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Abstract

In this brief review, introductory concepts in animal and human adipose tissue segmentation using 

proton magnetic resonance imaging (MRI) and computed tomography are summarized in the 

context of obesity research. Adipose tissue segmentation and quantification using spin relaxation-

based (e.g., T1-weighted, T2-weighted), relaxometry-based (e.g., T1-, T2-, T2*-mapping), 

chemical-shift selective, and chemical-shift encoded water–fat MRI pulse sequences are briefly 

discussed. The continuing interest to classify subcutaneous and visceral adipose tissue depots into 

smaller sub-depot compartments is mentioned. The use of a single slice, a stack of slices across a 

limited anatomical region, or a whole body protocol is considered. Common image post-

processing steps and emerging atlas-based automated segmentation techniques are noted. Finally, 

the article identifies some directions of future research, including a discussion on the growing 

topic of brown adipose tissue and related segmentation considerations.
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Introduction and background

This review seeks to provide introductory concepts on the topic of human adipose tissue 

(AT) segmentation and quantification using magnetic resonance imaging (MRI) and 

computed tomography (CT) data. Adipose tissue is one of the largest compartments in the 

human body. The need for accurate, precise, and reliable tools to segment and quantify AT 

distribution throughout the body using non-invasive imaging data has become increasingly 
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important in recent years. The demand for clinically relevant measurements of AT quantities 

is driven by the rising worldwide prevalence of obesity [1, 2] and associated metabolic 

abnormalities, such as diabetes and liver diseases. There is ubiquitous evidence that 

excessive accumulation of AT, especially visceral AT (VAT) and ectopic organ fat, are 

detrimental to one’s health and increases one’s risk of cardiovascular and metabolic diseases 

[3–5].

Quantitative measures are useful in research studies to assess cross-sectional [6–8] AT 

distribution differences between age, gender [9, 10], ethnicity [11, 12], and pathological 

conditions [13]. In longitudinal studies, temporal measurements can be used to determine 

the efficacies of interventions such as bariatric surgery [14], diet restrictions [15, 16], weight 

loss programs, and physical exercise regimens [17], aimed at reducing AT, or conversely, in 

studies to examine how AT patterns evolve throughout the lifespan, in fetuses [18], in infants 

and children [19–23], and in adults [24, 25]. The ability to determine AT distribution within 

the body, for example, as the volume ratio of subcutaneous AT (SAT) to VAT [26, 27], is 

informative in stratifying those who are obese, but metabolically normal versus those who 

are of normal weight, but are metabolically “at risk” [28, 29]. Finally, the need to correlate 

AT quantities with vital signs, hormone and enzyme levels, and cardiac function for ease of 

data comprehension in population studies has led to the concept of imaging-omics, or 

Imiomics [30], where whole body imaging data is integrated with non-imaging biomarkers 

to generate quantitative statistical representations (i.e., correlation maps) of morphological 

and biological characteristics within a cohort.

In biology, the term fat typically denotes fatty acids and triglyceride molecules, and more 

generally, lipids [31]. Although the term fat is often used synonymously with AT in the 

tissue segmentation literature, it is important to realize that fat and AT measurements from 

various modalities reflect two slightly different, but nonetheless correlated quantities. Fat is 

the dominant component of white AT (WAT). WAT also consists of an appreciable amount 

of proteins, minerals, and water [32]. In vivo, while a large proportion of total body fat is 

found in WAT, significant amounts of fat can also be found outside of WAT, in organs, 

circulating blood, and cellular organelles (see Fig. 1 from Ref. [31]). Traditional body 

composition methods such as anthropometric measurements, air-displacement 

plethysmography (ADP), bioelectric impedance (BIA), dual energy X-ray absorptiometry 

(DXA), and quantitative magnetic resonance (QMR) estimate total body or regional fat 

mass, not specifically AT quantities [33]. In comparison to MRI and CT, the operation of 

these modalities does not usually involve labor and time-intensive post-processing 

segmentation steps. In their output fat measurements, the minority components of proteins, 

minerals, and water in AT are excluded. However, fat outside of AT, such as in organs and 

muscles, are typically included as well.

This review focuses on the segmentation and quantification of WAT from 2D and 3D 

magnetic resonance imaging (MRI) data and 2D computed tomography (CT). MRI and CT 

[34] are the only modalities that can provide multidimensional visualizations of the anatomy 

and delineate SAT and VAT depots. In recent years, however, emerging DXA algorithms for 

estimating VAT have also been reported [35]. With these AT volume and mass 

measurements, both the majority fat component and the minority components of proteins, 
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minerals, and water within AT are typically included. However, fat outside of AT can be 

regionally excluded, by post-processing segmentation. Despite the subtle difference in 

definition between fat and AT, there is ample evidence in the literature to suggest that AT 

volume and mass measurements from MRI and CT data correlate with traditional total-body 

and regional fat mass measurements from BIA, ADP, DXA, and QMR (Table 1, see Refs. 

[36–45]).

The review is divided into five subsequent parts. First, the generation of lean versus AT 

signal contrast in CT and MRI is summarized in the “Adipose tissue signal contrast in CT 

and MRI” section. Strong signal contrast differentiating AT from other anatomical structures 

is a key prerequisite step to successful segmentation. Next, “Commonly quantified human 

adipose tissue depots” section highlights common AT compartments that are quantified and 

reported in the literature. The “Single-slice, regional multi-slice, and whole body 

acquisitions” section discusses the use of a single slice measurement, a stack of multiple 

slices across a limited region (i.e., abdomen), or a whole body (i.e., head-to-feet) imaging 

exam for data acquisition. The “Common segmentation steps” section provides a narrative of 

some common post-processing steps employed in manual, semiautomated (or supervised), 

and automated AT segmentation algorithms. Many of these concepts share commonality 

with similar tools used in brain tissue segmentation, and the reader is referred to an earlier 

reference for useful details [46]. Finally, the “Conclusion and future directions” section 

concludes with some directions of future research, including a discussion on brown AT 

(BAT). Through this introductory review, the authors aim to familiarize the reader with basic 

concepts and nomenclature in current CT- and MRI-based AT segmentation and 

quantification methods.

Adipose tissue signal contrast in CT and MRI

AT depots can be identified and differentiated from other anatomical structures on transverse 

CT images using the data’s intrinsic signal intensities, expressed in the Hounsfield Unit 

(HU), a measure of tissue X-ray attenuation. On a calibrated CT system, pure water has a 

HU density of zero. With the exception of air in the background, in lungs, and in 

gastrointestinal tracts, AT is the only other structure in vivo that is represented by a range of 

negative HU density values [47, 48], while all other non-adipose-tissue structures occupy the 

positive HU range. In the literature, slightly different negative HU ranges have been used to 

threshold WAT with similar outcomes, such as −190 to −30 [49, 50], −190 to −45 [51], −150 

to −50 [10, 52], −130 to −10 [53], and −250 to −50 [54]. These reported differences in HU 

range are likely a consequence of variations in system calibrations, differences in the 

protocol used to acquire the CT data, such as X-ray dosage settings and slice thickness, and 

potentially reflect minor physiological differences, such as fatty acid composition, in AT 

between the studied cohorts. Figure 1 illustrates two CT slices. A simple threshold of the 

data, for example, between the −190 and −30 HU, can generally yield a reasonable initial 

estimate of total AT across the slice.

The value of MRI in assessing AT distribution within the human body has been established 

for several decades [55–57]. Similarly, the utility of semi-automated and automated 

segmentation algorithms to quantify AT in animal models has been established (Table 2, see 
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Refs. [58–67]), and many of the developed algorithmic steps have been translated to human 

applications [68, 69]. Unlike CT, MRI provides a variety of pulse sequences, including T1- 

and T2-weighted imaging, chemical (frequency)-selective imaging (e.g., water suppression), 

and chemical-shift encoded imaging, to generate signal contrast between adipose and non-

adipose tissue. A technical description is beyond the scope of this review, and the reader is 

referred to recent reviews for further methodological details [7, 70].

However, regardless of the particular type of pulse sequence that is employed, the typical 

common endpoint of these MRI techniques is to generate a data set where AT is significantly 

brighter, or hyperintense, in contrast to non-adipose tissue structures [71]. Like CT, the 

acquisition of transverse slices remains a popular approach. In contrast to CT and the 

relatively consistent HU representation, signal intensities in typical MR images have no 

defined units. The range of values representing AT also varies from scanner to scanner, is 

dependent on the specific pulse sequence used to acquire the data, is influenced by hardware 

such as radiofrequency transmit gain, radiofrequency receive coils, and can differ from 

subject to subject. Consequently, unlike CT, no common threshold range exists in MRI to 

extract adipose tissue.

Another typical feature in MR images that can challenge tissue segmentation is spatially 

varying signal intensity non-uniformity, which leads to inhomogeneous tissue signal 

contrast. This undesirable effect is caused by two major sources, the non-uniform B1− 

magnetic field related to the use of multi-element radiofrequency coil arrays employed for 

signal reception, and secondly the B1+ magnetic field, which relates to local non-

uniformities in the spatial distribution of the flip angle map (i.e., the radiofrequency transmit 

field) employed in a pulse sequence for spin excitation. At 3 T and higher main magnetic 

field strengths, B1+ and B1− field inhomogeneities can be exacerbated by susceptibility and 

dielectric effect, particularly in the abdomen and pelvis regions [72].

Multi-channel radiofrequency transmit technology has been introduced in recent years to 

mitigate the effects of B1+ inhomogeneities [73]. Although multi-element receive coil arrays 

are beneficial in enhancing signal-to-noise ratio, they impart noticeable signal variability 

over the image, with anatomies closer to the receiver elements exhibiting brighter signal 

intensities than tissues located farther away. Thus, internal AT often appears darker than 

SAT, and the latter can exhibit signal intensity hot spots at the periphery of the anatomy. 

These observed inhomogeneities in signal intensity and tissue contrast, often referred to as 

the bias field, are spatially smooth and slowly varying. Bias field correction aimed at 

minimizing non-physiological inhomogeneous tissue signal intensity has been extensively 

studied in the literature [74–78] and is an increasingly used, if not requisite, post-processing 

step prior to AT segmentation and quantification [79]. Table 3 (see Refs. [80–90]) 

summarizes some recent literature references on bias field correction, and Fig. 2 illustrates 

several exemplary images.

An emerging alternative to the aforementioned signal intensity variability in MRI is the use 

of a proton-density fat fraction map [91] from multi-echo chemical-shift encoded water–fat 

MRI for AT segmentation. As the name implies, the fat fraction map is consistently 

normalized to a scale of 0–100 %, and fat-dominant WAT typically occupies a high fat 
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fraction range from 70 to 90 % [92]. By taking the ratio of two separated image data sets—

water and fat—the proton-density fat fraction map effectively cancels the aforementioned 

bias field effect. One recent approach proposed by Poonawalla et al. [93] was to use a lower-

bound fat fraction threshold of ηmax/2, where ηmax is a subject-specific true maximum fat 

fraction of AT measured in a homogeneous region-of-interest within SAT. This approach 

yields a reasonable estimate of a preliminary total AT binary mask, as shown in Fig. 3. 

Figure 4 additionally illustrates an example of proton-density fat fraction map and chemical-

shift encoded water–fat MRI in a dog.

With chemical-shift encoded water–fat imaging using gradient-echo pulse sequences, several 

additional output images spatially co-registered to the fat fraction map are available and can 

be used to assist AT segmentation. One parameter is the T2* map. Although T2* values are 

primarily used to quantify organ iron overload in the liver, heart, and pancreas [94], they can 

be exploited to further delineate WAT from adjacent muscles, and to remove unwanted 

voxels from bowel and bone marrow. Co-registered in-phase (water + fat) images are also 

available, and can be used to remove spurious background noise and air in gastrointestinal 

tracts. Opposed-phase (water–fat) images can be used to identify boundaries and detect 

relevant edges at the interface of adipose and non-adipose tissues.

In addition to T2* mapping, spin-echo and hybrid gradient- and spin-echo based water–fat 

pulse sequences can be used to estimate T2 relaxation [95]. Pandey et al. [96] has recently 

demonstrated the combined use of fat fraction and T2 maps for segmenting parenchyma and 

blood vessels within the liver. T2 mapping has also been used to assess fat deposition in 

lower extremity skeletal muscles [97] by taking advantage of the fact that the T2 relaxation 

rate of fat is distinctively longer than that of lean muscles.

While T1-weighted and fat-selective methods have been widely used and remain popular, 

the increasing commercial availability of chemical-shift encoded water–fat pulse sequences 

and fat fraction maps has led to its greater adoption in recent years. All of these techniques 

are equally capable of providing suitable data for segmentation and quantification of AT 

depots. Alabousi et al. [98], recently compared T1-weighted protocols against chemical-shift 

encoded MRI and demonstrated that the latter can be less sensitive to partial volume effects 

and false-positive errors in quantifying VAT.

Commonly quantified human adipose tissue depots

The segmentation and quantification of SAT and VAT depots spanning the chest and thorax, 

abdominal, and pelvic anatomies by CT and MRI represent the majority of literature reports, 

as there is clear evidence that the build-up of adipocytes and the accumulation of fat in these 

compartments are strong determinants of one’s metabolic health. SAT resides between the 

dermis and the aponeuroses and fasciae of the muscles. It is a well-defined compartment 

with clear boundaries that can be visualized and segmented. Recent efforts have been made 

to split the SAT depot into superficial (sSAT) and deep (dSAT) compartments [99], which 

are separated by a thin fascial plane. There is also growing evidence that the dSAT 

compartment is more strongly correlated with metabolic abnormalities [100]. As the fascial 

plane is not always visible on imaging data [101], anterior and posterior abdominal SAT 
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have been used as approximates of sSAT and dSAT compartments [102], via a line 

dissecting the abdomen using the anterior edge of the vertebrae as a landmark [103].

Although the VAT depot consists of multiple sub-compartments, including intrathoracic, 

intra-abdominal, and intrapelvic AT, VAT in the literature is used to represent broadly the 

sum of one or more of these sub-compartments. The primary reason for this generalization is 

because the sub-compartments are anatomically connected, with the exception of 

intrathoracic, epicardial, and pericardial AT depots [104–108]. Unlike the clear boundary 

differentiation between SAT and VAT depots, a similarly clear delineation of anatomical 

borders between VAT sub-compartments in CT and MRI by semi-automated and automated 

segmentation algorithms is difficult, if not impossible. Retroperitoneal and intraperitoneal 

(e.g., omental, mesenteric) AT depots are also often reported collectively as part of VAT. 

Specifically, omental and mesenteric AT are likely related to obesity and metabolic health 

risks since the two depots drain through the portal vein. In specific studies where these 

depots are quantified, manual segmentation by an experienced user with strong knowledge 

of anatomy is and remains the preferred approach [109–112]. Supraphrenic AT is typically 

excluded from VAT estimates. Finally, abdominal intermuscular AT (IMAT), paraosseal AT, 

and paravertebral AT depots along the body trunk are also commonly included in VAT 

quantification, and are rarely quantified as separate entities. In metabolic studies, however, 

IMAT in the lower extremities is typically quantified as a separate depot. Studies have 

shown IMAT as a significant contributor to metabolic disorders, independent of VAT [113–

115]. In the extremities, AT is commonly separated by SAT and perimuscular AT depots. 

The latter can be further differentiated between intermuscular and intramuscular 

compartments [116–119]. Lastly, bone marrow AT is typically not segmented unless it is a 

specific endpoint to a particular study [120]. Bone marrow AT also responds differently to 

caloric restriction compared to SAT, VAT, and IMAT, and may play a role in osteoporosis 

[121–123].

Single-slice, regional multi-slice, and whole body acquisitions

Data acquisition protocols for AT quantification vary from the use of a single-slice [124], a 

stack of slices (2D multi-slice or 3D volume acquisition) across a limited anatomical region 

(typically the abdomen) [125], or a whole body (head-to-feet) approach [37, 126]. Protocols 

centered at and about the L2-L3 and L4-L5 lumbar intervertebral spaces, as well as at the 

umbilicus, are the most popular choices for single and multi-slice protocols in CT and MRI. 

Because of ionizing radiation exposure concerns, whole body protocols are rarely used in 

CT studies. In recent years, methodological advancements in hardware and data acquisition 

speed have led to the availability of whole body 3D volumetric MRI with contiguous slices 

[127], offering minimal to moderate increases in total scan time in comparison to traditional 

single and multi-slice approaches. However, single-slice and regional multi-slices remain 

attractive in large-scale studies, as the effort to post-process and segment these smaller data 

sets via manual and semiautomated approaches can be significantly shorter than 3D 

contiguous whole body volumes. Single- and multi-slice approaches are suitable for cross-

sectional comparisons between subjects, while multi-slice and whole body are more 

appropriate in longitudinal studies to track AT changes within an individual [17]. It has been 
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shown that a single-slice measurement of SAT and VAT is a poor predictor of adiposity 

changes during weight loss [128].

Several studies have demonstrated that a single-slice cross-sectional area measurement of 

SAT taken at 5 cm below the L4-L5 vertebral disk or near the L3-L4 landmark was the 

strongest correlate with whole body SAT [129, 130], and that a single-slice measurement 

predictor for abdominal VAT was best quantified at 5–10 cm above L4–L5, at T12–L1, or at 

the L1–L2 level [131, 132]. Kuk et al. [133] has shown with data from 85 men that the 

association between metabolic syndrome parameters and a single-slice cross-sectional area 

measurement of SAT is nearly independent of the measurement location between the T10 

and S1 vertebrae. For VAT, however, the investigators reported significant variations in the 

association strength with metabolic syndrome parameters, with the strongest correlation 

observed at the measurement site of the L1–L2 vertebrae. Similar findings were reported by 

Kuk et al. [134] in a follow-up study in postmenopausal women. Consensus towards a set of 

standardized protocols and anatomical location for AT measurements remains challenging, 

as it is likely dependent on the study cohort’s body mass index (BMI), age, gender, ethnicity, 

and various other anthropometric characteristics. The topic continues to be debated [135, 

136]. Furthermore, there also exist notable variations in the slice thickness reported in 

literature, as well as the inter-slice gap in 2D acquisitions. Findings from a few examples are 

summarized below.

Thomas et al. [137] reported in a cohort of 54 female participants (BMI range 19–40 kg/m2) 

and 13 female subjects with Prader–Willi syndrome (BMI range 23.6–51.6 kg/m2) the use of 

a whole body MRI protocol involving 10-mm slices and demonstrated an increase in the 

coefficient of variation of 1.16 %/cm in the standard error of the mean estimate of AT 

content when the interslice gap was varied from 0 to 6 cm. This increase was similar for 

estimates of SAT, VAT, and total body AT. The investigators concluded that a 3-cm inter-

slice gap was a reasonable operating point and balanced tradeoffs between quantitative 

accuracy, requisite scan time, and the total data post-processing time for their study. Shen et 

al. [138] concluded through an extensive MRI study of 73 children that an interslice gap of 5 

cm in a whole body protocol is adequate for estimating SAT in both group and individual-

based comparisons. A 5-cm gap was almost as accurate as a contiguous 3D data set for SAT 

and skeletal muscle quantification. For comparing differences in VAT and IMAT, a smaller 

interslice gap of 3 cm was recommended.

Schwenzer et al. [139] reported in a cohort of 367 adult volunteers at risk of type 2 diabetes 

encompassing a BMI range of 19–47 kg/m2 that area measurements of SAT and VAT made 

across a single 10 mm slice at the level of the umbilicus correlated strongly with total body 

AT volume in both males and females, where total body AT was determined from a whole 

body MRI data set acquired with 10-mm slices and 10-mm interslice gaps. Measurements of 

total AT area at the level of the head of the humerus and at the head of the femur yielded 

similarly strong correlations with total body AT volumes. Schaudinn et al. [125] recently 

evaluated the predictive accuracy of single and multi-slice MRI in the estimation of 

abdominopelvic VAT volume in 197 overweight and obese patients (BMI range 25–39 

kg/m2) using a 10-mm slice thickness and a small 0.5-mm interslice gap, nearly-contiguous 

protocol. Single-slice area measurements were made at the level of each of the following 
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landmarks: intervertebral spaces at L1 through L5 and at S1, umbilicus, and femoral head. A 

volume measurement consisting of a stack of five slices was also made, centered at these 

locations. The strongest correlations with total abdominopelvic VAT were found for single- 

and 5-slice measurements at L3–L4 in women and L2–L3 in men. These findings reinforce 

previous results by Maislin et al. [140].

Common segmentation steps

Manual, semi-automated, and automated AT segmentations procedures typically share a 

common set of core image processing steps [141]. These steps are briefly summarized 

below. It is beyond the scope of this review to describe each step in detail, and the reader is 

referred to the image processing literature for details. Table 4 (see Refs. [92, 142–161]) 

provides representative citations from recent literature on the automated segmentation of 

SAT, VAT, and muscle AT depots, using a combination of these post-processing steps. As 

with manual and supervised segmentation approaches, rigorous training of the analysts on 

anatomy and proper usage of these post-processing tools remain paramount to ensure 

consistent and reliable results. Furthermore, the successful performance of many of the 

segmentation algorithms summarized in Table 4 fundamentally depends on imaging features 

of WAT that are statistically different than other tissues and structures in vivo.

Signal intensity-based histogram thresholding relies on the ability of the user or algorithm to 

select easily a threshold from a bi- or multi-modal histogram that either completely or 

partially separates AT from other anatomical structures. With CT data, histograms are based 

on Hounsfield Units. With MRI data, the histograms can be based on either the measured 

raw signal intensity, a quantitative relaxometry parameter such as in T1, T2, or T2* maps, or 

a quantitative index such as the proton-density fat fraction. Otsu’s method of threshold 

selection is frequently employed [162, 163], and the overall process is typically 

accompanied by the generation of a binary mask that aims to remove irrelevant voxels from 

the data, such as air in the imaging background and in gastrointestinal tracts. The 

thresholding step is often preceded by a bias field correction algorithm. Fuzzy C-means and 

K-means clustering algorithms are then employed in conjunction with histogram 

thresholding to classify voxels into coarse tissue categories such as air, bone, muscle, and 

adipose tissue.

Edge detection steps, including watershed methods, graph cut algorithms, level set 

approaches, and active contour snakes (i.e., energy minimizing splines) are often 

incorporated into the binary mask generation process, to determine the outer boundaries of 

the body (i.e., the dermis), the interface between SAT depots and internal body structures 

(i.e., aponeuroses and fasciae of the muscles), as well as internal boundaries between AT 

depots, organs, and the skeleton. Morphological operations (e.g., dilation, erosion, opening, 

and closing) can be used to refine the binary mask further. A conversion from spatial 

Cartesian coordinates to polar coordinates can facilitate edge detection procedures.

Region growing procedures are ubiquitously found in segmentation algorithm pipelines. A 

single initial seed voxel or multiple seed voxels within AT are identified first. Next, 

neighboring voxels with signal intensities that fall within a specified set of criteria (e.g., 
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absolute range, percent difference) and spatial constraints (e.g., extent of connectedness with 

adjacent voxels) are then automatically labeled and added to the growing region-of-interest. 

Region growing is a particularly effective technique at automatically classifying large 

patches of AT, such as the SAT and VAT depots. Finally, geometric models are often 

employed to remove areas around the spine, in order to exclude vertebral bone marrow 

adipose tissue. Commercial software packages are available for semi-automated AT 

segmentation [164]. Software that includes useful plug-ins for tissue segmentation are 

Osirix, ImageJ, 3D Slicer, Matlab, Analyze, and ITK-SNAP.

An emerging approach to segment automatically whole body data sets is based on the 

concept of building a pre-defined manually segmented “ground truth” atlas dictionary that 

serves as a reasonable representation of the population at-large [165]. Atlas-based 

segmentation is a well-established concept that has been widely applied to brain structures 

[166–168]. Its application to adipose tissue segmentation is a logical extension, and the 

paradigm is schematically illustrated in Fig. 5. A target data set to be segmented is first 

registered to a comparable data set from the atlas dictionary. The chosen atlas can be 

selected based on anthropometric data. Once the non-rigid registration and resultant 

deformation field is computed between the target and atlas, the deformation is applied to the 

previously manually segmented tissue classification labels from the chosen atlas. The 

deformed labels, which correspond to the target data set, represent the automated 

segmentation results and can be subsequently quantified. The procedure can be iterative, and 

multiple atlas candidates from the dictionary can be sequentially chosen and selected to 

refine the non-rigid registration process.

Conclusion and future directions

Through this review, the authors have attempted to provide the reader with sufficient 

introductory materials and literature references on the topic of human adipose tissue 

segmentation. In conclusion, robust AT segmentation and quantification has become an 

integral component in body composition and obesity research. In the past, post-processing 

and manual image segmentation has long been recognized as a time-consuming and 

daunting task, particularly in longitudinal studies involving hundreds of subjects, each 

potentially with tens to hundreds of imaging slices. While many innovative semi-automated 

and automated segmentation algorithms have been proposed and continue to emerge in the 

literature, one challenge is that many of these algorithms are not easily accessible to obesity 

and body composition investigators at large, who may not necessarily be experts in imaging. 

The scientific community should promote wider availability of AT segmentation algorithms, 

and strategies should be developed to enable standardization and harmonization of imaging 

protocols, post-processing algorithms, data pipelines, and analyst training across the field, 

such that results from different research groups can be more easily compared.

While AT segmentation approaches have been predominantly based on using the tissue’s 

signal intensity, several investigators have considered the use of multi-parametric MRI data. 

In addition to the use of the aforementioned fat fraction metric from chemical-shift encoded 

water–fat MRI, recent reports have proposed utilizing MR relaxometry in AT to facilitate 

segmentation. Using a dual flip angle approach, Kullberg et al. created whole body T1 maps 
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and demonstrated superior histogram separation of lean and AT voxels based on T1 values 

rather than the traditional signal intensity approach [169]. T1 mapping of AT appears 

advantageous, as fat is characterized by one of the shortest T1 values in vivo. In another 

report by Garnov et al., the investigators discovered the T1 of SAT to be significantly shorter 

than that of VAT, in both obese subjects and lean controls. Additionally, obese subjects 

showed statistically significant T1 differences between their sSAT and dSAT compartments 

[170]. Similarly, Gensanne et al. [171] have investigated the T2 relaxation properties of AT. 

Furthermore, it has been well established that the degree of triglyceride unsaturation differs 

between sSAT and dSAT, VAT, and ectopic organ fat [172, 173]. Multi-parametric mapping 

of AT can thus provide complementary information in addition to image signal intensity, and 

should be exploited in future studies to improve the robustness, reliability, and speed of 

segmentation and quantification. In addition to AT segmentation, many of the developed 

algorithms have been successfully translated to other tissue compartments, in particular in 

skeletal muscles [174–176]. Further extension towards automated segmentation of bone 

marrow AT and possibly organs for ectopic fat quantification should be investigated, as the 

latter is already solidly established with CT data [177, 178].

As an extension of atlas-based automated segmentation, techniques that can automatically 

segment AT and organs from a subject’s MRI data at subsequent time points while using a 

priori information from the same subject’s baseline segmentations will be highly attractive. 

Conceptually, the atlas-based segmentation paradigm can be applied not only to different 

individuals, but also, and perhaps more easily, to the same individual enrolled in a 

longitudinal study. In other words, the target and the atlas can be the same person, at 

different time points, with limited changes in body composition. The capability of achieving 

rapid intra-subject 3D registration, segmentation, and quantification will provide 

investigators with detailed person-specific information reflecting the temporal change in fat 

distribution and volumes in response to intervention. Such capability will also exploit the 

richness of 3D whole body MRI.

Finally, the non-invasive imaging of human brown AT (BAT) with positron emission and 

computed tomography (PET/CT), MRI, and combined PET/MR modalities has become 

widely popular in recent years [179], motivated by increasing evidence of BAT’s role and 

physiological relevance to human metabolism, energy regulation, and obesity [180]. With 

PET/CT, voxels containing metabolically active BAT are identified by their appearance on 

PET images with standard uptake values (SUV) above a minimum threshold, and on co-

registered CT images that exhibit “adipose tissue-like” negative HU values. In MRI and 

PET/MR, fat fraction maps from chemical-shift encoded water–fat MRI have been used to 

identify BAT in lieu of CT HU, as BAT contains a lower fat fraction than triglyceride-rich 

WAT.

While semi-automated and automated algorithms for segmenting metabolically active 

human BAT have been proposed with co-localized PET/CT data, predominantly within the 

supraclavicular and cervical regions, similar work using data from standalone MRI and 

PET/MR has only started to emerge in the literature and additional development and 

validations are needed [181]. The segmentation of human BAT is challenging, even in 

manual and semi-automated form. In contrast to well-defined SAT and VAT depots, human 
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BAT is notably present in scattered distributions within the body, and often exists in small 

cell clusters of arbitrary shape, surrounded by WAT, muscle, and bone where boundary 

delineation is difficult, if not impossible [182]. The development of robust algorithms for 

quantifying both metabolically active and inactive (i.e., metabolically quiescent) human BAT 

volume remains highly desirable, particularly in short-term serial studies aimed at assessing 

the transition or change from inactive to active BAT quantities in subjects that undergo cold-

temperature or pharmacological stimulations, and in extended longitudinal studies 

investigating the tissue’s involvement in human growth [183].
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Fig. 1. 
Representative axial CT images at the level of the umbilicus (left) and the thighs (right) from 

an adult female. The images are displayed on a grayscale range from −150 to 150 X-ray 

attenuation coefficients, the Hounsfield Unit (HU). In the abdomen, the fascia separating the 

deep and the superficial subcutaneous adipose tissue layer is visible (arrowheads). Because 

of the high tissue signal contrast between adipose tissue and other compartments such as 

muscle, fluid, and bone, a simple threshold procedure on the HU values can be used to 

identify and extract a majority of adipose tissue voxels as a first step towards segmentation. 

Average HU values in the two abdominal regions of interest (dashed circles) are −112 ± 10.9 

and −111 ± 12.7 HU. Average values in the thighs (dashed ovals) are −104 ± 9.8 and −104 

± 8.1 HU, respectively. Note that some misidentification does occur at edges, in partial 

volume voxels between adipose and non-adipose tissue layers (i.e., intermuscular adipose 

tissue, dotted arrows), and near hematopoietic red bone marrow (dashed arrows). These 

misidentifications can be remedied or corrected by using a slightly different threshold range 

or further manual user interaction. Data courtesy of Vicente Gilsanz, Children’s Hospital 

Los Angeles
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Fig. 2. 
Examples of T1-weighted and frequency-selective images from 3 T MRI are shown in the 

abdomen. For frequency-selective imaging, a corresponding pair of fat-selective and water-

selective images is shown in the same subject. Volumetric data are typically acquired using a 

2D multi-slice or 3D volume acquisition. Note the strong tissue signal contrast between 

adipose and lean tissues, a prerequisite in the data that will successfully facilitate subsequent 

segmentation. Dotted arrows in (a) denote subcutaneous adipose tissue locations in close 

proximity to radiofrequency receiver coil elements. These locations exhibit signal intensity 

variations in comparison to other adipose tissue within the image and is a consequence of 

the coil array’s bias field. b illustrates an example of partitioning the subcutaneous adipose 

tissue further into deep (white mask) and superficial (gray mask) sub-compartments. 

Portions of the illustration courtesy of Bryan Addeman, University of Western Ontario, (see 

Ref. [92] for details) and Sendhil Velan, Singapore Bioimaging Consortium (see Ref. [156] 

for details)
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Fig. 3. 
a, b, c Representative MRI axial slices of the abdomen showing the liver (L) and the 

pancreas (P) in an adult male, acquired with a breath-hold multi (six)-echo chemical-shift 

encoded water–fat technique at 3 T. Shown are the reconstructed a water-only, b fat-only, 

and c corresponding proton-density percent fat fraction images, the latter shown on a color 

scale from 0 to 100 %. The subject has non-alcoholic fatty liver disease (NAFLD), as 

evidenced by the green color tone of the organ on the percent fat signal (~50 %) image. Note 

that subcutaneous and intra-abdominal adipose tissues can be clearly seen in red (percent fat 

fraction of 80–100 %), which can facilitate subsequent adipose tissue segmentation. 

Corresponding binary adipose tissue masks are shown in (d) and (e), respectively, using a set 

70 % lower-bound threshold or a subject-specific ηmax/2 % fat signal threshold. ηmax was 

determined from the dashed region in (c) to be 97 %. Note that in this particular NAFLD 

subject with a high degree of steatosis, the ηmax/2 generated mask in (e) can be problematic 

since voxels within the liver are misidentified as adipose tissue. The percent fat fraction 

image for a slice at the level of the umbilicus from a different subject is shown in (f), along 

with similar binary masks. ηmax was measured as 98.3 % within the dashed region in (f). 
Note in (g) that partial volume voxels containing intermuscular adipose tissue are mostly 

missed [dotted arrows in (f)] when a threshold of 70 % is used. However, they are identified 

using the ηmax/2 threshold in (h). Data courtesy of Michael I. Goran and Krishna S. Nayak, 

University of Southern California
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Fig. 4. 
Whole body water–fat imaging in a canine, showing a separated water, b separated fat, and c 
proton-density percent fat fraction map, shown on the same color bar as in Fig. 3c. Adipose 

tissue in the body trunk region (dotted circles) is visually identifiable as hyperin-tense voxels 

in the fat-only image in (b) and by the high percent fat fraction voxels denoted in red in (c). 

Data courtesy of Aliya Gifford and E. Brian Welch, Vanderbilt University (see Ref. [67] for 

details)
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Fig. 5. 
A schematic of atlas-based automated segmentation subcutaneous (red) and visceral (green) 

of adipose tissues. The target data set to be automatically segmented (dotted box) is 

registered to pre-existing volumes in the atlas, which represents a collection of manually 

segmented “gold-standard” reference data sets. The non-rigid registration step yields a 

displacement map, which is then applied to the atlas labels. Multiple atlases can be used to 

refine the procedure iteratively. In this particular example, the data sets were acquired with 

chemical-shift encoded water–fat MRI and all data sets have been pre-processed to correct 

for signal intensity bias field. Note that in this particular case, the water-only image from the 

target is fed into the non-rigid registration step. Illustration courtesy of Anette Karlsson and 

Olof Dahlqvist Leinhard, Linköping University (see Ref. [165] for details)
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Table 1

Select references from recent literature reporting correlation between CT and MRI-based measurements of 

adipose tissue versus fat mass obtained by other modalities

Modality References Remarks

CT BIA Mourtzakis et al. [36] DXA and CT superior to BIA, measurements at L3 a strong predictor of whole body values (0.86–
0.94 correlations, p < 0.001), study in 21 cancer patients

DXA Kullberg et al. [37] Human study in 10 subjects, 0.99 correlation (p = 0.005) for whole body adipose tissue analysis 
between DXA and 28 slices of CT, also included whole body MRI (correlation 0.979, p = 0.005 
with DXA and 0.995, p = 0.114 with CT)

Bredella et al. [38] Human study in 39 anorexia nervosa, 34 obese, and 18 lean women, 0.77–0.95 correlations, p < 
0.0001

QMR Metzinger et al. [39] Semi-automated segmentation, with 0.99 correlation in phantoms, 0.96–0.98 correlations in 
adipose tissue, mouse study, two groups, n = 28 and n = 17, p values not reported

MRI BIA Varady et al. [40] BIA underestimated fat mass by 2.3 ± 3.3 kg and percent fat mass by 5.6 ± 3.9 % versus MRI (p < 
0.0001), study in 31 overweight women

Ludescher et al. [41] Human study in 38 volunteers, 17 patients with depression syndrome, and 13 women with bulimia 
nervosa, 0.72 correlation, p < 0.0004, for total body adipose tissue and SAT, 0.096 correlation p = 
0.447 for VAT, human study

Browning et al. [42] Human study, n = 120, 20 men and 20 women each in three groups, lean, overweight, and obese, 
0.79–0.94 correlations between BIA and MRI total abdominal adipose tissue in men, 0.38–0.74 in 
women, tested two BIA systems, also included DXA, exact p values not reported, extensive 
analysis, see reference for details

ADP Ludwig et al. [43] Human study in 11 volunteers, 0.97–0.98 correlations, p < 0.0001, for whole body adipose tissue 
analysis

DXA Karlsson et al. [44] Human study in 105 young children, 0.86–0.88 correlations, p < 0.001, between DXA total and 
trunk fat mass vs. MRI-derived SAT

Silver et al. [45] Human study in 12 obese women, 0.98 and 0.80 correlations, p < 0.0001, for whole body and total 
trunk adipose tissue analysis
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Table 2

Select recent references, in chronological order, on adipose tissue segmentation and quantification in animal 

studies

References Remarks

Fowler et al. [58] Manual segmentation, lean versus obese pigs, T1-weighted 0.04 T multi-slice MRI, validation with post-mortem carcass 
chemical analysis

Mitchell et al. [59] Manual segmentation, pig, T1- and T2-weighted 1.5 and 4.7 T multi-slice MRI, validation with post-mortem carcass 
chemical analysis

Ranefall et al. [60] Automated segmentation based on histogram and region-growing schemes, mice, T1- and T2-weighted 9.4 T 3D MRI

Luu et al. [61] Semi-automated segmentation, mice, microCT, cross-sectional study, in silico validation

Johnson et al. [62] Semi-automated fat fraction-based segmentation, mice, chemical-shift encoded water–fat 7 T multi-slice MRI, cross-
sectional study, in vitro validation

Johnson et al. [63]

Tang et al. [64] Automated segmentation based on adaptive fuzzy C-means method, T1-weighted 7 T multi-slice MRI, cross-sectional 
study

Sasser et al. [65] Semi-automated segmentation, mice, CT, cross-sectional study

Garteiser et al. [66] Semi-automated histogram-based segmentation, mice, water-suppressed 7 T multi-slice MRI, cross-sectional study, 
correlation with DXA

Gifford et al. [67] Semi-automated fat fraction-based segmentation, dog, chemical-shift encoded water–fat 3 T multi-slice MRI, 
longitudinal study, correlation with scale weight
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Table 3

Select recent references on the correction of signal intensity bias field in MRI data for adipose tissue 

segmentation and quantification. Additional relevant citations are found therein

References Remarks

Collewet et al. [80] Uniform phantom calibration based approach

Yang et al. [81] Intensity correction algorithm using a linear overlapping mosaic model

Kullberg et al. [82] Intensity correction algorithm using a polynomial function (i.e., second degree order) to fit a bias field to adipose tissue 
voxels on a slice-wise basis

Positano et al. [83] Intensity correction algorithm using adaptive fuzzy C-means clustering

Leinhard et al. [84] Multi-scale adaptive normalized average (MANA)—intensity correction algorithm exploiting adipose tissue (i.e. pure 
fat) as an internal intensity reference, typically sparsely sampled, to compute a dense scaling field at each spatial 
location

Romu et al. [85] Consistent intensity inhomogeneity correction (CIIC)—MANA in combination with chemical-shift encoded water–fat

Andersson et al. [86] MRI data to automatically identify pure adipose tissue voxels or pure muscle (water-only) voxels

Sussman et al. [87] Algorithm using the well-established non-parametric non-uniform intensity normalization (N3) framework

Azzabou et al. [88] Parametric model based on cosine functions, aimed at reducing the variance in subcutaneous adipose tissue and the total 
variation of the non-uniformity function. Target application in lower extremities

Mosbech et al. [89] Intensity correction algorithm using thin plate spine framework to fit a bias field to different classes of tissues

Würslin et al. [90] Two-step intensity correction algorithm using active contours and thin plate splines to fit sampling points within 
subcutaneous adipose tissue, followed by additional inclusion of sampling points from visceral adipose tissue
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Table 4

Select references from recent literature reporting fully automated approaches in segmenting subcutaneous, 

visceral, and muscle adipose tissue depots, using CT and MRI data in humans

Compartment Modality References Remarks

Subcutaneous and visceral 
adipose tissues

CT Zhao et al. [142] −190 to −30 HU threshold range, radial profile approach to identify tissue 
boundaries, compared single-slice measurements at L4 and L5 vertebrae 
to abdominal volume measurements

Ohshima et al. [143] −190 to −30 HU threshold range, radial profile approach to identify 
abdominal tissue boundaries

Makrogiannis et al. 
[144]

FCM to identify air, muscle, fat, and bone tissues, single-slice approach at 
L4 and L5 vertebrae, separation of subcutaneous and visceral 
compartments using gradient vector flow, ACM, manual removal of 
signals from food residues in gastrointenstinal tract

Nemoto et al. [145] −190 to −30 HU threshold range, multi-slice approach, data rescaling, 
removal of air voxels, identification of bone, fat, and muscle voxels, 
morphological and region-growing operations, validation against manual 
segmentation, in men and women

MRI Liou et al. [146] T1W and T2W 1.5 T MRI. Four pulse sequences, SI HT, RG, EM, 
correlation with MA, consideration for motion artifacts and atypical 
anatomies

Armao et al. [147] Multi-slice FS 1.5 T MRI, SI HT, RG, correlation with MA

Kullberg et al. [148] 3D 1.5 T CSE WFI with continuously moving table, multi- parametric 
analysis of water-only, fat-only, in-phase (water + fat), water fraction, and 
fat fraction data, SI HT, MO, lung segmentation, geometric models to 
exclude bone marrow in spine and pelvis, correlation with MA

Kullberg et al. [149] 3D 1.5 T CSE WFI, exploits fat fraction data for HT, geometric model to 
exclude bone marrow and intermuscular adipose tissue, FCM, and MO, 
correlation with semi-automated analysis, correlation between single-slice 
and volume measurements, study in children

Nakai et al. [150] Multi-slice FS MRI, SI HT, template matching, correlation with MA, 
short-term longitudinal study

Würslin et al. [151] Multi-slice T1W 1.5 T MRI, whole-body analysis, SI HT, FCM, ACM, 
explicit detection of extremities, correlation with MA

Zhou et al. [152] Multi-slice FS 1.5 T MRI, with and without water suppression, SI HT, 
FCM, ACM and consideration of partial volume effects

Wald et al. [153] 3D 1.5 T CSE WFI, whole-body analysis, SI HT, statistical shape and 
appearance models, correlation with MA, large n = 314 cohort

Joshi et al. [154] 3D 3 T CSE WFI, atlas-based approach, correlation with MA

Thörmer et al. [155] Multi-slice 1.5 T CSE WFI, FCM, RG, ACM. Correlation with MA in 
obese cohort

Addeman et al. [92] 3D 3 T CSE WFI, exploits fat fraction and T2* data, conversion from 
Cartesian to polar coordinates, surface fitting, correlation with MA, cross-
sectional study

Sadananthan et al. 
[156]

Multi-slice 3 T CSE WFI, EM, segmentation of superficial and deep 
subcutaneous depots using graph cut and level set methods, correlation 
with semi-automated analysis, cross- sectional study

Inter- and intra-muscular 
adipose tissues

CT Senseney et al. [157] Medical Imaging Processing, Analysis, and Visualization (MIPAV) 
software from the National Institutes of Health (http://mipav.cit.nih.gov/)

MRI Positano et al. [158] Multi-slice T1W 1.5 T MRI, FCM, ACM, SI HT, EM algorithm, 
correlation with MA

Prescott et al. [159] Multi-slice T1W MRI, emphasis on interstitial adipose tissue in OA 
patients, N3 bias field correction, signal normalization, MO, RG, 
correlation with MA

Makrogiannis et al. 
[160]

3D FS 3 T MRI, multi-parametric approach using water-suppressed and 
fat-suppressed complementary images, N3 bias field correction, K-means 
clustering, parametric deformable and ACM, correlation with CT
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Compartment Modality References Remarks

Valentinitsch et al. 
[161]

3D 3 T CSE WFI, OA and type 2 diabetes cohort, comparison with MA, 
multi-parametric approach using water-only, fat- only, and in-phase (water 
+ fat) images, K-means clustering, MO, and RG

Additional relevant citations are found therein

ACM active contour models, CSE WFI chemical-shift encoded water–fat MRI, EM expectation/maximization, FCM fuzzy C-means (clustering), 
FS frequency-selective, HT histogram thresholding, MA manual segmentation analysis, MO morphological operations, OA osteoarthritis, RG 
region growing, SI signal intensity, T1W/T2W T1-/T2-weighted
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