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Abstract

Variation of the HIV-1 subtype C reverse transcriptase region (RT) resulting in response to the selective pres-
sures of drug therapy remains poorly characterized. Here, we compared the genetic variation resulting in the
presence and absence of antiretroviral drug selective pressures on HIV-1 subtype C RT among nontreated and
treated patients. The nucleotide variability, nonsynonymous and synonymous ratio, and the positively selected
mutations were determined by comparing the RT sequences isolated at two time points among nontreated
(baseline and follow-up) and treated patients (baseline and treatment failure). Compared to the nontreated
patients, the intrapatient nucleotide variability, the number of nonsynonymous and synonymous substitutions
was significantly higher among the treated patients. Among the mutations positively selected, the frequency of
D121Y, I135R, and Q207E increased and the frequency of mutation S48T decreased significantly during treat-
ment failure. Further studies are essential to discover the role of these mutations during treatment in HIV-1
subtype C.

The reverse transcriptase (RT) enzyme of the human
immunodeficiency virus (HIV-1) converts viral genomic

single-stranded RNA into double-stranded DNA. It is the
essential step in the HIV-1 life cycle and therefore the RT
region has been a target of antiretroviral therapy (ART). As
an intrinsic property, HIV-1 RT lacks a proofreading func-
tion and this error-prone nature of RT together with the
high rate of virus production sustained by HIV-1 infection
in vivo contributes to the continuous generation of new viral
variants.1,2 The variability is further increased by anti-
retroviral drugs, resulting in mutations that have a selective
advantage during drug pressure.3–6 Studying the effect of
drug treatment on HIV-1 variation is important in under-
standing the emergence of drug resistance and disease
pathogenesis. Here we compared the genetic variation re-
sulting from the presence and absence of ARV drug selec-
tive pressures on HIV-1 subtype C RT among nontreated
and treated patients.

HIV-1-infected nontreated patients (n¼ 18) and patients
treated (n¼ 16) for >6 months and failing the first line regi-

men were included. The demographic, clinical, and labora-
tory characteristics of the study groups are presented in Table
1. Peripheral blood samples from nontreated patients were
collected during enrollment (baseline) and after a period of 8–
12 months (follow-up). From the treated patients peripheral
blood samples were collected at treatment failure and re-
spective pretherapy (baseline) plasma samples that were
collected before 12–16 months of therapy were retrospectively
obtained from the archives (–708C freezers). The study pro-
tocol was approved by the Institutional Review Board of the
Y.R. Gaitonde Centre for AIDS Research and Education and
the written informed consent was obtained from all the par-
ticipants included in the study.

HIV-1 RNA was isolated using the QIAamp viral RNA kit
(QIAGEN, Inc., USA). HIV-1 RT (region 20–240) was ampli-
fied from cDNA using nested polymerase chain reaction
(PCR) as described earlier7 with appropriate controls. Bidir-
ectional population sequencing of purified products was done
using an ABI 3100-Avant genetic analyzer (Applied Biosys-
tems, USA). All the sequences were edited using the Seqscape
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software (Applied Biosystems, USA, version 2.5). The nucle-
otide variability and the Jukes–Cantor correction for multiple
hits of the proportion of observed nonsynonymous (dN) and
synonymous substitutions (dS) and its ratio (dN/dS) were
determined by comparing the RT sequences isolated at two
time points among nontreated (baseline and follow-up) and
treated (baseline and treatment failure) patients using Syn-
SCAN.8 Similarly the codon sites evolving under the influence
of positive Darwinian selection were identified by comparing
the RT sequences isolated at two time points among non-
treated and treated patients using HyPhy with the codon
substitution model MG94.9 Drug resistance mutations were
identified using the Stanford HIV-1 drug resistance database
(http://hivdb.stanford.edu/). The Mann–Whitney U test was
used to compare the variables between the groups. The sta-
tistical analysis was performed using SPSS 13.0 statistical

software (Chicago, IL). The GenBank accession numbers of
the HIV-1 RT sequences described here are EU429988 through
EU430023, EU545198 through EU545213, and EU545214
through EU545229.

The RT sequences from all the study subjects were subtype
C and no intersubtype recombinants were observed. The in-
trapatient nucleotide variability [median (IQR)] of treated
patients [5.3% (3.1–7.6)] was significantly higher ( p< 0.03)
compared to nontreated patients [1.9% (0.9–2.45)]. Similarly,
the dN, dS significantly ( p< 0.001) increased among treated
[median (IQR): dN 0 (0–0); dS 0.02 (0–0.04)] compared to
nontreated patients [median (IQR): dN 0.04 (0.02–0.04); dS
0.12 (0.05–0.15)]. Although previous studies have shown a
reduction in the genetic variability of HIV during drug ther-
apy,10–12 higher intrapatient gene variability observed among
the treated patients in the present analysis could be attributed
to viral escape from drug pressure, thereby enhanced repli-
cation efficiency, which in turn led to greater genetic varia-
tion.13 Several studies have found an inverse relationship
between the rate of viral diversification and host disease
progression,14–18 whereas others have not.19–21 The limitation
of the present investigation is that the history of HIV sero-
conversion for the study population is not known and hence
the consequence of drug treatment on the intrahost nucleotide
variation could not be delineated from the duration of HIV
infection. It should also be noted that earlier studies have
shown that a higher selection pressure will be imposed by
drug therapy22–24 and the strains resistant to nucleoside re-
verse transcriptase inhibitors (NRTIs) can increase HIV-1
mutation frequencies.25,26 However, in the present analysis,
the ratio of dN/dS was <1 among the treated [median (IQR):
0.2 (0.08–0.25)] and nontreated patients [median (IQR): 0 (0–
0)], which was similar to earlier reports.27–31 This implies that
the RT region is highly conserved because of structural/
functional constraints and consequently any mutations in this
region will be deleterious to the virus.32,33

Among nontreated patients, two (11%) had transient drug
resistance mutations associated with NRTIs and nonnucleo-
side reverse transcriptase inhibitors (NNRTIs) such as V108IV
(6%) and Y181CY (6%), respectively, at baseline, which was
observed to be wild type at follow-up. Among the NRTI
mutations observed among the treated patients, M184V
(62.5%) was predominant, followed by T215F/Y (19%). Mu-

Table 1. Demographic, Clinical, and Laboratory

Characteristics of HIV-1-Infected ART-Treated

and Nontreated Patients
a

Characteristics
Treated
(n¼ 16)

Nontreated
(n¼ 18)

Gender
Male, n (%) 10 (62.5) 11 (61)
Female, n (%) 6 (37.5) 7 (39)

Age (years)/mean (�SD)
Male 37 (3.9) 33 (4)
Female 33 (3) 30 (2)

CD4þ T cell count
(cells/ml)/median (IQR)
Baseline 161(53–182) 503 (366–672)
Follow-up 318 (55–302) 548 (315–885)

ART regimen
AZTþ 3TCþNVP
or EFV, n (%)

6 (37.5) None

d4Tþ 3TCþNVP
or EFV, n (%)

8 (50)

ddIþ 3TCþNVP or
EFV, n (%)

2 (12.5)

aAZT, zidovudine; ddI, didanosine; d4T, stavudine; EFV, efavir-
enz; NVP, nevirapine; 3TC, lamivudine; ART, antiretroviral therapy;
HIV-1, human immunodeficiency virus type 1; IQR, interquartile
range; SD, standard deviation.
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FIG. 1. Frequency of positively selected mutations in the RT sequences at baseline and treatment failure among the ART-
treated patients. *p< 0.05 (Mann–Whitney U test). (Color image can be found at www.liebertonline.com/aid).
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tations K219Q, M41L, D67N, and T69D was observed in 13%
and K65R, K70R, V75I, V118F, and Q151M occurred in 6%.
Among NNRTI mutations, Y181C (31%) was predominant
followed by K103N/S, V106M, and G190A, which occurred in
25%. A98G/S and K101E were observed in 19% and 13%,
respectively.

Positive selection of mutations D121Y, K122E, D123G,
I135T, Q174R, I195L, I202V, Q207N, and R211K each at a
frequency of 5.5% (1/18) was observed in the RT sequences
amplified from nontreated patients. However, treated pa-
tients demonstrated positive selection (dN/dS> 1) of 29 mu-
tations, among which the frequency of D121Y, I135R, and
Q207E was observed to be significantly increased ( p< 0.001)
and the frequency of S48T significantly decreased ( p< 0.001)
during treatment failure compared to the baseline (Fig. 1). A
study of B/C recombinants in China by Liao et al.34 has shown
that both D121Y and I135R are the common subtype C and
subtype B polymorphisms, respectively. Moreover, in the
same study, position 207 was also found to be a polymorphic
site. However, mutations at position 135 and 207 have been
reported to be associated with reduced susceptibility to ne-
virapine and zidovudine, respectively, in subtype B and D
viruses.35–39 Kantor et al.40 reported that treatment has a
greater effect at position 121 in subtype C viruses. Previous
investigations have revealed that the positive selection of
beneficial mutations is an important mechanism in HIV evo-
lution, both for drug resistance41,42 and immune escape.43–47

Even though mutations at position 135 and 207 in RT are
known to be associated with a reduction in susceptibility to
nevirapine and zidovudine in HIV-1 subtype B and D viru-
ses,35–39 it is not clear if D121Y is related to drug resistance.
Mutation S48T, observed to be negatively associated with
treatment failure, is a common polymorphism that occurred
at >50% of drug-naive patients in the present analysis similar
to other studies of subtype C viruses.7,48–50 This finding shows
that mutation S48T might be deleterious in terms of viral
replication in the presence of resistance mutations, thus in-
creasing the level of the genetic barrier to drug resistance.

In conclusion, the present analysis reveals the higher se-
lection pressure and genetic variability of HIV-1 subtype C RT
during ART. Among the treated patients, a few positively
selected mutations in RT not yet included as a candidate for
drug resistance increased in frequency during treatment fail-
ure. A limitation of this study is the smaller sample size and
population sequencing, which warrant further investigations
that may provide new perspectives concerning the existence
of polymorphisms that could influence the development of
immune escape or drug resistance in HIV-1 subtype C viruses.
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