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Protein–protein interactions occur via well-defined interfaces on
the protein surface. Whereas the location of homologous interfaces
is conserved, their composition varies, suggesting that multiple solu-
tions may support high-affinity binding. In this study, we examined
the plasticity of the interface of TEM1 β-lactamase with its protein
inhibitor BLIP by low-stringency selection of a random TEM1 library
using yeast surface display. Our results show that most interfacial
residues could be mutated without a loss in binding affinity, protein
stability, or enzymatic activity, suggesting plasticity in the interface
composition supporting high-affinity binding. Interestingly, many of
the selected mutations promoted faster association. Further selection
for faster binders was achieved by drastically decreasing the library–
ligand incubation time to 30 s. Preequilibrium selection as suggested
here is a novel methodology for specifically selecting faster-associating
protein complexes.

protein–protein interaction | in vitro evolution | association rate | interface
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Protein–protein interactions play important roles in most
cellular processes. Proteins interact through chemical and

structural complementarity of their mutual binding sites (1).
Amino acids found in physical proximity form noncovalent in-
teractions that stabilize the complex (2). Residues not directly
involved in binding also play a role in complex formation by
stabilizing the association encounter complex and transition
state, which determine the interaction’s association rate constant
(3). Protein interaction interfaces seem to have dual, seemingly
contradicting, properties: On one hand, the interface is a unique
area (4) on the protein surface that has evolved to bind specific
partners (5). Although much is known about the molecular mech-
anism of binding, de novo design of protein interactions is still a
complicated task, requiring in vitro evolution to achieve high-af-
finity binding (6–8). On the other hand, interfaces seem to be rather
tolerant to mutagenesis (2, 9–11), implying that there are many ways
to achieve high-affinity binding. The plastic nature of protein–
protein interfaces becomes particularly clear when comparing the
conservation levels of transient complex interfaces versus surface
and core residues in homologous complexes (12, 13). Here it is
shown that core residues are similarly conserved as permanent in-
teraction interface residues but that transient interaction interface
residues are hardly more conserved than other surface residues. The
relatively low conservation levels of transient interface residues also
make it difficult to predict the protein binding sites (contrary to
permanent interfaces) (14, 15). In fact, it was suggested that the vast
majority of interfacial residues are important only for conforma-
tional optimization of the few interacting residues, resulting in
variability in their actual identity (16).
The interface formed between different β-lactamase proteins

and their inhibitor protein BLIP is a good example of the use of
different amino acid identities in homologous binding interfaces.
Although the interface location is conserved, the interface resi-
due identities are not, with different residues being used as
hotspots for binding (5, 17). Despite this evolutionary lesson,
in vitro evolution has seldom been used to specifically address
this question (18). Weiss et al. (10) mutated the 19 interfacial

residues of the human growth hormone with its receptor to alanine
and found that only 7 substitutions affected binding. Thom et al.
(19) emphasized the importance of allowing random mutagenesis
all through the protein-coding sequence for interaction optimiza-
tion. TEM1 and other β-lactamase enzymes were a subject for
several directed evolution studies summarized in Yuan et al. (20),
but these studies concentrated on β-lactamase enzymatic activity
and substrate recognition whereas our study discusses the compo-
sition of protein–protein interaction interfaces.
Protein affinity maturation is usually done by multiple rounds

of selection, from low to high stringency, and then combining the
highest-contributing mutations to achieve tight binding. Our
study was fundamentally different, as it was designed to explore
the plasticity of the interaction between TEM1 β-lactamase and
its inhibitor BLIP with no goal of optimizing the interaction af-
finity, which is already high: The TEM1–BLIP interaction pos-
sesses nanomolar affinity with an association rate constant of
∼105 M−1·s−1 and a dissociation rate constant of 10−4 s−1 (21).
For the purpose of this study, we applied in vitro evolution to a
randomly mutated TEM1 library, using yeast surface display for
three rounds of mild selection, and sequenced the selected li-
brary assuming a relation between the occurrence of specific mu-
tations (either above or below their occurrence in a nonselected
library) and their contribution to binding (22). The subsequent use
of deep sequencing has the potential to provide complete data on
all point mutations at the binding surface extracted from a natural
pool of binders. This allows for nonbiased mapping of mutational
effects on binding and stability. The basic principle behind this
method is that selection will enrich for amino acids that contribute
to a specific function. Deep sequencing then provides the amino
acid preference at any randomized position, which is related (with a
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Boltzmann-like distribution) to the contribution toward the selected
trait (for example, binding) (22). In this study, the selected trait was
binding to BLIP. Although co-occurring mutations may have also
influenced the outcome of the analysis, they were not considered in
the data analysis.
The results imply that most of the interface residues can be

replaced by other amino acids without affecting the binding af-
finity, excluding three residues that apparently are hotspots for
interaction (2, 4, 23, 24). Interestingly, the selection resulted in
faster binders even when using the standard selection protocol. We
were able to further increase the percentages of fast binders by
drastically decreasing the protein–ligand incubation time (from 1 h
to 30 s) and ligand concentration (from 1 μM to 50 nM). Here we
present a selection method specifically resulting in faster binders.

Results
Analyzing Interface Plasticity. TEM1 was randomly mutated by
mutazyme, resulting in an average of four mutations per clone.
Because the mutations are randomly distributed throughout the
gene, there is a strong bias toward single-nucleotide mutations of
amino acid codons, which results in only a partial cover of
the mutation space of the individual residues (see Table S1 for the
probability of a given amino acid being mutated to each one of the
20 possible amino acids upon single-nucleotide exchange). How-
ever, because natural evolution also progresses by single mutations,
there is a natural preference for single-nucleotide substitutions. The
library of 108 clones underwent selection against binding to BLIP
conjugated to the fluorescent protein YPET for FACS sorting. The
library was selected three times against 1 μM Y–BLIP, and its gene
composition was evaluated by deep sequencing. The sequencing
data were analyzed using Enrich 2.0 software (25). The deep se-
quencing of TEM1 was done in four fragments covering 80% of the
gene and 92% of the binding site (Fig. 1). Analysis of mutation
enrichment (or reduction) was done by comparing the mutation

frequency at each position with that of the original library or the
previous selection round. This normalizes the inherent bias toward
single-nucleotide mutations (Table S1). Our aim was to investigate
the sequence space tolerated by this interaction without losing af-
finity, rather than its optimization. Mutations that were selected after
the third round of the soft sorts are presented in Fig. 2. Most (11 out
of 17) selected mutations are located at the interface. In addition,
most of the mutations (11 out of 17) involved charged residues
(either resulting in charge deletion or insertion or in replacement by
the opposite charge). All of the selected mutations excluding T29E
are located on the protein surface. Because charged residues around
the interface are known to play an important role in dictating as-
sociation rate constants (kons), the selected mutations were
expressed and their kinetic rate constants were measured (Table 1).
With the exception of T29E, no mutation caused a significant

reduction in kon (>2× SE), whereas about 40% of the mutations
bound between 50% and fivefold faster than WT. For the mu-
tations where koff was determined, a minor two- to fourfold in-
crease was determined for three of them, whereas for the other
seven mutations no significant change in koff was measured. The
thermal stability shifted in either direction by up to 4 °C (which
should not affect the protein at room temperature). We used the
initial slope of substrate degradation with 5 nM enzyme as an
indicator for β-lactamase activity. Overall, the effects of the
mutations on enzymatic activity were small, with up to twofold
increase or decrease being estimated by this measure.
The deep-sequencing data also indicated specific positions

that were underrepresented (i.e., strongly dominated by WT),
and thus can be assumed to be particularly sensitive to muta-
genesis. These positions are presented in Fig. 3. Positions with
low mutagenesis rate are located at two sequence patches closely
placed in the 3D structure. Almost all of the positions that did
not tolerate mutagenesis are buried and probably relate to pro-
tein stability. Only three interfacial residues did not tolerate
mutagenesis: G236, G238, and R243. Taking into account that
single-nucleotide mutations cover only part of the amino acid
repertoire, these results clearly demonstrate that the TEM1 in-
terface is less conserved than its core and that the interface can
readily be mutated without harming the high-affinity binding.
These results are in line with the variation in β-lactamase se-
quences binding BLIP (5).

Fig. 1. Hyperstable (HS)-TEM gene map. Fragments analyzed by deep se-
quencing are in bold and underlined; BLIP interface residues are in red.

Fig. 2. (Left) Structural representation of the TEM–BLIP complex (gray and wheat, respectively) (PDB ID code 1JTG) and the mutations selected during the
first three sorts of the TEM random library against BLIP. Selected mutations are presented as spheres (green, C; red, O; blue, N; yellow, S). Residues labeled in yellow
are those that upon mutation increase kon by >1.6-fold (2× SE). (Right) A table indicating the specific selected mutations and their kind: 1, interface; 3, surface.
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Selection for Faster Binders. Because the TEM1 selection against
BLIP seemed to specifically enhance the association rate constants,
we now aimed to explicitly select for fast binders. Traditionally,

selection using yeast display is done under equilibrium conditions,
where one allows for sufficient time of binding before washing
steps are initiated. Because we aimed to specifically select for fast

Table 1. Characterization of the TEM mutations selected against BLIP

Mutant Kind
konmut/
konwt* koff

† × 10−4 s−1 KD
‡ × 10−10 M Tm,

§ °C
Enzymatic
activity{

WT 1.0 0.85 2.8 55 0.0023
T29E Buried 0.6 47.6 0.0019
K111Q Interface 0.7 57.6 0.0025
K111M Interface 0.9 55.7 0.0016
K111N Interface 0.9 1.5 3.8 54.3 0.0014
S82T Surface 1.0 53.4 0.0017
P62L Surface 1.0 53.2 0.0019
H153R Surface 1.0 58 0.0017
V108L Interface 1.0 54.4 0.0015
R240Y Interface 1.1 1 2.2 55 0.0027
M270L Interface 1.2 56.4 0.0023
D50L Surface 1.2 55 0.0015
N100Y Interface 1.3 52 0.0028
P107Q Interface 1.3 3.3 6.1 54.3 0.0017
D252K Surface 1.4 50.8 0.0025
Q99R Interface 1.6 54.4 0.0019
E168G Interface 1.6 1 2.1 55.8 0.0014
D252S Surface 1.6 54.1 0.0012
K111R Interface 1.9 55.8 0.0012
E110V Interface 2.3 0.9 0.9 55.5 0.0016
E110G Interface 3.3 0.5 0.6 56.4 0.0018
E171K Interface 3.4 0.9 1.0 54 0.001
E110G E168G 3.6 1 1.0 54.6 0.0011
E110V E168G 3.7 0.8 0.8 51 0.0015
E239K Interface 5.0 1.6 1.4 51.2 0.0019
E239R Interface 5.2 56 0.0011

*Stopped-flow measurements as described inMethods. The values are relative to WT (3 × 105 M−1·s−1). SE for kon
values is 20%, and for konmut/konwt is 30% (see Methods for details).
†From SPR measurements done at six different concentrations. SE is 25%.
‡KD = koff/kon, with koff values taken from SPR and kon from stopped-flow measurements. SE is 30%.
§Protein thermal stability. SE is 1 °C.
{Enzymatic activity was determined as the initial slope of CENTA catalysis using 5 nM enzyme and 375 μM
substrate. SE is 30%.

Fig. 3. (Left) Structural representation of the TEM–BLIP complex (PDB ID code 1JTG). Positions that did not tolerate mutations are presented as spheres
(green, C; red, O; blue, N). Residues important for binding are labeled in yellow. Arg243 on TEM forms a salt bridge with Asp49 on BLIP (represented as sticks),
which is important for binding. (Right) A table indicating the conserved positions and their kind: 1, interface; 2, buried; 3, surface.
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binders, we significantly shortened the binding step before washing,
as well as reduced the ligand concentration. Shorter binding time at
lower protein concentration provides an advantage for faster
binders to associate. Hence, in the kinetic selection, the library was
incubated with a low ligand concentration (50 nM) for a very short
time (30 s) before FACS sorting. Fig. 4 shows the percentage of
bound cells after indicated incubation times (before ligand washing
was commenced) of the given selected libraries. The sorted li-
braries displayed higher percentages of bound cells after very short
incubation times. FACS 4, which was selected against 70 nM Y–

BLIP, binds faster than FACS 3, which was selected against 1 μM
Y-BLIP, despite these sorts being initiated after reaching equilib-
rium (1-h incubation with BLIP). The FACS 3 library was then
incubated for only 30 s with 50 nM Y-BLIP before washing, col-
lecting the top 14.6 and 1.4% of binders. This kinetically sorted
library bound as a whole faster and with higher percentage (1.4%
more than 14%) than BLIP. To verify the nature of the selected
mutants, individual clones were sequenced from the 1.4% library.
These clones had a very high representation of charge-altering
mutations located within or in close proximity to the interface
(Table 2). TransComp (26) is an algorithm that calculates kon
values for protein complexes, taking into account, in addition to
electrostatic forces, diffusion rates. We used TransComp to eval-
uate whether the selected mutations are predicted to increase the
association rate constant and compared the results with experi-
mental measurements of selected purified clones. Table 2 indicates
that almost half of the selected clones are predicted by TransComp
to improve the TEM–BLIP association rate constant by greater
than twofold, while none is predicted to slow the interaction by
greater than twofold. Seven of the clones were expressed and pu-
rified and their rates of association were determined. Most of the
purified clones (five out of seven) showed significantly faster asso-
ciation rate constants than WT, in line with the calculated data. The

four fastest selected clones increased kon by 2.6- to 5-fold, which
equals a reduction in activation energy of 0.5 to 0.9 kcal/mol. These
clones have mutations at positions E239K, H96R+D115G,
E110V+T200I+M270K, and I47T+Q88K+E110V+A227T.
Common to the four is an increase in positive net charge by +2.

Discussion
Our study focused on the selection of a randomly mutated TEM1
library against its tight binder BLIP. Deep-sequencing analysis of
the selected clones revealed an interesting property of the in-
terface: Most of the interface seems to be plastic, tolerating
substitution with other amino acids, with some of them even
improving on binding affinity (Fig. 2). One should, however, note
that the selected interface substitutions were restricted to one to
two other amino acids (except position 111, where four substi-
tutions were selected) out of the possible allowed substitutions
by single-nucleotide mutations (Table S1). This shows that po-
tentially this interface has many solutions to achieving binding at
a similarly high affinity (nanomolar). The results are also in line
with the sequence alignment of different natural TEM1 genes
binding BLIP, which also showed a high degree of plasticity of the
interface (5, 27). Nevertheless, in the natural environment, negative
selection against nonspecific binders may limit the number of in-
terface solutions obtained by a specific complex (28).
Three positions were essential for binding and were not

replaced by other amino acids in the library (Fig. 3). G236 and
G238 were found to be critical for tight BLIP binding and seem
to be important for substrate specificity (29); R243 was shown to
contribute to binding by forming a salt bridge with D49 on BLIP,
with its mutation decreasing the TEM–BLIP affinity by 10-fold

Fig. 4. FACS measurements of binders as a function of incubation time with
the ligand (Y–BLIP) of the different HS-TEM libraries: library, random non-
selected original library; FACS 3, three nonstringent sorts against BLIP; FACS
4, FACS 3 followed by a stringent sort (low BLIP concentration); FACS 14.6%,
the best 14.6% binders of FACS 3 after a 30-s incubation with BLIP; FACS
1.4%, the best 1.4% binders of FACS 3 after a 30-s incubation with BLIP. The
x axis shows time of incubation of the library before washing was initiated
before FACS measurements. Table 2. Sequences and relative kon values of individual clones

resulting from stringent kinetic selection

Clone Sequence* TransComp† konmut/konwt‡

1 I95L A126T 1.3
2 H96R D115G 2.5 3.2
3 K111R I208V T269N 1.4
4 K192N 0.9
5 Y262N 1.0
6 L51F K111N E121D A201T

D214N S223P
0.7

7 I56V V80A T141A E171V 1.2
8 E110V T200I M270K 8.6 3.6
9 G91S G116S L162H 0.9 1.1
10 E239K 6.1 5.0
11 E171G E279V 1.4
12 L102R 1.2
13 Q90H K111R A135T V159E T182R 9.7
14 R94H S124G 0.7
15 E63G D115G 2.1 1.2
16 I47T Q88K E110V A227T 3.9 2.6
17 T133A T188A K215R 1.8
18 K111R S223P 2.6
19 Q99R T128I L137S 1.1
20 T188M P219L S266G 1.0
21 L75P E110V M186V I246V 3.8
22 F60L 1.0
23 K111R 3.4 1.9
24 L113R E239K 9.5
25 E110V P226Q 3.8
26 R240A 0.6

*Interface residues are underlined.
†TransComp predicted kon rates at an ionic strength of 0.15 M, taking into
account the influence of all occurring mutations, relative to WT.
‡Stopped-flow measurements as described in Methods, relative to WT (3 ×
105 M-1·s−1). The SE for konmut/konwt is 30%.
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(30). It should also be noted that most positively selected mu-
tations are located on the surface of TEM1, whereas negatively
selected positions are mostly located in the core of the protein.
This result is in agreement with other studies involving TEM1
libraries (31, 32). One can assume that many of these core mu-
tations have detrimental effects on protein stability, and thus
were not selected. Indeed, the Tm of the positively selected
clones is close to that of the WT protein. It has previously been
shown that poorly folded proteins are reduced in yeast surface
display, which could be the case also here (33).
It is interesting to note that the selection was acting to spe-

cifically increase the association rate constant, whereas not
having much effect on the dissociation rate constant, TEM1
enzymatic activity, or its thermal stability (Table 1). In accor-
dance, none of the stabilizing mutations reported by previous
studies was strongly selected here, implying that the selection
was specifically acting upon TEM1–BLIP binding (34), especially
when taking into account the opposite influence of mutations on
function versus thermal stability (35). Usually, selection for
binding specifically slows the dissociation rate constant, as the
procedure involves multiple washing steps, which result in dis-
sociation of the complex (36). However, apparently due to the
slow dissociation rate constant of the WT complex, the bound
ligands in our study remained bound throughout the washing
steps, providing an advantage for faster binders. Previous studies
have shown that increasing association rate constants for the
TEM1–BLIP complex is feasible by introducing charge muta-
tions either within or in the proximity of the interface (3, 37–39).
The potential to enhance association is shown also in the se-
lections presented here (Table 1). To further promote faster
binders, the library was incubated with a low ligand concentra-
tion for a very short time period (30 s), not reaching equilibrium.
Computational analysis using TransComp, a predictor of kon,
showed that many of the selected clones indeed bind faster. The
computational results were validated by experimental measure-
ments for seven of the selected clones (Table 2). It should be
noted that the selection shown in Table 1 results from deep-se-
quencing analysis, with a read of 200 bp, which was analyzed by
selecting for frequently occurring mutations. Conversely, in the
subsequent, fast library selection (Table 2), selected clones were
directly sequenced, with one to six mutations per clone. Kinetic
selection might be useful for any process where fast-binding
variants are important. Faster binding allows for binding to occur
at lower ligand concentrations and after shorter periods of time,
which would have a clear advantage in protein–drug screening,
with faster association improving drug functionality.
In summary, in this work, we have shown that the natural in-

terface between TEM1 and BLIP is not unique, and that it can be
altered without loss in binding affinity. Moreover, we show that the
relaxed selection conditions selected for faster-binding variants,
which could be enhanced by changing the selection protocol to a
novel one where selection was done under preequilibrium
conditions.

Methods
Yeast Library Formation. The yeast (Eby100) library was created following the
procedure described by Benatuil et al. (40). DNA mutagenesis was performed
with mutazyme (GeneMorph II Random Mutagenesis Kit; 200550; Agilent),
aiming for four mutations per gene. DNA amplification was done with Taq
DNA polymerase as described by Chao et al. (41). The library was prepared
based on a stabilized variant of the TEM1 β-lactamase previously described
(42). The library size was estimated to be ∼108 by plating serial dilutions on
selection plates lacking tryptophan. The library was further examined for
the correct gene insertion and for the average number of mutations in-
troduced per gene by sequencing 20 single clones.

Library Sorting. The first three sorts of the library were not stringent, using
1 μM ligand BLIP for selection and collecting the 4 to 50% best binders (the
FACS gate remained constant and the percentage of gated clones rose

through the selection). BLIP was fused to the fluorescent protein YPET,
which allowed it to be detected by FACS. After the three sorts, the selected
libraries were analyzed by deep sequencing. An additional two stringent
sorts were performed using 70 nM Y-BLIP, collecting the best 4% of binders.
These sorts were done after a 1-h incubation on ice. An additional, stringent
kinetic sort was done following the third nonstringent selection, using
50 nM Y-BLIP and allowing only 30 s of library–ligand incubation at room
temperature. The highest 14 and 1.4% of binders were collected, and are
referred to as “kinetic selection.”

Deep-Sequencing Analysis. The original random library and the first and third
mild sorts were analyzed by deep sequencing to follow the selection pro-
gression. Deep sequencingwas done on an Illumina in a HiSeq rapid with cBot
mode with a read length of 200 nt. The DNA amplifications were done on the
libraries DNA-extracted from yeast by the Zymoprep Yeast PlasmidMiniprep I
Kit (Zymo Research; D2001). The TEM1 gene (792 bp) was sequenced as a
mixture of four ∼200-bp fragments. The deep-sequencing results were an-
alyzed using Enrich 2.0 software (25). The analysis of mutation enrichment
(or decline) was done by comparing the mutation frequency at each position
of each amino acid with the frequency of occurrence in the unselected li-
brary and with the previous selection rounds. Mutations were individually
expressed, purified, and analyzed if they stood up to one of the following
criteria. (i) A specific mutation had a frequency of greater than fourfold that
in the original library after sort 3. (ii) The mutation frequency after the first
sort was greater than three times that of the original library, and the mu-
tation frequency after sort 3 was higher compared with sort 1. (iii) The
mutation frequency after sort 1 was greater than 1.8-fold higher than the
original library and increased by at least 1.4-fold after sort 3. A position was
defined to be not tolerant to mutagenesis when its total mutation fre-
quency was decreased by a factor of 5 after sort 1 relative to the random
library, and further declined at sort 3.

Protein Production. The proteins were produced and purified using Ni beads
binding a 6×His tag as detailed (43).

Definition of Buried, Surface, and Interface Residues. Swiss-PdbViewer (spdbv.
vital-it.ch/) was used to define surface and buried residues, with buried
residues having <10% accessibility. As input, we used Protein Data Bank
(PDB) ID code 1BTL. Interface residues were defined by their proximity to a
heavy atom on the second chain, with 4 Å taken as cutoff.

Measuring Binding Constants. Protein binding affinities were estimated by
surface plasmon resonance (SPR) using the ProteOn XPR36 Protein Interaction
Array System (Bio-Rad). All SPR measurements were made in PBS/0.005%
Tween 20 running buffer. The ligands were bound to Bio-Rad GLC SPR chips
using the high-affinity biotin–avidin interaction. Surface regeneration was
done by two short cycles of 8 M urea that enabled complex dissociation. The
analyte was injected at six different concentrations, and the affinity and
kinetic binding constants were determined by ProteOn Manager Version 3
(Bio-Rad) using the Langmuir reaction model. Association rate constants
were determined also using a stopped-flow spectrometer (Applied Photo-
physics), as it was shown to be a more reliable method for this purpose. The
measurements were done as described (44) using Hepes buffer (pH 7.2).

β-Lactamase Activity Assay. β-Lactamase activity was estimated with the
commercially available yellow chromogenic substrate CENTA (Calbiochem;
219475), whose absorbance at 405 nm rises upon catalysis by β-lactamase.
As a measure of relative activity, the initial slope at the linear phase of
the reaction (steady state) was determined using 5 nM enzyme and
375 μM substrate.

Protein Stability Measurements. Protein thermal stability was determined by
the method described (45). The assay is based on the tendency of SYPRO
Orange (Sigma; S5692) to bind hydrophobic areas, which are exposed upon
protein unfolding due to a gradual increase in temperature (0.05 °C/s from
25 to 99 °C) controlled by an Applied Biosystems ViiA 7 RT-PCR instrument.
The assay was optimized for β-lactamase, with the measurements done in a
20-μL volume using 10 μM protein in PBS buffer with the dye diluted 500×.

Error Calculations. Reported values for individual measurements were cal-
culated from two to four repeats of the different experiments. The errors for
each type of experiment were calculated from all of the available data (and
not for each mutant separately), as the different mutants were measured
using the same method and thus their respective SD is expected to be similar.
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