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Abstract

To identify genetic variants influencing plasma lipid concentrations, we first used genotype
imputation and meta-analysis to combine three genome-wide scans totaling 8,816 individuals and
comprising 6,068 individuals specific to our study (1,874 individuals from the FUSION study of
type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated variables) and
2,758 individuals from the Diabetes Genetics Initiative, reported in a companion study in this
issue. We subsequently examined promising signals in 11,569 additional individuals. Overall, we
identify strongly associated variants in eleven loci previously implicated in lipid metabolism
(ABCA1, the APOA5-APOA4-APOC3-APOAI and APOE-APOC clusters, APOB, CETR,
GCKR, LDLR, LPL, LIPC, LIPG and PCSKY) and also in several newly identified loci (near
MVK-MMAB and GALNTZ, with variants primarily associated with high-density lipoprotein
(HDL) cholesterol; near SORT1, with variants primarily associated with low-density lipoprotein
(LDL) cholesterol; near 7TR/B1, MLXIPL and ANGPTL3, with variants primarily associated with
triglycerides; and a locus encompassing several genes near NCAN, with variants strongly
associated with both triglycerides and LDL cholesterol). Notably, the 11 independent variants
associated with increased LDL cholesterol concentrations in our study also showed increased
frequency in a sample of coronary artery disease cases versus controls.

Coronary artery disease (CAD) and stroke are the leading causes of morbidity, mortality and
disability in industrialized countries, and the prevalence of these diseases is increasing
rapidly in developing countries®. A main underlying pathology is atherosclerosis, a process
of cumulative deposition of LDL cholesterol in the arteries supplying blood to the heart and
brain that eventually leads to impaired or absent blood supply and myocardial infarction or
strokel. Consistent and compelling evidence has demonstrated association between
lipoprotein-associated lipid concentrations and cardiovascular disease incidence
worldwide?4. Whereas high concentrations of LDL cholesterol are associated with
increased risk of CAD, high concentrations of HDL cholesterol are associated with
decreased risk of CAD. Specifically, it has been estimated that each 1% decrease in LDL
cholesterol concentrations reduces the risk of coronary heart disease by ~1% (ref. 5), and
each 1% increase in HDL cholesterol concentrations reduces the risk of coronary heart
disease by ~2% (ref. 6). A recent meta-analysis of data on 150,000 individuals, including
3,000 with CAD-related deaths, shows that the two factors are independently associated with
CAD risk’. There is evidence that a high concentration of triglycerides is an additional,
independent risk factor for cardiovascular disease®9, although whether this association is
causal is still under debate.
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Smoking, diet and physical activity all have a role in determining individual lipid profiles.
Still, family studies suggest that in many populations, about half of the variation in these
traits is genetically determined!%11, and it is clear that LDL cholesterol, HDL cholesterol
and triglyceride concentrations are strongly influenced by the genetic constitution of each
individual. Furthermore, genetic variants that increase LDL cholesterol concentrations—
such as rare variants in the LDL receptor (LDLR) and apolipoprotein B (APOB) genes and
common variants in the apolipoprotein E (APOE) gene—have also been associated with
increased susceptibility to coronary heart diseasel2. Thus, the available evidence
demonstrates not only that genetic variants account for a substantial fraction of individual
variation in lipid concentrations, but also that lipid concentrations are associated with the
risk of CAD.

Although several genes and genetic variants have been found that associate with individual
variation in lipid concentrations, additional variants influencing these traits remain to be
identified. As with other complex traits, identification of genes influencing lipid
concentrations is likely to be much enhanced by large sample sizes. Thus, we decided to
combine genome-wide association scan data from two of our studies, including 1,874
individuals from the FUSION study of type 2 diabetes'3 and 4,184 individuals from the
SardiNIA study of aging-associated variables!0.14, with data on 2,758 individuals from the
Diabetes Genetics Initiativel®16, Here, we describe results of a combined analysis of the
three genome-wide association scans involving a total of 8,816 individuals and our follow-
up assessments of up to 11,569 individuals, which were done in order to verify common
genetic variants associated with plasma concentrations of LDL cholesterol, HDL cholesterol
and triglycerides. Our results identify >25 independent common variants associated with
individual variation in lipid concentrations (each with 2< 5 x 1078). Some are located in
previously implicated loci, indicating that our approach was valid, and others are found in
loci where genetic variants have not been previously implicated in lipid metabolism. Our
results also provide promising, albeit not definitive, evidence of association between several
other common variants and lipid concentrations. In a companion manuscript, Kathiresan and
colleagues from the Diabetes Genetics Initiative report results of their own follow-up
genotyping of SNPs selected on the basis of our combined analysis of the three scans, their
original analyses, and previously published reports. Their independent follow-up samples
and genotyping further support the newly identified loci reported here.

Genome-wide association scans

To survey the genome for common variants associated with plasma concentrations of HDL
cholesterol, LDL cholesterol and triglyceride concentrations, we conducted genome-wide
association scans on two different populations. In one scan, after we excluded markers on
the basis of quality-control filters (see Methods), we examined 304,581 SNPs with minor
allele frequency (MAF) >1% from the lllumina HumanHap300 BeadChip and a GoldenGate
panel designed to improve coverage around type 2 diabetes (T2D) candidate genes in 1,874
Finnish individuals from the Finland—United States Investigation of NIDDM Genetics
(FUSION) study23. In a second scan, after quality-control filtering, we examined 356,539
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SNPs (MAF > 5%) from the Affymetrix 500K Mapping Array Set in 4,184 individuals from
the SardiNIA Study of Aging'%14. The Sardinian sample is organized into a number of
small-to medium-sized pedigrees. We took advantage of this relatedness to reduce
genotyping costs: we genotyped 1,412 individuals with the Affymetrix 500K Mapping Array
Set (organized into groups of 2-3 individuals per nuclear family) and then propagated their
genotypes to the remaining individuals, who were genotyped using only the Affymetrix 10K
Mapping Array1417.18 (see Methods). To increase statistical power, we also contacted the
authors of a previously published study to obtain results for 347,010 SNPs (MAF > 5%)
genotyped in 2,758 Finnish and Swedish individuals from the Diabetes Genetics Initiative
(DGI) using the Affymetrix 500K Mapping Array Set. Further details of the DGI study and
independent follow-up analyses are provided in a companion manuscript!®. All three initial
scans excluded individuals taking lipid lowering therapies, for a total of 8,816 phenotyped
individuals (Table 1). Informed consent was obtained from all study participants and ethics
approval was obtained from the participating institutions.

Because the three studies used different marker sets with an overlap of only 44,998 SNPs
across studies, we used information on patterns of haplotype variation in the HapMap CEU
samples (release 21)1° to infer missing genotypes 7 silico and to facilitate comparison
between the studies'3. Imputation analyses were carried out with Markov Chain
Haplotyping software (MaCH; see URLSs section in Methods). For our analyses, we only
considered SNPs that were either genotyped or could be imputed with relatively high
confidence; that is, SNPs for which patterns of haplotype sharing between sampled
individuals and those genotyped by the HapMap consistently indicated a specific allele.
Comparison of imputed and experimentally derived genotypes in our samples yielded
estimated error rates of 1.46% (for imputation based on Illumina genotypes) to 2.14%
(imputation based on Affymetrix genotypes) per allele, consistent with expectations from
HapMap data. For additional details of quality-control and imputation procedures, see
Methods and Supplementary Table 1 online.

We then conducted a series of association analyses to relate the ~2,261,000 genotyped
and/or imputed SNPs with plasma concentrations of HDL cholesterol, LDL cholesterol and
triglyceride concentrations. For each SNP, lipid concentrations were regressed onto allele
counts in a regression model that also included gender, age and age? as covariates. For the
FUSION sample, we analyzed T2D cases and controls separately, and added additional
covariates accounting for birth province and study subset. For the DGI sample, we analyzed
cases and controls together using an additional covariate to indicate diabetes status. For
SNPs genotyped in the lab, allele counts were discrete (0, 1 or 2), whereas for SNPs
genotyped /n silico, allele counts were fractional (between 0.0 and 2.0, depending on the
imputed number of copies of the allele for each individual; see Methods). To allow for
relatedness in the FUSION and SardiNIA samples, we estimated regression coefficients in
the context of a variance component model that modeled background polygenic effectsl’. As
usual?%:21 modeling polygenic effects is important in the context of an association study
such as this one, because ignoring relatedness among sampled individuals can lead to
misleading P values and inflated false-positive rates.
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Figure 1 shows the results of a meta-analysis of the initial scans from all three studies,
comprising a total of 8,816 participants. The genomic control?2 parameters for this meta-
analysis were 1.04, 1.02 and 1.01 (for HDL cholesterol, LDL cholesterol and triglycerides,
respectively), suggesting that population stratification and unmodeled relatedness had
negligible impact on our association results. Stage 1 results indicate strong association with
lipids for 18 loci where at least one SNP exceeds the arbitrary threshold of <5 x 1077
(Table 2). Several loci previously implicated in lipid metabolism show strong evidence for
association, including regions near CETP (strongest association at rs3764261, P< 10718,
HDL cholesterol concentration increase of 2.42 mg/dl per A allele), LPL (rs12678919, P<
10719, 2.44 mg/dl increase per G allele), L/PC (rs10468017, P< 10710, 1,76 mg/dl increase
per T allele), ABCA1 (rs4149274, P ~7.4 x 1078, 1.51 mg/dl increase per G allele) and
LIPG (rs4939883, P ~1.4 x 1077, 1.87 mg/dl increase per C allele) associated with HDL
cholesterol concentrations; the APOE-APOCI-APOC4-APOCZ cluster (rs4420638, P<
10720, 8.02 mg/dl increase per G allele), APOB (rs515135, P< 10713, 6.08 mg/dl increase
per C allele) and LDLR (rs6511720, P< 1079, 8.03 mg/dl increase per C allele) associated
with LDL cholesterol concentrations; and near the APOA5-APOA4-APOC3-APOAI cluster
(rs964184, P< 10715, 18.12 mg/dI increase per G allele), GCKR (rs1260326, P< 10714,
10.25 mg/dl increase per T allele) and LPL (rs6993414, P< 10712, 14.20 mg/dI increase per
A allele) associated with triglyceride concentrations. At several of these loci, the SNP
showing strongest association was in linkage disequilibrium (LD) with previously identified
variants (/2 > 0.80) or had itself been previously reported to show association. However, at
other loci—in particular, the regions near L/PC, LIPG, LDLR and APOB—strongly
associated SNPs were in only weak LD with previously identified variants (/2 < 0.30) and
thus were likely to represent new signals (Supplementary Table 2 online). At the GCKR
locus, the strongest observed association was with a coding SNP, consistent with the results
of a recent detailed analysis of the region (S. Kathiresan and M. Orho-Melander, personal
communication). In addition to SNPs in these known loci, several other SNPs showed strong
association in our initial genome-wide analysis. For example, SNPs near the GRIN3A,
GALNTZ, CELSR2-PSRC1-SORT1, NCAN-SF4and TR/B1 genes all had Pvalues <5 x
1077 for at least one of the three lipid traits in our initial analysis (Table 2). We observed
association with distinct gene sets for each of the three traits, consistent with the modest
degree of correlation between the traits (the correlation between HDL and LDL cholesterol
was essentially zero in our samples, the correlation between HDL cholesterol and
triglycerides was approximately —0.4 and the correlation between LDL cholesterol and
triglycerides was 0.3 in the SardiNIA sample and 0.1 in FUSION).

Follow-up of initial findings

To further evaluate these and other promising findings from our initial scan, we examined a
subset of SNPs in six additional cohorts of European ancestry, totaling 11,569 individuals
(Table 1). These follow-up analyses were conducted in several stages. In a first round of
follow-up analysis, SNPs included on the Affymetrix arrays (genotyped in SardiNIA and
DGI) and imputed or genotyped in FUSION were selected for follow-up on the basis of a
preliminary meta-analysis. We selected a total of 100 SNPs in this manner for examination
in the 15152324 HAPI25:26 and SUVIMAX?27:28 samples, and 67 SNPs for examination in
FUSION stage 2 samples. Once imputation of HapMap SNPs was completed for SardiNIA
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and DGI samples and an additional meta-analysis carried out, we examined nine additional
SNPs in loci not selected for initial follow-up in the FUSION stage 2 and SUVIMAX
samples. Finally, we genotyped a single SNP in each of the 21 loci showing promising
evidence for replication in the initial stage 2 samples in the Caerphilly2®:3% and BWHHS3!
samples (Supplementary Fig. 1 and Supplementary Methods onlinge).

Table 3 provides a summary of the stage 2 results and a combined analysis of the data from
both stage 1 and stage 2. The table includes the SNP with the strongest association signal at
each locus and a selection of additional SNPs that also show strong association but only
weak LD with the most strongly associated SNP (2 < 0.30). All loci with a P value <5 x
1077 in our initial analysis were confirmed except for the association signal near GRIN3A.
Supplementary Table 3 online provides stage 2 results for all SNPs, and Supplementary
Table 4 online provides more detailed results for the SNPs highlighted in Table 3.

Overall, we observed the strongest evidence for association (2 < 10729) between HDL
cholesterol and SNPs in CETP (rs3764261, rs1864163 and rs9989419; the three are in weak
LD with each other), L/PC (rs4775041) and LPL (rs10503669); between LDL cholesterol
and SNPs in the APOE-APOC cluster (rs4420638), near the CELSR2-PSRCI-SORT1
(rs599839), LDLR (rs6511720) and APOB (rs562338) genes; and between triglycerides and
SNPs near the GCKR (rs780094), APOA5-APOA4-APOC3-APOAL1 (rs12286037) and LAL
(rs10503669) genes (P values and effect sizes are shown in Table 3). In each case, we
observed strong evidence for association in both stages of genotyping (P< 5 x 1077). The
association of LDL cholesterol concentrations with the CELSR2-PSRC1-SORT1 locus is
particularly notable, because variants in the region have not been previously implicated in
lipid metabolism (Supplementary Fig. 2c online). There is no obvious connection between
the genes closest to the association signal, CELSR2and PSRC1, and lipid metabolism. One
possibility is that rs599839 or an associated variant influences expression of SORT1, a
nearby gene that mediates endocytosis and degradation of lipoprotein lipase32. In our
sample, allele A at rs599839 was associated with an increase of 5.48 mg/dl in LDL
cholesterol concentrations. Notably, the same rs599839 allele has recently been associated
with an increased risk of CAD in an independent study33, suggesting that the association to
CAD risk might be mediated by the effect on LDL cholesterol concentrations.

Another tier of loci also remains significant after adjustment for 1,000,000 independent
tests. This tier includes additional SNPs for loci within the previous tier and also SNPs near
ABCA1, LIPC, LIPG and PCSK9 (Table 3). Of note, although polymorphisms in all of these
genes have a well-established role in lipid metabolism, some of the signals we identified do
not overlap with established associations and likely point to new risk alleles (Supplementary
Table 2). For example, in PCSK9, variants previously associated with LDL cholesterol
concentrations have /2 < 0.10 with the variants identified here (Supplementary Table 2).
Other examples of newly identified risk alleles include L/PG (rs2156552), LIPC
(rs4775041) and LDLR (rs6511720).

This tier also includes six loci where genetic variants have not previously been implicated in
lipid metabolism. We found association between HDL cholesterol and SNPs near GALNT2
and near MVK and MMARB (Supplementary Fig. 2a,b); between LDL cholesterol and
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triglycerides and SNPs in an extended region near NCAN and C/LPZ (Supplementary Fig.
2d,h); and between triglycerides and SNPs near 7R/B1, MLX/PL and ANGPTL3
(Supplementary Fig. 2e—g). Among genes in these six regions, we observed the clearest
connections to cholesterol and lipoprotein metabolism for MLX/PL, which encodes a
protein that binds and activates specific motifs in the promoters of triglyceride synthesis
genes, and for ANGPTL3, whose protein homolog is a major regulator of lipid metabolism
in mice34. Rare variants in a related gene, ANGPTL4, have been associated with HDL and
triglyceride concentrations in humans3°. A connection to lipid metabolism has also been
observed for MVKand MMAB, two neighboring genes that are regulated by SREBP2 and
that share a common promoter3®. A/VK encodes mevalonate kinase, which catalyzes an
early step in cholesterol biosynthesis, and MMAB encodes a protein that participates in a
metabolic pathway that degrades cholesterol.

In the other three loci, we did not find any established connections to cholesterol
metabolism. The signals near GALNT2and TRIBI1 each overlap a single gene. GALNTZ2
encodes a widely expressed glycosyltransferase that could potentially modify a lipoprotein
or receptor. 7R/B1 encodes a G-protein—coupled receptor-induced protein involved in the
regulation of mitogen-activated protein kinases3” and may regulate lipid metabolism through
this pathway. In contrast, the association signal near NCAN extends for over 500 kb and
encompasses 20 genes. In our combined data, rs16996148 (an Affymetrix array SNP near
CILP2) was selected for follow-up and showed strong association with both LDL cholesterol
(P~ 2.7 x 1079) and triglycerides (P~ 2.5 x 1079). The allele that is associated with
increased LDL cholesterol concentrations is also associated with increased triglyceride
concentrations, consistent with the modest positive correlation between the two traits but in
contrast to other SNPs associated with both LDL cholesterol and triglycerides that showed
association with only one of the traits in our sample. Notably, in the analysis of our three
genome-wide association scans and imputed HapMap SNPs, a nonsynonymous coding SNP
in the NCAN gene (rs2228603, Pro92Ser) showed the strongest evidence for association (P
~ 1.8 x1077). This SNP was not included in our initial follow-up analysis, which considered
only SNPs on the Affymetrix arrays, but it was in strong LD with rs16996148 (/2 = 0.89).
NCAN is a nervous system-specific proteoglycan involved in neuronal pattern formation,
remodeling of neuronal networks and regulation of synaptic plasticity38, with no obvious
relation to LDL cholesterol or triglyceride concentrations.

A final tier of genes has one or more SNPs with a £value <10~ when stage 1 and stage 2
data are considered together (Table 3). Among these genes is L CAT, which encodes a
protein with a well-established role in lipid metabolism, and for which well-characterized,
but rare, genetic variants have been shown to considerably affect lipid concentrations3°. Our
signal supports a single unconfirmed report of a common variant influencing HDL
concentrations®?. Two other association signals of note are located near the B3GALT4 and
B4GALT4 genes. Similarly to GALNTZ, these genes encode glycosyltransferases, and thus
our results may implicate glycosyltransferases as having a previously unrecognized
influence on variation in lipid concentrations: it is possible that they affect lipid
concentrations by modifying lipoprotein receptors®!.
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A summary of evidence for association between HDL cholesterol, LDL cholesterol and
triglycerides and all markers genotyped or imputed in our initial survey of the genome is
available online (see URLs section in Methods). This should enable other investigators to
combine our results with their own data or to select SNPs for followup in other samples. As
an example of the utility of this resource, in a companion report, Kathiresan and
colleagues® used the DGI data and the meta-analysis resource to select a set of SNPs for
examination in a sample of >18,000 individuals. They report convincing statistical evidence
for six newly identified loci at £< 5 x 1078, all of which overlap with those in our study.

with coronary artery disease

In view of the well-established associations between lipid concentrations and CAD, we
examined whether the alleles associated with lipid concentrations in the present study were
also associated with CAD in the Wellcome Trust Case Control Consortium (WTCCC)
sample of ~2,000 CAD cases and an expanded reference panel of ~13,000 British
individuals*? (including ~3,000 random controls and ~2,000 cases for each of five common
diseases). Given the relatively modest changes in LDL cholesterol concentrations associated
with the alleles we identified (changes of ~2—-9 mg/dl per allele), we expected that a subset
of SNPs might also be associated with a small increase in susceptibility to CAD. Notably,
the results show that all of the alleles that were associated with increased LDL cholesterol
concentrations in our sample were more common among CAD cases than in the expanded
reference panel (Table 4). Among eleven independent alleles (/2 < 0.30 between nearby
alleles) associated with increased LDL cholesterol concentrations in our sample (all with P<
1076 in our sample), all eleven showed increased frequency among CAD cases (P= 2711 =
0.0005). The increase was significant (P < 0.05) for eight of the SNPs, and nearly so (P<
0.06) for another two (Table 4, penultimate column). Although the associated risk estimates
are small (relative risk increases of 1.04-1.29 per allele, see Table 4), it is extremely unlikely
(P<10711) that 10 of the 11 SNPs would show suggestive association with CAD at £< 0.06
by chance, making the connection between LDL and associated SNPs and CAD particularly
worthy of note. Overall, although we observed a correlation between the strength of the
observed association with CAD and the impact of each allele on LDL cholesterol
concentrations (Spearman correlation coefficient 7= 0.71, £=0.015), we also found some
alleles that had a strong association with LDL cholesterol but no significant association with
CAD (for example, rs562338 in the APOB locus). We did not find a similar pattern of
association for alleles associated with the other lipid traits (Supplementary Table 5 online),
although alleles associated with increased triglyceride concentrations near 7//B1 (for
example, at rs17321515) were also associated with increased risk of CAD (P = 0.0008).
Although the data suggest that nearly all alleles associated with increased LDL cholesterol
concentrations will be associated with increased risk of CAD (given a large sample size), the
converse is not true, as expected. Alleles at the chromosome 9 locus that show strong
association with CAD, coronary heart disease and myocardial infarction3342-44 do not seem
to influence lipid concentrations in our sample (P= 0.31 for association between LDL
cholesterol and the SNP most strongly associated with CAD, rs1333049, in our stage 1, and
P> 0.50 for HDL cholesterol and triglycerides). Additional studies will show whether these
variants are also associated with longevity#®, stroke?® and the other health outcomes
associated with LDL cholesterol concentrations.
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DISCUSSION

Genes at the loci implicated in our study affect the entire cycle of formation, activity and
turnover of lipoproteins and triglycerides. Thus, they encode many of the apolipoproteins
themselves (APOE, APOB and APOAJS), but they also encode a transcription factor
activating triglyceride synthesis (MLXIPL), an enzyme involved in cholesterol biosynthesis
(MVK), transporters of cholesterol (ABCAL) and cholesterol ester (CETP), a lipoprotein
receptor (LDLR), potential receptor-modifying glycosyltransferases (B4AGALT4, B3GALT4
and GALNT?2), lipases (LPL, LIPC and LIPG) and a protein involved in cholesterol
degradation (MMAB), an inhibitor of lipase (ANGPTL3) and a possible endocytic receptor
for LPL (SORT1). Notably, some of the loci we identify (near 7//B1 and in the large region
surrounding NCAN, for example) include no obvious functional candidates, and further
studies to pinpoint the genes and mechanisms involved could lead to important new insights
about lipid metabolism.

In multiple regression models, the variants identified here together accounted for only about
5-8% of the variation in the three lipid traits in the populations studied, leaving much of the
heritability of these traits unexplained. The missing genetic factors might be accounted for
by a much longer list of loci with common variants of small effect, by rare variants of large
effect that have been missed by the association approach, or by interactions between these
and other genetic and environmental factors. To clarify the overall role of the loci reported
here, it will be critical to resequence the exons and conserved regions in a large number of
individuals, in order to identify and evaluate all potential variants within each gene or cluster
of genes. This resequencing effort will help identify the functional variants involved in each
region. In addition, resequencing may identify nonsense, nonsynonymous or other changes
that are associated with variability in lipid concentrations, clarifying the identity of the genes
involved in regions with multiple candidates. Resequencing of certain candidate genes has
shown that such rare variants can sometimes be identified in individuals at the extremes of
lipid concentration distributions*’; thus, focused studies of the regions identified here in
individuals with dyslipidaemia could be particularly informative.

Several of the loci newly identified in this report are potentially attractive drug targets.
Furthermore, the ability to stratify individuals on the basis of specific genetic profiles may
provide future benefits for optimization of therapy, given that lipid lowering drugs are
already widely prescribed to help manage individual lipid profiles and reduce the risk of
cardiovascular events2. For monogenic forms of diseases that lead to dysregulation of HDL
cholesterol, LDL cholesterol or triglyceride concentrations, it is clear that individuals with
different mutations require different therapeutic regimens#8:49, Thus, it is our hope that
common variants at the loci identified here will lead to development of novel therapeutics
and influence optimal treatment profiles for each individual, resulting in improved
management of blood lipid concentrations and reduction of cardiovascular disease risk.
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Genome-wide association scans

Association

Follow-up

We used standard protocols to genotype the Illumina 317K HumanHap 300 BeadChip and
Affymetrix 500K and 10K Mapping Array Sets in the FUSION and SardiNIA samples,
respectively. We collaborated with the authors of a previously published studyl® to integrate
their results into our analysis. To facilitate comparison of results among the three studies,
and to better assess the effects of unmeasured variants, we first identified stretches of
haplotype shared between individuals in our sample and those in the HapMap CEU sample
and then used these shared stretches to impute missing genotypes. This resulted in a total of
~2,261,000 SNPs that were either genotyped or imputed with high confidence in all three
samples.

analysis

We first analyzed each study independently. For each marker, we identified a reference allele
and calculated statistics summarizing its evidence for association with HDL cholesterol,
LDL cholesterol and triglycerides. Association models include gender, age and age? as
covariates, and additional covariates appropriate to each study. These statistics were then
combined across studies taking into account both the number of phenotyped individuals in
each study and the direction and magnitude of the estimated effect.

SNPs from the loci showing the strongest evidence for association in the genome-wide scans
were selected for analysis in follow-up samples. In our initial round of follow-up, we
favored SNPs that were successfully genotyped in both the DGI and SardiNIA studies. As in
the analysis of the initial scans, we first conducted analyses within each sample separately
and then combined the resulting summary statistics by meta-analysis.

Coronary artery disease analysis

Individual genotype data for this analysis were obtained from the WTCCC website. We first
imputed all relevant untyped SNPs using the HapMap CEU as a reference population and
carried out tests for association with a likelihood-ratio test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Summary of genome-wide association scans. The figure summarizes combined genome-
wide association scan results in the top 3 panels (plotted as —logyy P value for HDL
cholesterol, LDL cholesterol and triglycerides). Loci that were not followed up are in gray.
Loci that were followed-up are in green (combined dataset yielded convincing evidence of
association, £< 5 x 1078), orange (combined dataset yielded promising evidence of
association, £< 1075), or red (combined dataset did not suggest association, 2> 107°). The
three panels in the bottom row display quantile-quantile plots for test statistics. The red line
corresponds to all test statistics, the blue line corresponds to results after excluding statistics
at replicated loci (in green, top panel), and the gray area corresponds to the 90% confidence
region from a null distribution of Pvalues (generated from 100 simulations).
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