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1. Introduction

Hepatitis B is one of the major public health problems in the
world. It is an infection that causes the liver disease. The aim
of this note is to provide corrections to the basic reproduction
number &, in [1] as described in the letter to the editor [2,
3]. In view of [2, 3], the model is reconstructed and all their
mathematical results are computed.

2. Model Correction

In view of [2, 3], we decided that the product of F and
V7!, that is, FV', is incorrect. If the product FV ' is
incorrect, then the obtained basic reproduction number in
(1] is incorrect. The incorrectness of the basic reproduction
number affects the stability (local and global), which is to be
addressed again. Further, in light of [2], the model is valid
biologically. By observing all these assumptions in [2, 3], we
decide to reformulate the model by making the following
changes to the model revised; we add the parameter «, a rate
from migrated class to susceptible, and & is the rate of flow
from exposed to migrated classes to the model published in
[1]. The complete flow diagram of our new improved model
can be seen in Figure 1. For complete details of each class with
their parameters description, we refer the reader to [1], except
o and &. Adding the above parameters we obtain the following
improved model:
ds (t)

ar =0 (1-nC(t) - (8+p)S(t)

-BA@R)+xC @) S(t)+6,V (1)
+aM(t),

d
% =BA@W)+xC()SE)—(8+7y, +&) E(b)
+6mnC () + u M (1),
d
IZ—t(t) =pE@M)—(8+71,)AQ®) + uM (1),
d
Z—t(t) =anAt) - (0 +y;)C®),
d
PO _yc+(1-anam -(6,+8) v ©
+6(1-m)+pS(),
d
1\;It(t) =EE(t)— (Ut + 0 +a) M (1),
@)
being subject to the initial conditions
S(0) =0,
E(0) >0,
A(0) =0,
2)
C(0) =0,
V(0) >0,
M (0) = 0.
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FIGURE 1: The complete flow diagram of hepatitis B virus transmis-
sion model.

The model published in [1] should be replaced by (1) as well as
the results. Assume S(t) + E(t) + A(t) +C(t) +V (t) + M(t) = 1;
we obtain the following reduced model for (1):

s () =0n+6,-(6nm+4,)C(t)
dt
—(0+p+8,)S()
- B(A(1) +xC (1) S(t)

“8,(E(E) +A(t) + M () + aM (1),

S*
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d
%=,B(A(t)+KC(t))S(t)—(6+y1+E)E(t)
+6mnC (¢) + u M (1),
d
LU Y EO-0+1) A0+ M,
d
i—t(t) =qnA ) - (8 +y;)C),
d
]Zt(t) S EE ()~ (py + py + 0+ 6) M (D).
3)
Let
= {(S,E,A,C,M) eR|S@H) < M, S+E
O+6,+p
om+96 )
T[ o
+A+C+M< 510, }

Here I' is a positively invariant set. All the solutions inside I
are our main focus.

3. Equilibria and Basic Reproduction Number

System (3) has the disease-free equilibrium at D, =
(8°,0,0,0,0); that is, S° = (87 + 6,)/(8 + S, + p). At D, =
(S*,E*, A*,C*, M"™), the endemic equilibria of system (3) are
given by

Oy +8 0 +y,) (O +ys) (a+ 8+ + ) — [6ngy, (Gt + 1 (a0 + 0+t + 1)) + 8 (8 +7,) (8 +75)]

B((S +y;) +axy,) (Epy + 11 (€ + 8 + py +u5))

- (0 +p) (@ +8+p +py) A"

- (@ + 8+ py + ) + 1y8) ,

>

" (5)
cr - A
(8+ys)
M* _ E (8 + yZ) A
C + 11 (@ + 8+ 4y + 1))
The basic reproduction number %, for system (3) can be v
obtallned. by using the method in [4]. We obtain the following (B+E+y) 0 by u
matrices:
_ ~h (8+1,) 0 ~H
0 B Brs® 0 0 —ay, (0+y;) 0
o0 0 o & 0 0 (a+ 8+ +u)
F=
0 0 0 0 ©)
00 0 O The basic reproduction number %, for (3) is given by
. = 1PS" (O +ys +xay,) + dmngy,] (1f + 71 (a+8 +py + 1)) + 118 (0+1,) (6 +v5) )
0= .

(O +y +8) (0+71,) (0 +7ps) (a+ 8+ +py)
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Define
. = PO +3,) (8 +y, +rqy,) + 0mngy, (8§ + 6, + p)] 11
' (B+y +&)(5+7,)(5+7y;)(8+8,+p) ©
@ P (07 +6,) (8 +y5 +1qy,) &y + E (8 + 8, + p) [87nqy,pa, + 4y (8 +9,) (8 +5)]
2= >

where 8° = (6 +6,)/(6 + S, + p) and B, = R, + &,.

4. Stability of Disease-Free Equilibrium (DFE)

In this section, we discuss the local and global stability of
system (3) at disease-free equilibrium. We have the following
results.

B+ +8) (B +712) (B +7y5) (0 +8,+p) (e + 8+ +py)

Theorem 1. The disease-free equilibrium D, of system (3) is
locally asymptotically stable if R, < 1 and the conditions (y, +
8)(y; +8) > BS°y, and (y, + 8) > BS° are satisfied; otherwise,
they become unstable.

Proof. At the disease-free equilibrium D, the corresponding
Jacobian matrix J,({) of system (3) is computed as follows:

-(6+96,+p) -0, - (BS°+4,) -T, -0, +ta
0 -6+, +8) BS° BrS° + dmny t
Jo (©) = 0 " ~(0+7) 0 o , ©)
0 0 an -0+ 0
0 & 0 0 -+ +6+a)
where T, = (0mn + xS’ +8,). The root —=(8 + 8, + p) of ],({) G =(n+08)(r+0)(a+d+p+u)(y+8+8)
is clearly negative; the other roots can be obtained from the
following equation: (1= %).
n

Mg+ +GA+¢ =0, (10)

where

g=+8)+(y;+8) +(a+8+p +u,)
+(p +0+E),

g=(a+8+u)(y+8+&)+u (1 +9)
+ (7 +8) (v3 + 8) - PniS°)
+((r+8) + (13 +9))
J(a+ 8+ + 1) + (1 +8+8)],

& =[(1+0)+ (v +0) 4y () +9)

+(a+ 8+ p + ) (12 +6) (ys + ) - PriS%)
+ (12 +6) ((a+0) (yy +0+8) + 4y (11 +9))
+ 18 (1 +8) = BS°) + (11 + 0+ ) (13 +9)
(e +8+ )+ (y, +0) (1-%))],

The eigenvalues of the characteristics equation have negative
real part if the Routh-Hurwitz condition is satisfied; that is,
G, i = 1,2,3,4, with ;65 — ¢ — ¢f¢; > 0. Therefore, if
Ry < 1land (y, + 0)(y; + 6) > BS°y, and (y, + 6) > BS°,
we get ¢, > 0 fori = 1,2,3,4. Thus, at D, the disease-free
equilibrium of system (3) is locally asymptotically stable if the

above conditions are satisfied. O

Next, we show the global stability of DFE by using the
method in [5].

Theorem 2. The disease-free equilibrium of system (3) is
globally asymptotically stable if %, < 1.

Proof. ConsiderY; = S,Y, = (E,A,C,M)",and Y = (Y, Y,).
The invariant domain I' is clearly a compact positive set. We

can present the subsystem Y; = G,(Y},0)(Y, - Y]) as
) om + 6,
S=-(6+9 S-—— . 12
eon(s- gty ) ®

System (3) represents a linear system which is globally
asymptotically stable at Y = (& + §,)/(8 + 6, + p).



The hypotheses in [5] are satisfied. The matrix G,(Y) is given
by

-8+, +8) BS
—(6
G, (¥) = 4! (6+7,)
qy>
& 0

Following the hypothesis H; in [5], for any Y € I the above
matrix G,(Y) is Metzler and irreducible. Further, we check
the fourth condition H, in [5]. There is a maximum in I if

-6+ +8)  BS°
= Y1 —(6+1)
G,(Y) =
0 72
¢ 0
The last hypothesis H; requires that a(G,(Y)) < 0. We write
G,(Y) in block form as
_ B, B,
G,(Y) = , (15)
B; B,
where

B =—(0+y +8),

B, = (BS°, BS’ + Smn, py ),
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PKS + 0my th
0
) (13)
~(8+73) 0
0 (It +d+a)

S=(©n+6,)/(+6,+ p). This corresponds to disease-free
equilibrium and the maximum G, (Y) is given by

BxS® + dny t
0
Hy (14)
~(8+y3) 0
0 ~(m+m+d+a)
N
By=[ 0],
§
4
~(0+7,) 0 t
= a, - (8+ys) 0
0 0 -+ +6+a)
(16)

Clearly B, is stable Metzler matrix, so we can write a(B, —
B;B;'B,) < 0.LetK = B, — B;B;'B,.

(6 G105g) Mo G D
K = ay ~(8+y3) 0 : (17)
The characteristics equation of K are given by L=y +08)(ys+0)(1- %)+ ((y,+9)
AP+l + LA+, =0, (18) +(y3+6))<((x+8+;42)+%)
here + (yfﬁ (2nmE - (1 +5+8)

L= +0+8[(n+0)+(y; +0) +(a+d+p)
+u (11 +0) = BniS°],

(Euy+y (@4 8+ + 1) (1 +6+8))),
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ZMIEVI 0 0
I = —2 gy, (8 S L +0) S
00 +8) [y, (87 + BrS”) + (ys + 8) BS°]

+ (1 +0) (13 +0) x (a+8+py +py) (1-R).
(19)

The Routh-Hurwitz criteria ensure that the above characteris-
tics equation has three negative eigenvalues if %, < 1 and the
condition /;1, — I; > 0. All the conditions in [5] are satisfied.
Thus, we conclude that system (3) at disease-free equilibrium

is globally asymptotically stable. O
-z, -9, -pS* =46,
z, —(@+p+8  BS
=0 M ~(6+7)
0 qv2
0

The characteristics equation at D is
X+ g A+ gL+ gsA + g+ g5 =0, (21)
where
GL=40+zi+a+y +y,+ys+ U+ +E
G = (a+0+p + ) [(y+8) +(y, +6)
+(ps +0)] +E(a+ 8+ ) + [(a+ 8 +py +y)
+(p+0+E+ (1, +0)+(y3+0)] 2, + (1, +9)
A +0+8) +(ys +0)] + (r3+8) (11 + 8 +8)
—(z3+6,2,),
gy =(a+8+u +uy)
[y +8+8) ((ys +8) + (12 +9))
+ (12 +0) (y3 +0) = 8,2,] + 2,8 [(« - 5,)
(13 +8)0, = (12 +6)8,] + (1, +6)
[y +8+E) + (y3 +0)] + (a+ 8+ py + 1)
2 [(n+0+8) +(y3+0) + (1, +9)] + (3 +9)
n+8+8)z, -z, (W& +23) — 112224
— [y +0) + (1 + 8)] + (v, + ) (v3 + 0) (1

+0+8) —zs—zz (@ + 8+ + ) — 23 (3 +9)

_ZG’

5. Stability EE

In this section, we determine the local and global stability of
(3) at endemic equilibrium.

Theorem 3. If %, > 1, then model (3) at endemic equilibrium
is locally asymptotically stable.

Proof. The Jacobian matrix J* computed at D; is given by

=Omn — PrS* -6, -5, +a
Snn + PrS” t
0 78 . (20)
—(6+73) 0
0 —(a+ 8+ +m)

9a= (12 +8) (13 +0) (a+ 8+ +11) (1 +8+8)
—(p, +8)8, (a+8+u + 1)z, — (3 +6) 6, («
0+ +1y) 2 +E(y, +8) 2z, (= 6,) + 2,8 (y;
+0) (a=08,) ~ w&(y, + )z — & (y: +8) 7,
—(y,+0)(y3+0) 8,2, — 23 (0 + 8+ py + 1y) 2,
+ {12+ 8) + (ys + )] (@ + 8+ 4y + i) (1 +
+&)z, -y (ys+08) 23z — 2125+ (1, +6) (y5 + 8)
(a+8+u +p)z + (1 +0) (3 +8)(y + 0
+8) z —mézz, — 25 (73 +0) 2, — 2,26 — 2,25
“Y (@8 +p + 1) 22, + & (, +6) (5 +9)
—(a+0+p +i)zs—z, -z (y3+6) (e + 6
+phy t ) — 26 (y3 +6),

95 == (1 +0) (13 +8) 8, (a+ 8+ p + ) 2
+&(1,+0) (1 +9) 25 (4 = 8,) + (1 + 8) (3 +9)
Ha+ 8+ + ) (n+0+8)z —w&(y, +0)
(y3+08)z; — (a+ 8+ py + y) 252, — 2,25
—Z3 (3 +0) (@ + 8+ py + 1) 21 — 262,
~11229Y; (@ + 8 + py + ) 25 — 128972222
=1 (s +0) (a+8 +py + ) 222, — & (5 +6)

" 2245
(22)



where z; = (8 + 8, + p) + B(A" +kC"), z, = B(A™ +xC"),
z3 = PyS*s z4 = (8, + BS"), 25 = y1qy,(mn + PrS*), 25 =
Bu,tS*, z; = wéqy,(ndn + PxS*), and zg = (wdy + S, +
BxS™). The characteristics equation will give negative roots if
the following conditions are satisfied:

() 91> 92> 93> 94> 95 > 0s

(i) 919, - g5 > 0,
(iil) g495(95(9:19, — 95) — 9%94) >0,
(iv) 9529194 — 92(9:192 = 95) — g5) > 0.

Conditions (i) and (ii) are easy to satisfy. If conditions (iii) and
(iv) are satisfied; then the characteristics equation given above
will give negative eigenvalues. Thus, it follows from Routh-
Hurwitz criteria that system (3) is locally asymptotically
stable at D, . O

Next result shows the global stability of the endemic
equilibrium D, of system (3) for special case when y; = 0
and « = 0. We have the following result.

Theorem 4. The endemic equilibrium D, of system (3) is
globally asymptotically stable if condition (30) holds.

Proof. We define the Lyapunov function in the following
form:

7 =w, <S—S*—S*log%>

* * E*
+w2<E—E -E logf>+w3A+w4C (23)
+ wsM.
The time durative of 7" is
S* E*
7" =w, (1——>S'+w2<1——>E'+w3A'
S E (24)

! !
+w,C +wsM .

The coefficients w;,...,w; are positive and will be deter-
mined later. At endemic steady state the first equation of (3)
is given by

S +68,=0mnC" +(6+p)S* +B(A" +«xC*)S"

(25)
+8,X".
Using (25) and the S equation (3) we obtain
w, (1 - %)S' =w, (1 - %) [6nnC* + (6 +p)S”
+B(A" +xC")S" +6,X"] —w, [6nnC
+(0+p)S+LA+KC)S+8,X]| +w, (26)

S e+ 6+ p)S@)

+B(A@F) +xC (1) S(t) +6,X].
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Similarly,
E* '
w, <1 - f)E =w, [B(A()+xC(1))S (1)

E*
- (8+y, +&)E(t) + 6mnC (1)) —wzfﬂ(A (1) 27)

+xC(£)S(t) + w, (A" +xC")S™ + w,6nnC*

*

E
SmnC (t) —.
+mi()E

Using the values of (26) and (27) and the last three equations
of system (3) and substituting in (24) we obtain

<W'=w1<l—%)[67111@‘+(<S+p)S*

+B(A" +xC*)S" +6,X"] — w,8mnC - w, (8

+p)S—w1ﬁ(A+KC)S—w180X+w1%
-0mnC (t) + w; (6 + p) S+ w, f(A+«C) S (28)

+w,8,X+w, [B(A+xkC)S—(8+y, +&)E

+871C]| —wz%[i (A+xC)S+w,B (A" +xC")

*

* % E
-ST +w,6mnCT + wzénrlcf.
After implication we obtain

Cay (Wl (it +0+a))
(i +p+0+a)(8+y, +8§)

7' = (8+p)

) (S‘S*)z _ qy, (k€ + v (i + iy + 8 + @)

S (it +0+a)(8+y +8&)
-,BS*A*X<—2+S—+ ASE )
S A'S'E

(@ (it + 0+ “))ﬁs*xc* (_2
(1 + 1 +8+a) (8 +1 +8)
+S_+£> (29)
S ' C*S'E
_qh(uzf+h(m+uz+5+a))(_2+§
(i +p+0+a)(8+y +8&) S
CE* CS§ .
o g LR CRRAICRSALe

8 *
_qyz(uzfﬂﬁ (p + 0 + +“))5X* (_1+S_
(it +8+a)(0+y +§)

? S
X XS*>

+
X* X* S
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FIGURE 2: Population behavior of individuals when y; = 0.1, y, =
0.1.
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FIGURE 3: Population behavior of individuals when y; = 0.2, p, =
0.2.
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FIGURE 4: Population behavior of individuals when g, = 0.01, y, =
0.02.
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FIGURE 5: Population behavior of individuals when y; = 0.1, 4, =
0.2.
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FIGURE 6: Population behavior of carriers individuals: solid line, 7 =
1, p = 0;dashed 7 = 0.1, p = 0.1.
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FIGURE 7: Population behavior of carriers individuals: solid line p =
0, 4, =0.1,and p, = 0.1; dashed p = 0.1, y; = 0.01, and y, = 0.01.
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FIGURE 8: Population behavior of susceptible, exposed, acute, and carriers individuals: solid line y; = 0.2, y, = 0.2; dashed y; = 0.002,

i, = 0.002.

where the constants wy, ..., ws are chosen as w, = (6 + y3),
W3 = qyy Ws = qYaphy/ (i + thy + 0 + &), wy = wy = gy, (pr§ +
Yilpy +pp +8+0) /(g +pp + 8+ )(§ +y, +&),and X =
S+E+A+C+M, X" =S"+E"+A"+C" + M".
Equation (29) 7" < 0 if the following inequalities are

satisfied:

<—2+S—+£E——£S—>20,

S C*E C*S
<—2+S—+CSE )20,

S C*S*E
(—2+S—+£E——£S—>2O,

S C*E C*S
<—1+S—+X—XS—>20.

S X* X*S

The endemic equilibrium D, of system (3) is said to be
globally asymptotically stable if condition (30) holds. O

6. Numerical Simulation

This section deals with the numerical solution of model (3).
The numerical results for model (3) are presented in Figures
2-8. In this paper, the value for a and £ is taken between 0 and
1. The rest of the parameters values are taken from [1], except
those mentioned in the figures. Figure 1 shows the population
behavior of incidentals when y; = 0.1 and , = 0.1. Figure 3
represents the population of incisiveness when g, = 0.2 and
¢, = 0.2.In Figures 2 and 3, the individuals of carriers
decrease sharply. For y; = 0.001 and g, = 0.02, we present
Figure 4. Figure 5 is population behavior of individuals when
¢, = 0.1 and p, = 0.2. Figures 6 and 7, respectively, represent
the population of carriers individuals for different values of
parameters. The population behavior of susceptible, exposed,
acute, and carriers individuals for different parameters is
presented in Figure 8. The numerical results from Figures 2
to 8 show when there is a decrease in the value of suggested
parameters, and the population of individuals in the host
decreases sharply.
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7. Conclusion

In this corrigendum, we make all the necessary changes to the
published paper [1], which are highlighted in the comment
papers [2, 3]. We added the parameter «, a rate from migrated
class to susceptible, and £ is the rate of flow from exposed to
migrated classes. Further, the basic reproduction number has
been investigated. The mathematical results for the revised
model are presented successfully.
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