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A painful event establishes two opponent memories: cues that are associated

with pain onset are remembered negatively, whereas cues that coincide with

the relief at pain offset acquire positive valence. Such punishment- versus

relief-memories are conserved across species, including humans, and the

balance between them is critical for adaptive behaviour with respect to pain

and trauma. In the fruit fly, Drosophila melanogaster as a study case, we

found that both punishment- and relief-memories display natural variation

across wild-derived inbred strains, but they do not covary, suggesting a

considerable level of dissociation in their genetic effectors. This provokes

the question whether there may be heritable inter-individual differences

in the balance between these opponent memories in man, with potential

psycho-clinical implications.
1. Background
A painful, traumatic event leaves behind two opponent memories [1]: Cues that

come before or during pain later on induce avoidance (in fruit flies: [2–8]),

potentiate fear behaviour (in rats and man: [9,10]) and are verbally reported

to have negative valence (in man: [9]). Contrarily, cues that coincide with the

relief at pain offset are later on approached, they attenuate fear behaviour and,

depending on the nature of the task, can be verbally rated as positive [2–11]

(for a cross-species review, see [12]). Clearly, a healthy balance between these

opponent memories is critical for adaptive behaviour with respect to pain and

trauma. Do these memories display natural genetic variation? Do they covary?

Can the natural variation, if any, be used to identify candidate genes that dis-

tinguish between them or keep them in balance? We turned to the fruit fly as a

case to tackle these questions for the first time.

Flies, upon training with an odour that precedes electric shock, learn to avoid

this odour as a punishment predictor; whereas an odour that follows shock

during training is subsequently approached as it predicts relief [2–7]. We found

that both punishment- and relief-memories vary across a comprehensive set of

wild-derived inbred fly strains, but do so independently from each other,

suggesting significant dissociation in their genetic bases. Indeed, as a first step

towards a systematic comparison of punishment- versus relief-memory at the

level of the genetic effectors, we ran association analyses between the memory

scores and the available transcriptomic/genomic data [13,14] of the inbred

strains, yielding candidate genes.
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Figure 1. Punishment- versus relief-training. (a) One trial each for punishment- and relief-training is depicted. These were identical except for the timing of the trained
odour with respect to the electric shock. For punishment-training, the trained odour immediately preceded shock, with an inter-stimulus interval (ISI) of 215 s; whereas
for relief-training, the trained odour followed shock with an ISI of 40 s. In both cases, a control odour preceded shock by 3.5 min. (b) In each experiment, two subgroups of
flies were trained in parallel; for one subgroup 3-octanol was the control odour and benzaldehyde was the trained odour; for the second subgroup the odours were
reversed. After training, each subgroup was given the choice between control and trained odours, giving rise to a preference. Based on the preferences of the two
subgroups, we calculated a memory score, positive values indicating learned approach, negative ones learned avoidance.
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2. Results and discussion
We characterized 38 wild-derived inbred Drosophila melanogaster
strains [13,14] in punishment- and relief-memory using para-

digms that were parametrically identical, excepting the timing

of the trained odour relative to the electric shock (figure 1).

Punishment-memory scores were dramatically stronger than

relief-memory scores, as was the case in all previous datasets

directly comparing these two kinds of memory in the fruit fly

[2–8] (see [12] for a meta-analysis). Indeed, among the 38

inbred strains tested, all showed significant punishment-

memory, except one strain with a tendency only for

punishment-memory; whereas six strains had significant relief-

memory, with nine further strains showing a tendency towards

it (figure 2a, one-sided one-sample Wilcoxon signed-rank tests

using a false discovery rate less than 0.05 for significance

criterion and p , 0.05 for tendency criterion; see electronic sup-

plementary material, table S1 for data and statistical report).

This asymmetry in the strength of punishment- versus relief-

memory presents a caveat in comparison owing to difference

in statistical power. In general, both punishment- and

relief-memory scores may have suffered from the extensive

inbreeding these strains have undergone [15]. Nevertheless,

for either kind of memory we found significant variation

across the 38 strains (figure 2a, Kruskal–Wallis tests:

punishment-memory, H¼ 106.79, d.f.¼ 37, p , 0.0001; relief-

memory, H¼ 65.18, d.f. ¼ 37, p ¼ 0.0029). Interestingly

however, the median scores for either kind of memory did not

correlate (figure 2b, Pearson correlation: r2 ¼ 0.0058, p¼ 0.6488).
Thus, punishment- and relief-memories both display

natural genetic variation, but they are segregated from each

other. This segregation suggests that although particular

genes can influence both processes commonly, a considerable

portion of the critical genes should be selective for one kind

of memory, or exert opposite effects on the two kinds of

memory. Indeed, previous reverse genetic analyses had

exemplified either kind of scenario: function of synapsin is

commonly required for punishment- and relief-memory [7];

whereas white influences the two kinds of memory oppo-

sitely, as its loss-of-function enhances punishment-memory,

while suppressing relief-memory [4].

Dissociation of the genetic effectors of punishment-

versus relief-memory can, at a very general level, explain the

differences between these processes observed so far: In the

fruit fly, relief-memories decay more rapidly over time and

are less resistant to retrograde amnesia than punishment-

memories [6]. Interfering with a particular set of fly

dopaminergic neurons using a transgenic blocker of synaptic

vesicle recycling impairs punishment-, but not relief-memory

[5]. In rats, formation and retrieval of relief-memories require

functionality of accumbal reward circuits, rather than amygd-

alar fear circuits [10,16]. Concordantly, in man, retrieval of

punishment- versus relief-associations is accompanied by

amygdalar versus striatal activity [10].

Understanding the molecular bases of these differences in

punishment- versus relief-memories would be facilitated by a

systematic comparison of the respective genetic effectors. To

this end, we made use of the natural genetic variation we
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Figure 2. Punishment- and relief-memories varied across inbred strains, but independently from each other. (a) Thirty-eight inbred strains differed from each other
with respect to both punishment- and relief-memory scores. All strains had significant punishment-memory except RAL#375, which showed a tendency. As for relief-
memory, the strains RAL#486, 705, 799, 208, 365, 712 had significant scores, while strains RAL#732, 357, 335, 852, 358, 786, 730, 362, 437 showed tendencies. Box
plots show the median as the midline, 25 and 75% as the box boundaries and 10 and 90% as the whiskers. From left to right N ¼ 8, 9, 9, 23, 7, 9, 20, 11, 8, 8, 8,
8, 9, 8, 9, 9, 8, 9, 10, 8, 8, 7, 8, 8, 8, 7, 17, 8, 11, 8, 8, 9, 7, 8, 9, 8, 9, 11 for punishment- and 24, 24, 24, 25, 24, 24, 24, 26, 24, 26, 24, 25, 24, 23, 24, 24, 24, 25,
25, 24, 24, 24, 24, 24, 24, 24, 24, 24, 23, 24, 24, 25, 24, 23, 25, 24, 25, 21 for relief-memory. (b) Median punishment- versus relief-memory scores did not
significantly correlate; N ¼ 38.
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observed in either kind of memory score. We tested genome-

wide for associations between these scores and gene expression

levels [13] as well as single nucleotide polymorphisms [14]

of the 38 inbred strains. The methodology and results of

these analyses are reported in the electronic supplementary

material. In brief, we identified 508 and 754 candidate genes

for punishment- and relief-memory, respectively, 60 of these

being common to both (electronic supplementary material,

table S8). Among our candidate genes, those already known

for a role in punishment-memory were found (marked in

electronic supplementary material, table S8). Clearly, the
gene–behaviour relationships we uncovered are only correla-

tive, as is the case in all genome-wide association studies.

Owing to the inter-correlations between expression levels of

different genes [13] and to the inter-dependency of alleles at

different polymorphic loci [14], some candidate genes,

although associated with memory, will not be causally related

to it. Causal relationships must be independently scrutinized

using reverse genetic methods as recently exemplified with

respect to a related behaviour, innate escape from electric

shock [17]. Such independent validation is especially critical

in the present case, given our relatively non-stringent statistical
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thresholds for candidateship (i.e. no correction for multiple

testing was employed). Once verified, however, the candi-

date genes we identified can indeed provide valuable

handles for in depth fly studies on the molecular orchestration

of punishment- versus relief-memories, while human ortholo-

gues may have roles in pain- and trauma-related behavioural

(dys)function.

Natural genetic variation in associative punishment-

memory had previously been documented in flies (e.g. [18])

as well as in rodents (e.g. [19]), but never in comparison with

relief-memory. Our observation in the fly that these opponent

memories both display heritable variation, without covarying
is novel and thought-provoking: Are there heritable inter-

individual differences among man, in terms of a balance

between the two kinds of memory? Is such variation, if any,

relevant for variation in susceptibility to trauma- and pain-

related psychopathologies [1,12]? And if so, what are the

critical genetic factors? For this last question, the reverse

genetic analyses in the fruit fly to follow up on the present

genome-wide approach may provide shortcuts to the answer.

3. Material and methods
Memory assays were as previously described [2–7]. Flies were

trained and tested en masse. Training was repetitive. In each train-

ing trial (figure 1a), a control odour was presented first; then a

pairing of a trained odour and electric shock followed. Punish-

ment- versus relief-training differed only in that the trained

odour was, respectively, presented either shortly before shock

onset, or shortly after end of shock. Once the training was

completed, flies, as a group, were given the choice between the

control- and the trained odours. A preference was calculated
based on their distribution as

Preference ¼ ð#Trained-odour � #Control-odourÞ � 100

#Total
,

where # indicates the number of flies on each side. Two subgroups

of flies were trained and tested in parallel, with reversed roles for

3-octanol and benzaldehyde as the control and trained odour

(figure 1b). Preferences from the two subgroups were averaged

to obtain a memory score as follows:

Memory score ¼ PreferenceBAþPreferenceOCT

2
,

where subscripts of preference indicate the respective trai-

ned odour. Positive scores meant learned approach, negative

values learned avoidance. We characterized punishment- and

relief-memory scores for 38 wild-derived inbred strains from the

Drosophila Genetic Reference Panel collection [13,14]. For more

information, see electronic supplementary material, Methods

and results.

Data accessibility. For data and statistical report, see the electronic
supplementary material.
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