. 2E), likely as a result of a decrease in binding to
NaV1.7 (Fig. 4 F and G), we hypothesized that Fyn-phosphorylated
CRMP2 would lead to a suppression of NaV1.7 currents in CAD
cells and in DRG neurons. As expected, forcing Fyn phosphory-
lation of CRMP2 led to a specific reduction in NaV1.7 currents
compared with cells expressing WT CRMP2 (Fig. 7 G and H).
Forcing Fyn phosphorylation of a SUMO-incompetent CRMP2
did not result in any additional reduction in NaV1.7 currents
(Fig. 7G). Conversely, coexpression of competent Fyn kinase and
a Fyn phosphorylation-incompetent CRMP2 rescued baseline
NaV1.7 current densities (Fig. 7G), directly implicating Fyn phos-
phorylation of CRMP2 in control of NaV1.7 activity.
Next, we manipulated Cdk5 phosphorylation of CRMP2 to

further dissect the interplay between CRMP2 posttranslational
modifications in control of NaV1.7. Loss of Cdk5 phosphoryla-
tion of CRMP2 together with forcing Fyn phosphorylation did

not result in a further decrease of NaV1.7 currents, even when
the SUMOylation site was deleted (Fig. 7G). On the contrary,
gain of Cdk5 phosphorylation of CRMP2 was dominant over the
gain of Fyn phosphorylation of CRMP2 (Fig. 7G), and this effect
occurred regardless of CRMP2’s SUMOylation status. Loss of
NaV1.7 currents imposed by forcing Fyn phosphorylation of WT
CRMP2 in DRG neurons was normalized by inhibition of clathrin
mediated endocytosis with Pitstop2 (Fig. 7H). Under no condi-
tions were the biophysical properties of NaV1.7 channels changed
(Table S1). Thus, CRMP2-dependent internalization of NaV1.7
requires the simultaneous gain of Fyn phosphorylation coupled
with loss of Cdk5 phosphorylation of CRMP2, which result in
reduced SUMOylation of CRMP2 (Fig. 7I) and NaV1.7 endocy-
tosis (Fig. 7J). These three posttranslational modifications co-
ordinate CRMP2’s activity toward NaV1.7.

CRMP2 Modulation of NaV1.7 Currents Is Maintained in Human DRGs.
The relationship between CRMP2 posttranslational modifications
and NaV1.7 currents in human DRGs has not been defined. Vali-
dating the relationships between CRMP2 posttranslational modifi-
cations and NaV1.7 trafficking in humans is critical to understanding
the mechanistic underpinnings of channel dysregulation in human
disease and the eventual translation of cell signaling studies to pre-
clinical models. Therefore, human DRGs were obtained and trans-
fected with SUMO-impaired or phospho-null CRMP2 mutants
(Fig. 8A), and sodium currents were recorded. Appropriately com-
pensated recordings did not reveal any differences in biophysical
channel properties (Fig. S6 A–C), and use-dependence was un-
affected (Fig. S6 D and E). Importantly, both the total (Fig. 8 B and
C) and the TTX-S fraction (Fig. 8D and E) of sodium currents were
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decreased by loss of these CRMP2 modifications in human DRGs.
The congruence between CRMP2 modulation of sodium currents in
rat and human DRGs validates the CRMP2-NaV1.7 signaling model

(Fig. 9 A and B) and provides a strong mechanistic understanding
from which future studies can target CRMP2-NaV1.7 interactions in
preclinical animal models of human pain syndromes.
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Discussion
The present findings make a compelling case for targeting
CRMP2 posttranslational modifications, loss of which selectively
attenuates NaV1.7 currents and dampens nociceptor excitability, as
a pathway for development of therapeutic agents for the treatment
of neuropathic pain. Although CRMP2 posttranslational modifi-
cations serve to direct protein activity to a variety of functional
cellular processes, CRMP2 SUMOylation does not feed back onto
CRMP2 phosphorylation as evident by unchanged CRMP2 phos-
phorylation between WT and K374A mutant CRMP2 (Fig. 4 A and
B). Therefore, although posttranslational modifications codify

a molecular language that instruct CRMP2 to positively or
negatively influence NaV1.7 surface expression, a direct interven-
tion of CRMP2 SUMOylation has potential to attenuate pain states
without modifying CRMP2 phosphorylation or other functions of
CRMP2. It may also be possible that the CRMP2-NaV1.7 traf-
ficking pathway dissected in our work (Fig. 9), which is congruent
between rodent and human DRGs, is dysfunctional within human
disease pain states and contributes to nociceptor excitability. Future
studies will aim to dissect if subtle tuning of the CRMP2 modifi-
cations that alter NaV1.7 currents can result in significant reduction
of pain in animal models.
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CRMP2

P SUMO
CRMP2 CRMP2

Numb
pS522

1

6

pY32

2 43

Fyn
CRMP2

5

SUMO

NaV1.7 endocytosis

CRMP2
P P

Numb

CRMP2
P Nedd4-2

NaV1.7

Ub

Eps15Numb

CRMP2
P

Clathrin

Numb

CRMP2
Ub

P Nedd4-2

A

B

Fig. 9. Schematic of CRMP2 modifications and their contribution to the regulation of NaV1.7 trafficking. (A) CRMP2 SUMOylation (1) is prevented when
CRMP2 phosphorylation by Cdk5 at S522 is also prevented. Consequently, nonSUMOylated CRMP2 has an enhanced interaction with Numb (2). The enhanced
interaction with Numb and subsequent phosphorylation of CRMP2 by Fyn kinase (3) can facilitate further recruitment of the E3 ubiquitin ligase Nedd4-2.
Furthermore, when phosphorylated by Fyn, CRMP2 SUMOylation is prevented (4). (B) Within the CRMP2/NaV1.7/endocytic machinery complex, Nedd4-2
monoubiquitinates NaV1.7 (5), which, in turn, permits Eps15/clathrin-mediated endocytosis of the channel (6).

E8450 | www.pnas.org/cgi/doi/10.1073/pnas.1610531113 Dustrude et al.

www.pnas.org/cgi/doi/10.1073/pnas.1610531113


From a mechanistic perspective, the NaV1.7 trafficking pathway
identified here greatly extends the findings of Laedermann et al.,
who reported that the Nedd4-2 ubiquitin ligase monoubiquitinates
NaV1.7 to signal the channel’s endocytosis (6). Our results suggest
that induction of membrane curvature by Eps15 (26, 27) to trigger
clathrin-mediated endocytosis is required for CRMP2-mediated
endocytosis of NaV1.7 via the formation of a CRMP2/Numb/Eps15/
Nedd4-2 complex. If CRMP2 is not SUMOylated, these interactions
are strengthened, culminating in accumulation of the channel into
early and recycling endosomes. This study also extends our own
previous work that demonstrated a link between NaV1.7 function
and CRMP2 SUMOylation (8) to now illustrate that the trafficking
program of NaV1.7 is dependent on multiple modifications of
CRMP2 and details the mechanism of endocytosis of NaV1.7.
Akin to the relationship described here between CRMP2 and

NaV1.7, several studies have been successful in identifying links
between protein SUMOylation and trafficking of an accessory
protein. For instance, the immediate early gene Activity-regu-
lated cytoskeleton-associated protein/Activity-regulated gene 3.1
(Arc), which couples changes in neuronal activity to synaptic
plasticity events (31), is SUMOylated (32). Arc SUMOylation
impacts the trafficking of AMPARs, which are heterotetrameric
glutamate-gated ion channels that underpin the vast majority of
fast excitatory glutamate neurotransmission in the central ner-
vous system (33). Preventing Arc SUMOylation may control
AMPARs. Rab3-Interacting Molecule 1α (RIM1α) is a presynaptic
protein implicated in the docking/priming of synaptic vesicles and in
the development of short- and long-term synaptic plasticity (34, 35).
RIM1α SUMOylation is required for presynaptic targeting and
clustering of Cav2.1 calcium channels (36). Our study adds to the
growing evidence that protein SUMOylation is critical for traffick-
ing processes in neurons.
A salient finding of our work is the selectivity in CRMP2 modu-

lation of NaV1.7, but not other channels. How CRMP2 regulates
NaV1.7 specifically is a critical question. One possibility may be
differential recruitment of the endocytic machinery or CRMP2 itself.
Nedd4 proteins regulate trafficking of multiple sodium channels (6,
37) whereas Numb and Eps15 proteins are general players in cla-
thrin-mediated endocytosis (18, 19, 27), so specificity is unlikely
endowed by these proteins. Likely, the specificity is conferred by
CRMP2, as its expression and modifications causally influence
NaV1.7. CRMP2 may have differential binding affinities for NaV1.x
channels with the highest affinity for NaV1.7. Although this binding
has not been mapped for each of the channels, a hypothesis to ex-
plain selective regulation of NaV1.7 may be differential binding of
CRMP2 to intracellular loops of sodium channels, especially those
that are not conserved between NaV1.x isoforms (e.g., the N ter-
minus and loop 2 connecting the second and third transmembrane
domain modules). Because CRMPs are heterotetrameric, we can-
not rule out contributions to channel specificity by other CRMP
isoforms. For instance, CRMP4 expression increases following sci-
atic nerve axotomy (38), and a CRMP2–CRMP4 tetramer may
permit binding to NaV1.7, but not other NaV1.x channels. CRMP4-
KO mice exhibit impaired olfactory ability (39), and loss-of-function
mutations in NaV1.7 cause anosmia (40), thus providing further
evidence of a possible link between CRMP4 and NaV1.7. However,
another possibility is that there may be a still unknown protein that
is required for the CRMP2-NaV1.7 specificity.
Many proteins bear multiple, distinct modifications, and the

ability of one modification to antagonize or synergize the addi-

tion of another can have significant biological consequences. Of
the multiple kinases that target CRMP2, it is interesting that
phosphorylation by Cdk5 and Fyn confers regulatory checkpoints
upon CRMP2 SUMOylation that steer CRMP2/NaV1.7 signal-
ing in opposing directions (Fig. 9). Notably, both kinases have
been linked to pain. Increased Cdk5 activity has been reported in
inflammatory (41) and neuropathic (42) pain models, and roscovi-
tine, a Cdk5-inhibiting compound, blunted neuropathic pain after
chronic compression injury of DRGs (42). Constitutive action of
Fyn produced mechanical allodynia and thermal hyperalgesia via
enhanced expression of ionotropic glutamate receptors (43). De-
spite the breadth of pain research and continuous identification of
novel targets of protein SUMOylation, no previous reports have
linked this modification to pain as far as we are aware. A weak link
can be surmised from data demonstrating an enhanced suscepti-
bility to symptomatic knee osteoarthritis and multiple regional pain
in patients who show expression of the NaV1.7 R1150W mutation
(44) and an increase in global SUMOylation rate in rheumatoid
arthritis (45).
NaV1.7 is a high-value target for development of new pain

therapeutic agents. Tarantula peptide toxins are selective for
NaV1.7 in vitro but fail to provide analgesia in pain models (46),
likely because of a lack of penetration past the perineural barrier
(47). A NaV1.7-selective centipede-venom peptide elicited anti-
nociception in acute pain models but has not yet been tested in
more complex rodent pain models (48). A monoclonal antibody
against the voltage sensor of NaV channels exhibited selectivity
for NaV1.7, with partial effects on NaV1.6 (49), and several
small-molecule blockers of human NaV1.7 have been described
(50). Thus, strategies targeting NaV1.7 channels are ongoing and
show promise in pain therapy. Disrupting CRMP2 SUMOylation is
an approach to controlling NaV1.7 channels that overcomes the
selectivity hurdle of targeting NaV1.7 directly. When posttransla-
tionally modified, CRMP2 reduces NaV1.7 currents and excitability.
Thus, modification of CRMP2 by SUMOylation is a mechanism to
selectively regulate NaV1.7, and interacting with this pathway to
curb NaV1.7 activity could normalize nociceptor excitability. From
a translational perspective, the concordance in NaV1.7 regulation
by CRMP2 in rodent and human sensory neurons will likely mean
better success when this strategy is pursued in future clinical trials.

Materials and Methods
Detailed descriptions of methods used and any associated references are
available in SI Materials and Methods. Briefly, all electrophysiology and
biochemistry experiments were performed according to established proto-
cols (8, 15). All animal protocols were approved by the institutional animal
care and use committee of the College of Medicine at the University of
Arizona and conducted in accordance with the Guide for Care and Use of
Laboratory Animals published by the National Institutes of Health.
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