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Conjunctival hyperemia or conjunctival redness is a symptom that can be associated with a broad group of ocular diseases. Its
levels of severity are represented by standard photographic charts that are visually compared with the patient’s eye. This way, the
hyperemia diagnosis becomes a nonrepeatable task that depends on the experience of the grader. To solve this problem, we have
proposed a computer-aided methodology that comprises three main stages: the segmentation of the conjunctiva, the extraction
of features in this region based on colour and the presence of blood vessels, and, finally, the transformation of these features into
grading scale values by means of regression techniques. However, the conjunctival segmentation can be slightly inaccurate mainly
due to illumination issues. In this work, we analyse the relevance of different features with respect to their location within the
conjunctiva in order to delimit a reliable region of interest for the grading. The results show that the automatic procedure behaves
like an expert using only a limited region of interest within the conjunctiva.

1. Introduction

Hyperemia is the occurrence of an engorgement in a blood
vessel. As the blood accumulates, a characteristic red coloura-
tion appears in the surrounding area.When the affected tissue
is the bulbar conjunctiva, we refer to it as bulbar hyperemia.
Bulbar hyperemia can appear due to normal bodily processes,
but it can also serve as an indicator of the first stages of
some pathologies, such as dry eye syndrome or allergic
conjunctivitis.These pathologies have a high incidence in the
world population and,more importantly, they have a growing
prevalence. Therefore, hyperemia grading is crucial to the
prompt detection of these health problems and, therefore, has
both medical and economical repercussions.

The manual process that optometrists have to face is
tedious, time consuming, highly subjective, and nonrepeat-
able. The first step is to obtain a video or picture of the

patient eye. Then, the image or images must be analysed in
detail, searching for indicators of the symptom, such as the
aforementioned red hue. Finally, the optometrist compares
the patient’s eye with a given grading scale, in order to
obtain the final evaluation. Grading scales are collections of
images that show the different levels of severity that bulbar
hyperemia can present. One of the most widely used is Efron
grading scale, which consists of four images labelled from 0
to 4 as depicted in Figure 1. Level 0 represents a perfectly
white eye, while level 4 indicates a severe health problem.
The specialists have to look for the grade of the scale that is
the most similar to the patient and, additionally, they have to
measure the difference between the patient and the prototype.
This is because the evaluation is represented by a number
with a decimal part, as four or five values are not enough to
represent the symptoms accurately.
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Figure 1: Efron grading scale. From (a) to (e), lower to higher values.

Figure 2: Different image conditions mainly due to illumination issues and the position of the eye.

All of the drawbacks in the manual process can be solved
by the automation of the process. We developed a fully
automatic methodology for bulbar hyperemia grading that
comprises three steps: the segmentation of the region of
interest within the bulbar conjunctiva, the computation of
several hyperemia indicators, and, finally, the transformation
of the computed features to the grade in a grading scale.

Regarding the first step of the methodology, obtaining
an accurate segmentation of the conjunctiva has proven to
be a far from straightforward task. The main problem is the
variability of the images, including but not limited to a wide
spectrum of illumination conditions, the location of the eye
in the image, the devices used to take the pictures or videos,
the distance from the eye to the camera, or the presence of
eyelashes. Examples of this variability are shown in Figure 2.

As a consequence, the segmentation of the whole con-
junctiva is not straightforward and entails a high computa-
tional cost. However, although specialists look at the whole
area when performing the grading, it is not proven that they
use it evenly. As knowledge is difficult to model even for
the experts themselves, we decided to study the effects of
restricting the computation of the hyperemia features to the
central area of the picture. The approach of using only a
part of the image is supported by works such as [1], where a
rectangle is manually selected in the image in order to define
the region of interest for a comparison between objective and
subjective methods. In [2], a rectangular region of interest is
also defined in the image.The authors analyse the influence of
the number of vessels in hyperemia, but they do not perform
a further assessment.

In thisworkwe analyse the results of several segmentation
algorithms in the conjunctival area andwe study the influence
of different regions of interest in the computation of the
hyperemia grading value. To this end, we compute several

features of interest in these regions based on colour and
the presence of vessels and we analyse their contribution
to the final value by means of feature selection techniques.
Finally, we use regression methods to transform the selected
feature vectors to a more suitable representation in a grading
scale.

This work is structured as follows. Section 2 explains
the methodology for conjunctival segmentation and feature
computation. Section 3 shows the results of the proposed
methodology. Finally, Section 4 presents the conclusions and
future work.

2. Methodology

Our methodology for hyperemia grading can be divided
into two distinctive parts: on the one hand, the extraction
of a set of features from a region of interest by means of
image processing algorithms and on the other hand, the
transformation of these features into values in a grading
scale using regression techniques. The former comprises the
detection of the region of interest and the computation of
features from the image pixels whereas the later requires the
selection of the most representative features, the creation of
suitable training and testing datasets, and the evaluation of
several regression algorithms.

In this section, we analyse our dataset in order to select
an appropriate subset of images and grading for the study.
Then, we propose several segmentation algorithms to detect
the conjunctiva in these images. Finally, we introduce the
features that are computed in the region of interest.

2.1. Data Preparation. Our image set consists of 141 images
of the bulbar conjunctiva.The images show a side view of the
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Figure 3: Correlation between the experts’ evaluation. Each axis shows one of the expert’s gradings. (a) to (c): threshold = 0.5, threshold =
1.0, and threshold = 1.5.

eye, from the pupil to one of its opposite corners (lacrimal
area or corner of the eye area). There are images from both
eyes and both side views of the eye.The images were obtained
with a slit lamp camera (Bon 75-SL DigiPro3 HD, Bonn,
Germany) in the School of Optometry and Vision Sciences
at the Cardiff University. The image resolution is 1600 ×1200 px.

Two optometrists evaluated the whole image set using the
Efron grading scale in a blinded manner and they did not
communicate with each other during the process. The corre-
lation of their gradings was 0.66, which can be considered a
good correlation for this kind of scenario, but not enough for
machine learning techniques.Therefore, we decided to refine
the image set by removing those images where the difference
between the evaluations was above a given threshold. Table 1
shows the evolution of the correlation with respect to several
threshold values as well as the number of remaining images.
Additionally, Figure 3 shows the distribution of the gradings
in a scatter plot.

In view of the data, our final dataset consists of 76 images
where the experts’ evaluations differ less than 0.5 points.This

Table 1: Correlation between the experts’ evaluations.

Threshold # images Correlation
0.5 76 0.8981
1.0 133 0.7212
1.5 141 0.6609

reduced image set has a correlation of almost 0.9. We use the
average value of the two evaluations as our ground truth for
the machine learning algorithms.

2.2. Extraction of the Regions of Interest. The white part of
the conjunctiva is the region where the experts focus their
attention for hyperemia grading. Thus, its location is the first
step in our methodology. We explore several approaches in
order to study the influence of the region of interest in the
final grading value.

First, we tested several state-of-the-art methods in order
to automatically segment the conjunctiva:
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Figure 4: Conjunctiva image, manual segmentation of the region of interest, and central square of 512 × 512 px.

(i) 𝑇𝐺: thresholding in the green channel of the RGB
image, using an average of the intensity in the whole
image.

(ii) 𝑇𝐺󸀠 : thresholding in the green channel of the RGB
image, using an average of the intensity of the pixels
in the central horizontal stripe of the image.

(iii) 𝑇𝑆: thresholding in the 𝑆 channel of the TSL image.
(iv) 𝑇𝑆󸀠 : thresholding in the 𝑆 channel of the TSL image,

correcting the level of red to remove the vessel
influence in the more severe hyperemia images.

(v) 𝑇𝑉: thresholding in the 𝑉 channel of the HSV image.
(vi) 𝑇𝑎: thresholding in the a-channel of the 𝐿∗𝑎∗𝑏∗

image.
(vii) 𝑂𝑊: watershed segmentation.
(viii) 𝑂SM: split-and-merge segmentation.

We segmented our dataset of 76 imagesmanually in order
to ensure that the segmentation of the region of interest does
not influence the computation of the features. To this end,
we use the function roipoly from MATLAB [3] that allow us
to manually define the vertices of a polygonal mask in the
input image. Then, we select a square of 512 × 512 px in the
centre of this mask, as depicted in Figure 4. The images used
for hyperemia grading are centred in the conjunctival area so
that the iris and the corner of the eye are always placed near
the image boundaries. This way, a centred region is mostly
composed of conjunctival pixels. Moreover, the iris, eyelids,
and eyelashes are removed by means of the manual mask, so
they will not add bias in the results even if they are within the
scope of the rectangle.

We decided to use this region because larger regions are
not available in all the images due to the position of the eye
within the image and the variability regarding the position
of the eyelids. Moreover, we are interested in comparing the
regions that are present in all the images, which are only the
most centred. Regarding the size of the area, previous works
in the literature support that even smaller rectangle sizes are
significant enough for the grading [2].

Most of the images of our data set show a close view of the
conjunctiva, with the eye fully open and small eyelid areas.
However, there were 6 images that presented the eye much
more closed and the conjunctiva was too small to produce a512 × 512 px square, leading us to discard those images.

Wedivided this central square into cells. Among themany
grid possibilities, we decided to test 1 × 2, 2 × 1, and2 × 2 grids, as we considered that a region smaller than256 × 256 was too small to provide a useful approach to the
measurement.

The results of a previous study confirmed that there are
differences between the pupil area and the opposite side of
the eye [4]. Since we are interested in the same cells showing
the same areas of the eye, we flipped vertically some of the
images. Thus, all of them had the pupil in the same side.

2.3. Feature Computation. In previous works [5], we studied
the features that best represent the bulbar conjunctival
hyperemia. We apply these features to each of the cells, the
whole squared region of interest, and the whole manual
segmentation of the conjunctiva. Hence, we obtain a feature
vector of (𝑚 ∗ 𝑛 + 2) ∗ 𝑓 values for each𝑚 × 𝑛 grid, where 𝑓
is the number of features. Table 2 summarises the 24 features
computed.

In the equations, 𝑛 and 𝑚 indicate the size of the input
image 𝐼, but considering only the pixels that belong to the
region of interest; 𝑖 and 𝑗 represent the position (row, column)
of the current pixel in the image; 𝑅, 𝐺, and 𝐵 indicate the
channel value in RGB colour space;𝐻, 𝑆, and𝑉 represent the
channel value in HSV colour space; 𝐿, 𝑎, and 𝑏 represent the
channel value in 𝐿∗𝑎∗𝑏∗ colour space;𝐸 is the edge image;𝑉𝐸
is the set of vessel edges within the region of interest, whereas
𝑉𝐸 are the nonvessel pixels. The vessel edges are computed
using the Canny edge detector. In the feature 𝐹1, 𝑛𝑟 is the
number of image rows considered, and 𝑀 is a mask. The
feature 𝐹13 computes the red hue value taking into account
the values of the neighbouring pixels. 𝜇𝑖𝑗 is the value for this
neighbourhood.

Each value of the feature vector is denotedwith the feature
number and a subscript that represents the region where the
feature is computed. This way, subscript 𝑜 represents that the
feature is computed in the whole conjunctiva; subscript 𝑡,
in the 512 × 512 square, and subscript 𝑔 plus a number
indicate the cell grid number. The cells are numbered as(𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛), with the relative position in the original
square.

After we have computed the 24 features in each region
of interest, we have a feature vector with different ranges of
values in each cell. We need to transform these values to a
grade within the scale range by means of a complex function,
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Table 2: Implemented hyperemia features.

Feature Name Formula

𝐹1 Vessel count
∑𝑛𝑖=1∑𝑚𝑗=1 𝐸𝑖𝑗𝑀𝑖𝑗

𝑛𝑟
𝐹2 Vessel occupied

area
∑𝑛𝑖=1∑𝑚𝑗=1 𝑉𝐸𝑖𝑗

𝑛𝑚
𝐹3 Relative vessel

redness

𝑛∑
𝑖=1

𝑚∑
𝑗=1

( 𝑅𝑖𝑗𝑉𝐸𝑖𝑗
𝑅𝑖𝑗 + 𝐺𝑖𝑗 + 𝐵𝑖𝑗)

𝐹4 Relative image
redness

𝑛∑
𝑖=1

𝑚∑
𝑗=1

( 𝑅𝑖𝑗
𝑅𝑖𝑗 + 𝐺𝑖𝑗 + 𝐵𝑖𝑗)

𝐹5
Difference
red-green in

vessels

∑𝑛𝑖=1∑𝑚𝑗=1 ((𝑅𝑖𝑗 − 𝐺𝑖𝑗)𝑉𝐸𝑖𝑗)
𝑛𝑚

𝐹6
Difference

red-green of the
image

∑𝑛𝑖=1∑𝑚𝑗=1(𝑅𝑖𝑗 − 𝐺𝑖𝑗)
𝑛𝑚

𝐹7
Difference
red-blue in
vessels

∑𝑛𝑖=1∑𝑚𝑗=1 ((𝑅𝑖𝑗 − 𝐵𝑖𝑗)𝑉𝐸𝑖𝑗)
𝑛𝑚

𝐹8
Difference

red-blue of the
image

∑𝑛𝑖=1∑𝑚𝑗=1(𝑅𝑖𝑗 − 𝐵𝑖𝑗)
𝑛𝑚

𝐹9 Red hue value
∑𝑛𝑖=1∑𝑚𝑗=1 󵄨󵄨󵄨󵄨󵄨128 − 𝐻𝑖𝑗󵄨󵄨󵄨󵄨󵄨𝑛𝑚

𝐹10 Percentage of
vessels

∑𝑛𝑖=1∑𝑚𝑗=1 𝑉𝐸𝑖𝑗
𝑛𝑚 100

𝐹11 Percentage of
red (RGB)

∑𝑛𝑖=1∑𝑚𝑗=1 𝑅𝑖𝑗𝑉𝐸𝑖𝑗
∑𝑛𝑖=1∑𝑚𝑗=1 𝑉𝐸𝑖𝑗 100

𝐹12 Percentage of
red (HSV)

∑𝑛𝑖=1∑𝑚𝑗=1𝐻𝑖𝑗𝑉𝐸𝑖𝑗
∑𝑛𝑖=1∑𝑚𝑗=1 𝑉𝐸𝑖𝑗 100

𝐹13 Redness with
neighbourhood

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐻𝑖𝑗𝑉𝐸𝑖𝑗
𝜇𝑖𝑗

𝐹14
𝐿∗𝑎∗𝑏∗ 𝑎-

channel of the
image

∑𝑛𝑖=1∑𝑚𝑗=1 𝑎𝑖𝑗
𝑛𝑚

𝐹15
𝐿∗𝑎∗𝑏∗ 𝑎-
channel in
vessels

∑𝑛𝑖=1∑𝑚𝑗=1 (𝑎𝑖𝑗𝑉𝐸𝑖𝑗)
𝑛𝑚

𝐹16
Yellow in

background
(RGB)

∑𝑛𝑖=1∑𝑚𝑗=1 ((𝑅𝑖𝑗 + 𝐺𝑖𝑗)𝑉𝐸𝑖𝑗)
𝑛𝑚

𝐹17
Yellow in

background
(HSV)

∑𝑛𝑖=1∑𝑚𝑗=1 (󵄨󵄨󵄨󵄨󵄨240 − 𝐻𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑉𝐸𝑖𝑗)𝑛𝑚

𝐹18
Yellow in

background(𝐿∗𝑎∗𝑏∗)
∑𝑛𝑖=1∑𝑚𝑗=1 (𝑏𝑖𝑗𝑉𝐸𝑖𝑗)

𝑛𝑚

𝐹19
Red in

background
(RGB)

∑𝑛𝑖=1∑𝑚𝑗=1 (𝑅𝑖𝑗𝑉𝐸𝑖𝑗)
𝑛𝑚

𝐹20
Red in

background
(HSV)

∑𝑛𝑖=1∑𝑚𝑗=1 (󵄨󵄨󵄨󵄨󵄨128 − 𝐻𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑉𝐸𝑖𝑗)𝑛𝑚

Table 2: Continued.

Feature Name Formula

𝐹21
Red in

background(𝐿∗𝑎∗𝑏∗)
∑𝑛𝑖=1∑𝑚𝑗=1 (𝑎𝑖𝑗𝑉𝐸𝑖𝑗)

𝑛𝑚
𝐹22

White in
background

(RGB)

∑𝑛𝑖=1∑𝑚𝑗=1 ((𝑅𝑖𝑗 + 𝐺𝑖𝑗 + 𝐵𝑖𝑗)𝑉𝐸𝑖𝑗)
𝑛𝑚

𝐹23
White in

background
(HSV)

∑𝑛𝑖=1∑𝑚𝑗=1 ((𝑉𝑖𝑗 + 𝑆𝑖𝑗)𝑉𝐸𝑖𝑗)
𝑛𝑚

𝐹24
White in

background(𝐿∗𝑎∗𝑏∗)
∑𝑛𝑖=1∑𝑚𝑗=1 (𝐿 𝑖𝑗𝑉𝐸𝑖𝑗)

𝑛𝑚

as there is no apparent relationship between the values and
the final grade. As a previous step to the transformation to
the grading scale, we are interested in using only the values
of the most relevant features in the computation. To that end,
we use feature selectionmethods.Wehad previously analysed
several feature selection techniques in order to reduce the
dimensionality of the problem [6]. In this article, we apply
the method that provided the best results for the Efron scale,
the filter method Correlation Feature Selection (CFS) [7].
However, in order to further analyse how the best features are
selected in the grid configurations, we added the filter ranker
method Relief [8] and the wrapper method SMOReg [9].

We also performed a comparison of different machine
learning techniques [4].The one that obtained the best results
was theMultilayer Perceptron (MLP) [10] approach, followed
by the Partial Least Square (PLS) regression [11] and the
Random Forest (RF) [12]. Therefore, we implemented these
three approaches, as each of them belongs to a different type
and, hence, we can compare their behaviour with the set of
regions of interest.

3. Results

In this section we present the results of the proposed
segmentation approaches and we study the relevance of the
features computed in different regions of interest. Finally, we
test the best combinations of features with several regression
techniques in order to emulate the experts’ gradings.

First, we compared the manual segmentation of the
images with the automatic approaches by computing the
number of true positives (both methods identify the pixel
as part of the conjunctiva), false positives (the automatic
method identifies background as conjunctiva), true negatives
(both methods identify a pixel as background), and false
negatives (the automatic method identifies a part of the
conjunctiva as background). Then, we computed the speci-
ficity, sensitivity, accuracy, and precision of each method.
All the segmentation methods were implemented in C++
with the OpenCV library [13]. Table 3 depicts the results
for the state-of-the-art conjunctiva segmentation techniques.
Despite obtaining some high values for the parameters, the
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Table 3: Sensitivity, specificity, accuracy, and precision for each ROI extraction procedure.

Mask Sensitivity Specificity Accuracy Precision
𝑇𝐺 0.895698 0.65153 0.798084 0.810654
𝑇𝐺󸀠 0.618007 0.97758 0.746112 0.975355
𝑇𝑆 0.909963 0.750125 0.841281 0.846001
𝑇𝑆󸀠 0.959717 0.452372 0.760782 0.737163
𝑇𝑉 0.776801 0.848024 0.787575 0.87764
𝑇𝑎 0.795949 0.895013 0.817989 0.910256
𝑂𝑊 0.947957 0.352172 0.722338 0.709184
𝑂SM 0.797081 0.9071 0.82936 0.924299

tn = 2 tn = 4 tn = 6

TG TS TV TaT
G

󳰀 T
S
󳰀

Figure 5: Individual thresholding masks and the resulting combinations with different values of 𝑡𝑛.

main drawback of these approaches is that they do not
provide acceptable values for all parameters at a time. Some of
the approaches are too inclusive, while others remove a large
part of the conjunctiva.

We consider desirable that all the parameters are, at
least, at 80%. Split-and-merge segmentation, while close to
this requirement, is computationally costly. The computation
takes more than 6 seconds on average, while thresholding
approaches take less than a second on the same computer.

Therefore, we decided to perform a test combining all the
proposed thresholding approaches. We threshold the input
image with the six aforementioned intensity threshold values.
The pixels over the threshold at least 𝑡𝑛 times are considered
part of the conjunctiva and the remaining pixels are marked
as background; that is, we obtain six different segmentations
for an image and we create the final mask by using only the
pixels that belong to at least 𝑡𝑛 of the masks. We tested this
approachwith 𝑡𝑛 ranging from2 to 6 (Figure 5).The results for
the different threshold approaches are depicted in Figure 6.
We can see that the optimal value for the dataset is 6 since all
the statistical measures are above 0.8.

Since a precise segmentation of the conjunctiva is hard to
obtain, we analyse if a smaller region is enough to develop an
automatic grading system. To this end, we study the relevance
of each feature in several regions of interest definedwithin the
conjunctiva.

Sensitivity
Specificity

Accuracy
Precision

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

65432

Figure 6: Sensitivity, specificity, accuracy, and precision for the
threshold combinations.

In order to discover which areas are the most relevant for
the evaluation, we computed the hyperemia image features
for the 70 images, obtaining one feature vector for each
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Table 4: Features chosen with each division and feature selection
method.

Grid
CFS

1 × 2 𝐹2𝑜, 𝐹10𝑜, 𝐹14𝑜, 𝐹23𝑜, 𝐹10𝑡, 𝐹23𝑡, 𝐹23𝑔1, 𝐹2𝑔22 × 1 𝐹2𝑜, 𝐹10𝑜, 𝐹14𝑜, 𝐹10𝑡, 𝐹23𝑡, 𝐹23𝑔1, 𝐹23𝑔22 × 2 𝐹2𝑜, 𝐹10𝑜, 𝐹14𝑜, 𝐹10𝑡, 𝐹23𝑡, 𝐹23𝑔11, 𝐹23𝑔21, 𝐹2𝑔22
Relief

1 × 2 𝐹14𝑜, 𝐹21𝑜, 𝐹15𝑜, 𝐹5𝑜, 𝐹6𝑜, 𝐹7𝑜, 𝐹5𝑡2 × 1 𝐹14𝑜, 𝐹21𝑜, 𝐹15𝑜, 𝐹5𝑜, 𝐹6𝑜, 𝐹5𝑡, 𝐹15𝑔2, 𝐹7𝑜2 × 2 𝐹14𝑜, 𝐹21𝑜, 𝐹15𝑜, 𝐹5𝑜, 𝐹6𝑜, 𝐹7𝑜, 𝐹5𝑡, 𝐹11𝑜
SMOReg

1 × 2 𝐹10𝑜, 𝐹14𝑜2 × 1 𝐹14𝑜, 𝐹17𝑔22 × 2 𝐹14𝑜

configuration grid, 1 × 2, 2 × 1, and 2 × 2. Next, we applied
the feature selection techniques. We used a 10-fold cross-
validation and we averaged the occurrences of the features
among the folds in order to decide the final subset. For CFS
and SMOReg, we selected those features that were selected
in at least 7 out of 10 folds. The ranker method is slightly
different, as it always return all the features, but sorted in
descending order of importance. Hence, we decided to take
into account only the features that, on average, were selected
on the first 10 positions of the ranking. Table 4 shows the
features selected for each grid and method.

We can observe how the methods favour the larger areas
(central square and full conjunctiva). This was expected, as
they provide more information than the cells. However, there
are a few exceptions such as feature 23 (white in background,
HSV colour space) in CFS, feature 15 (a-channel in vessels,𝐿∗𝑎∗𝑏∗ colour space) in Relief, or feature 17 (yellow in
background, HSV colour space) in SMOReg. This leads us to
think that there are, in fact, some areas where a feature can be
specially representative.

Table 5 depicts the mean square error (MSE) values for
each combination of grid, feature selection method, and
machine learning technique. We also include the results of
the whole conjunctiva manually segmented. The best value
for configurations 1 × 2 and 2 × 1 is achieved by the MLP
with all the features. For the last configuration, 2 × 2, the
best value is obtained also by theMLP, but using the SMOReg
subset: only feature 14 (a-channel of the image, 𝐿∗𝑎∗𝑏∗ colour
space) computed in the whole conjunctiva.

With these experiments, we notice how, despite most
features belonging to the larger areas of the image, some
of the features are selected as relevant in the individual
cells. This leads us to question if we are able to evaluate
the hyperemia grade taking into account only the individual
cells. Therefore, we performed feature selection with only the
features computed from the cells and applied the regression
techniques to the obtained subsets. The selected features are
depicted in Table 6.

In view of the data, we notice that some of the most
common features, such as feature 10 and feature 23, remain

being favoured by the feature selection techniques. However,
the most common one, feature 14, does not appear in none of
CFS subsets, nor in most of SMOReg ones. This gives us the
idea that the a-channel of the image (red hue level in 𝐿∗𝑎∗𝑏∗
colour space) is highly relevant when it takes place in a large
area, but not when we limit the region size. On the other side,
feature 12 (percentage of red, HSV colour space) now appears
in two of the SMOReg subsets.

Regarding the cell importance, in 1 × 2 and 2 × 1
configurations, filter methods seem to pick evenly features
in both areas. SMOReg, on the contrary, favours the left
and bottom areas of the eye. This remains true for the last
configuration, 2 × 2, where it selects only features in the
lower left corner. Finally, the filters choose all cells but (1, 1)
at least once in the 2 × 2 scenario, which lead us to think that
the upper left corner is the less relevant part.

The MSE results for each situation are shown in Table 7.
Again, the best value for the 1 × 2 configuration is achieved
by the MLP with all the features. What is interesting in this
value is that it improves the original minimal MSE obtained
by using the features in the whole conjunctiva and in the
central square. The best values for the 2 × 1 and 2 × 2
configurations are obtained by the PLS approach with the
Relief subset and the MLP approach with the CFS subset,
respectively. In these cases, we do not improve the previous
minimum value for the given division, but we still obtain an
error value lower than 0.1. As we mentioned when analysing
the correlation values, it is not uncommon that the experts
obtain differences in evaluation higher than 0.5, this is,
squared errors higher than 0.25. Consequently, we can affirm
that our system is able to behave like a human expert taking
into account a reduced region of interest.

4. Conclusions

In this paper, we use our fully automatic hyperemia grading
framework in order to identify the most relevant areas of
interest in the bulbar conjunctiva. There were two main
reasons for this experiment. First, we wanted to know if a
smaller area of the conjunctiva is representative enough for
grading purposes since the segmentation of the conjunctiva
is still an open task. Second, we aimed to identify the areas
where a feature is more important, and the areas that have
most of the specialists’ attention.Thus, we selected the central
square of the image because it is the more constant section
among the pictures, as it is present when the eye is half
closed or the camera is moved to the left or right sides. We
also subdivided the square into cells in order to test even
smaller areas. To this end, we apply several feature selection
methods and results show that some features are indicators
of hyperemia even if they only take place in a section of
the conjunctiva. We applied three regression techniques in
order to transform the feature vectors computed in different
regions of interest into the grading scale values. When using
both global (whole conjunctiva and central square) and cell
features, the best MSE result was obtained by the MLP with
all the features in the 1 × 2 grid configuration. However,
this value is improved by using only the features in the
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Table 5: MSE values for each combination of grid, feature selection method, and machine learning technique.

Grid All CFS Relief SMOReg
MLP

1 × 2 0.02214 0.22139 0.04798 0.04467
2 × 1 0.03009 0.03854 0.04552 0.05429
2 × 2 0.22129 0.04511 0.03049 0.03048
Conjunctiva 0.22148 0.22293 0.22131 0.05735

PLS
1 × 2 0.07173 0.08799 0.05257 0.05313
2 × 1 0.05846 0.11388 0.05417 0.06370
2 × 2 0.07172 0.14042 0.05242 0.06077
Conjunctiva 0.06432 0.05307 0.05470 0.05354

RF
1 × 2 0.08297 0.07985 0.09575 0.07868
2 × 1 0.08993 0.08097 0.09308 0.10824
2 × 2 0.08635 0.08042 0.09224 0.10231
Conjunctiva 0.08338 0.10235 0.09734 0.10887

Table 6: Features chosen with each grid and feature selection method (cells only).

Grid
CFS

1 × 2 𝐹10𝑔1, 𝐹23𝑔1, 𝐹2𝑔2, 𝐹10𝑔22 × 1 𝐹10𝑔1, 𝐹23𝑔1, 𝐹5𝑔2, 𝐹10𝑔2, 𝐹15𝑔22 × 2 𝐹10𝑔12, 𝐹2𝑔21, 𝐹10𝑔21, 𝐹15𝑔21, 𝐹23𝑔21, 𝐹2𝑔22, 𝐹10𝑔22
Relief

1 × 2 𝐹14𝑔1, 𝐹5𝑔1, 𝐹14𝑔2, 𝐹21𝑔1, 𝐹7𝑔1, 𝐹5𝑔2, 𝐹6𝑔1, 𝐹21𝑔2, 𝐹15𝑔1, 𝐹6𝑔2, 𝐹7𝑔2, 𝐹15𝑔22 × 1 𝐹15𝑔2, 𝐹14𝑔2, 𝐹21𝑔2, 𝐹7𝑔2, 𝐹6𝑔2, 𝐹5𝑔1, 𝐹8𝑔2, 𝐹7𝑔1, 𝐹15𝑔1, 𝐹18𝑔22 × 2 𝐹14𝑔21, 𝐹5𝑔21, 𝐹21𝑔21, 𝐹7𝑔21, 𝐹6𝑔21, 𝐹14𝑔12, 𝐹15𝑔21, 𝐹21𝑔12, 𝐹8𝑔21, 𝐹14𝑔22, 𝐹6𝑔12
SMOReg

1 × 2 𝐹12𝑔12 × 1 𝐹15𝑔22 × 2 𝐹12𝑔21, 𝐹14𝑔21

Table 7: MSE values for each combination of grid, feature selection method, and machine learning technique (cells only).

Grid All CFS Relief SMOReg
MLP

1 × 2 0.02148 0.10003 0.22129 0.10230
2 × 1 0.22143 0.22129 0.22135 0.35284
2 × 2 0.22140 0.05455 0.22136 0.05779

PLS
1 × 2 0.07135 0.11707 0.08559 0.23905
2 × 1 0.06881 2.93832 0.06830 0.06981
2 × 2 0.09540 0.09608 0.07756 0.07056

RF
1 × 2 0.09263 0.14607 0.09993 0.25122
2 × 1 0.09951 0.09954 0.10945 0.10790
2 × 2 0.10317 0.11226 0.10531 0.12962
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cells. In fact, several combinations of grids, feature selection
subsets, and regression techniques obtain lower error results
by using some of the features computed in only a part of the
image. Therefore, we can conclude that we can use only the
central area of the image when aiming for the segmentation
of the bulbar conjunctiva as it is representative enough. This
translates in a reduction of the computational time and a
lower chance of including unwanted information within the
region of interest, such as eyelids or eyelashes. Also, the test
performed with only the features computed in the cells gives
us the idea that the lower region of the eye is more important,
and so it is the pupil side.

Our future lines of work include the development of an
application for the automatic evaluation of bulbar hyperemia
and the subsequent integration of these results in the final
methodology.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research has been partially supported by the Ministerio
de Economı́a y Competitividad through the Research Con-
tract DPI2015-69948-R. Maŕıa Luisa Sánchez Brea acknowl-
edges the support of the University of A Coruna though the
Inditex-UDC Grant Program.

References

[1] G. Juhász, The Regional Geological Model of Szentes Geother-
mal Field, Magyar Szénhidrogénipari Kutató-Fejlesztő Intézet,
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