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Abstract

Over the past three decades, the pathological classification of lymphoma has substantially 

improved. The early Rappaport classification included a handful of subtypes that did not reflect 

the cell of origin and, not surprisingly, resulted in diagnostic inaccuracies. The WHO currently 

classifies lymphoma into 30 major distinctive types. While this classification improved the 

accuracy and consistency of the histological diagnosis of lymphoma, it had little impact on 

advancing drug development or improving the cure rate of this disease. One reason for this lack of 

improvement is that recent developments in cancer genomics show these histopathological 

subtypes to be heterogeneous. Basing treatment decisions on histopathological subtypes is 

inefficient as it groups different underlying molecular characteristics into one category. Such a 

strategy exposes many patients to potentially toxic drugs without providing benefits. The recent 

approval of two new cancer drugs with companion diagnostics to allow selection and treatment of 

patients with melanoma and non-small-cell lung cancer has raised hope that a similar approach 

may also expedite successful drug development in lymphoma. We review the current status of 

biomarker development in lymphoma, and discuss novel biomarker-directed clinical trial designs 

for lymphoma.

Introduction

The treatment of patients with non-Hodgkin lymphoma has essentially remained the same 

for more than three decades, with the exception of the inclusion of monoclonal anti-CD20 

agents in combination strategies.1 Front-line regimens continue to be predominantly based 

on cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP), or on variations of 

this regimen.2 Salvage regimens are predominantly platinum-based regimens, such as DHAP 

(dexamethasone, high-dose cytarabine, and cisplatin) or ICE (ifosfamide, carboplatin, and 

etoposide).3 Similarly, the treatment of Hodgkin lymphoma continues to be based on ABVD 

(doxorubicin, bleomycin, vinblastine and dacarbazine), a regimen that was introduced in the 
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1970s.4 Over the past 30 years, however, there has been tremendous advances in the 

pathology, biology, and molecular characterization of lymphomas. For example, the 

histological classification of different types of lymphomas is now more precise using 

advanced diagnostic tools that incorporate morphology, immunophenotyping, and genetics 

analysis.5,6

The first widely used lymphoma classification was published by Rappaport in 1966, which 

broadly grouped lymphoma into nodular and diffuse entities. Today, the WHO classification 

of lymphoma includes morphological, genetic, and phenotypical features to describe more 

than 30 unique entities.5,7 Furthermore, a literature search in PubMed shows that thousands 

of papers were recently published on lymphoma genetics, gene-expression profiling and 

oncogenes associated with the disease. However, these recent discoveries have not yet 

translated into significant changes in treating lymphoma.

The discovery of a variety of tumour-suppressor genes and oncogenes led to the 

identification of numerous potential therapeutic targets, and to the development of more than 

800 compounds that are being examined in clinical trials or in preclinical experiments for 

the treatment of cancer, including lymphoma.8 However, based on past experience, the 

development of the vast majority of these compounds is unlikely to succeed owing to the 

lack of anticancer benefit, excessive toxicity, poor understanding of the optimal dose and 

schedule, limited understanding of the patient subsets that benefit, or a combination of these 

reasons.9 Furthermore, although the number of studies enrolling lymphoma patients has 

increased, many of them lack focus, do not advance the field, and compete for a relatively 

small pool of eligible patients.1

A common outcome of clinical trials that test novel agents in unselected populations is a 

modest clinical activity with a reasonable safety profile.10–13 Such outcomes are not 

sufficient for securing approval by regulatory agencies, such as the FDA, or for affecting 

clinical practice. Moreover, an increasing number of costly phase III studies fail to meet 

their end points because these trials continue to use traditional randomization designs, and 

frequently compare empirical combination regimens with standard regimens in unselected 

patient populations.14 It is not surprising that only a handful of drugs have been approved in 

recent years by the FDA for the treatment of lymphoma; moreover, none of these newly 

approved drugs was developed based on a modern understanding of lymphoma biology.

These failures underline the importance of developing novel strategies that can translate the 

recent molecular and genetic discoveries into successful treatment regimens. With the recent 

success of new targeted agents for biomarker-selected patients with melanoma and non-

small-cell lung cancer, the search for predictive biomarkers that may guide therapy for other 

cancers, including lymphoma, has become a focus in drug development. In this Review, we 

discuss how to incorporate biomarkers that may predict response to these agents, and how to 

use these biomarkers to develop rationally designed combination strategies that will help to 

produce higher response rates and durable remissions in patients with lymphoma.
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Histology versus molecular pathway

Developments in cancer genetics and gene-expression profiling demonstrate that lymphoma 

histological subtypes are not as homogeneous as initially believed. For example, diffuse 

large B-cell lymphoma (DLBCL) comprises at least three distinctive subtypes: germinal 

center B-cell type (GCB), activated B-cell type (ABC) and primary mediastinal B-cell 

lymphoma (PMCL).15 Basing treatment decisions on histological classification can result in 

grouping tumours with different underlying molecular characteristics into one category. 

Because only a subset of patients is destined to benefit in clinical trials with eligibility based 

on histology, such trials fail unless they have very large sample sizes. Even if these trials 

show a statistically significant benefit for the experimental arm, the overall benefit is usually 

of only moderate clinical significance because the effect is diluted by the non-responders.16 

This approach is not only inefficient for drug development, but it exposes many patients to 

potentially toxic drugs without providing them with any benefit.

Targeted agents that preferentially kill tumour cells while sparing normal cells have the 

potential of increasing therapeutic efficacy while minimizing treatment toxicity. Two broad 

strategies for developing targeted agents in lymphoma have been initiated. The first is based 

on targeting cell-surface antigens and receptors using monoclonal antibodies, and the second 

is based on using small molecules to target intracellular proteins that contribute to the 

oncogenic process by promoting cancer cell growth and survival.1

Although clinical responses have been observed with a variety of monoclonal antibodies that 

target non-oncogenic surface proteins, higher response rates will likely be achieved by 

targeting the underlying oncogenic process (Figure 1a). In general, tumorigenesis results 

from gain of function of oncogenic proteins, or loss of function of tumour-suppressor 

proteins.17 The recent success of developing cancer drugs that target single driver oncogenic 

proteins (such as Bcr–Abl, BRAF, and EL4–ALK) have raised hopes that such a strategy can 

be successfully applied to a variety of other cancers.

Unfortunately, only a minority of cancers is driven by a single genetic defect and, in most of 

these cases, the genetic alteration exists in only a fraction of the patients. For example, 

approximately 50% of melanomas contain driver BRAF mutations and 5% of non-small-cell 

lung cancers contain an activated ALK kinase, which are the defects that are targeted by 

successful modern agents.18 Despite this limitation, selecting patients based on these 

underlying genetic changes results in improved response rates of approximately 50% to 

agents targeting these driver genetic defects.19,20 Importantly, such selection can be achieved 

using simple diagnostic tests; PCR for BRAF, and fluorescence in situ hybridization (FISH) 

for ALK.18 It is more challenging to develop therapies when tumorigenesis results from a 

loss of a tumour-suppressor protein than from a gain of function mutation. In these cases, 

restoring tumour suppressor function may require re-introducing the protein through genetic 

transfer, or inducing its previously silenced expression by epigenetic modulating agents.

In the search for driver genetic abnormalities in lymphoma, several groups have reported 

genome sequencing results in a variety of lymphoma subtypes, including follicular 

lymphoma, DLBCL, peripheral T-cell lymphoma (PTCL), and mantle cell lymphoma 
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(MCL).21–25 These studies revealed that the majority of recurrent genetic mutations occur at 

a low frequency. The roles of most of these genetic mutations, such as MLL2, in the 

oncogenic process of lymphoma remain unknown.22 Furthermore, the feasibility of 

selectively targeting the protein products of these genetic mutations in lymphoma remains to 

be demonstrated. In any case, it will be impractical to develop drugs that selectively target 

each mutant protein, especially in relatively uncommon lymphoma subtypes. A different and 

perhaps more practical approach is to group several oncogenic defects into well-defined 

oncogenic pathways. By doing so, it is conceivable that future treatment decisions can be 

based on the presence of specific deregulated oncogenic signalling pathways rather than 

basing treatment decisions on histological features. In such a new paradigm, it is possible to 

group most genetic defects into fewer than 20 oncogenic signalling pathways (Figure 1b). 

This approach may also allow the targeting of several key proteins in a given pathway, 

including some that are not mutated. An example is the successful use of agents that target 

mTOR, a non-mutated but hyper-activated protein in the PI3K pathway, for the treatment of 

MCL, renal-cell carcinoma, and neuroendocrine tumours.16,26,27

Among the most widely studied oncogenic pathways in lymphoma are PI3K/AKT/mTOR, 

JAK/STAT, B cell receptor (BCR) signalling, and NF-κB (Figure 2a and Table 1). In 

addition to harbouring possible oncogenic activating mutations, these pathways may also be 

activated by chromosomal translocations leading to overexpression of non-mutant proteins

—such as Bcl-2—and by deletion of tumour-suppressor genes and the proteins they encode. 

Additionally, physiological pro-survival signalling pathways can be aberrantly activated by a 

variety of inflammatory cytokines and growth factors that are produced in the 

microenvironment. This concept is supported by emerging data demonstrating that targeting 

oncogenic pathways can produce clinical responses across different lymphoma histologies 

(Figure 2a and Table 1).13,16,28–33 For example, several agents that target the PI3K/AKT/

mTOR pathway, such as CAL-101/GS-1101 (Gilead Sciences, Inc. Foster City, CA), 

everolimus, and temsirolimus, have produced clinical remissions in patients with follicular 

lymphoma, DLBCL, MCL, PTCL, and Hodgkin lymphoma.34 These data suggest that the 

growth and survival of a fraction of these lymphoma types is driven by an activated 

PI3K/AKT/mTOR signalling pathway. Similarly, agents that target the BCR pathway also 

demonstrated clinical activity across different B-cell lymphoma subtypes.13,33,35 Reliable 

and reproducible biomarkers for measuring pathway activation in clinical biospecimens will 

be required to select patients for pathway-targeted drugs, irrespective of the lymphoma 

histology.

Biomarkers for patient selection

As our knowledge of cancer biology has improved, countless publications have advocated 

the use of biomarkers for prognostic classification and for guiding therapy.36–39 Yet, only a 

handful of biomarkers have been approved by regulatory agencies or shown to be useful in 

the clinic.40,41 The high failure rate in clinical biomarker development reflects the high 

false-positive rate associated with biomarker studies and the multiplicity of biomarkers and 

their combinations. It also reflects the prevalence of biomarker analyses from single 

institutions that use small biospecimen sample sizes, and without proper quality control of 

biospecimen collection and processing.42,43 For these reasons, and owing to an increased 
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demand for identifying reliable and clinical biomarkers that can aid in selecting patients for 

specific therapy, the National Cancer Institute and the European Organisation for Research 

and Treatment of Cancer published guidelines for reporting recommendations for tumour 

marker prognostic studies (REMARK).44

As there is no single best method for clinical biomarker development, diverse platforms are 

currently used in clinical diagnostic assays for guiding cancer therapy (Table 2). Some of 

these assays were pre-existing and became widely used for diagnostic purposes, including 

assessment of CD20 and CD30 expression. Other assays were specifically developed as 

companion diagnostics that gained approval by the FDA, including BRAF mutation analysis 

and EML4–ALK fusion status.45–47

From the beginning of developing therapeutic monoclonal antibodies, patients were selected 

for these trials based on biomarker expression. For example, all patients who were enrolled 

on trials assessing the monoclonal antibody rituximab were required to have CD20-

expressing lymphoma.48 CD20 expression could easily be examined in any clinical 

diagnostic laboratory by either immunohistochemistry (IHC) or flow cytometry methods. 

Similarly, the recently approved antibody drug-conjugate (ADC) brentuximab vedotin was 

evaluated in patients with CD30-expressing lymphomas.49,50 This simple selection method, 

while intuitive, is generally not sufficient to predict response or resistance to monoclonal 

antibody therapy. Therefore, additional biomarkers that are independent of the target may be 

required to better predict treatment response to these agents. For example, response to 

EGFR-targeted therapy in head and neck cancer is influenced by mutations in the EGFR 
gene encoding the extracellular domain of the protein, which may predict resistance to the 

EGFR antibody cetuximab,51 whereas activation mutations in the EGFR tyrosine kinase 

domain in patients with lung cancer can predict sensitivity to the small-molecule inhibitor 

gefitinib.52,53 On the other hand, KRAS mutations are associated with resistance to 

cetuximab in colorectal carcinoma.54,55 Thus, EGFR expression status alone is not sufficient 

to guide therapy in patients with these cancers.56

Furthermore, the predictive value of these biomarkers is dependent on the targeted drugs. 

For example, mutations in the binding domain of the EGFR may predict resistance to one 

monoclonal antibody, but have no effect on another.56 Similarly, in patients with relapsed 

follicular lymphoma, CD22 expression predicts approximately 25% response rate to the 

naked anti-CD22 antibody epratuzumab, but predicts an 80% response rate to another drug 

that targets CD22, the ADC inotuzumab ozogamicin.57,60 More recently, targeting CD30 

with the naked anti-CD30 antibody SGN-30 (Seattle Genetics, Bothell, WA) produced no 

meaningful clinical responses in patients with relapsed Hodgkin lymphoma and anaplastic 

large-cell lymphoma,61,62 whereas targeting the same protein using the ADC brentuximab 

vedotin produced response rates ranging from 74% to 85%.50,63,64 Nevertheless, compared 

with small-molecule inhibitors, the development of predictive biomarkers for monoclonal 

antibodies is relatively simple. Unlike many small molecules, monoclonal antibodies are 

infrequently associated with off-target effects that may complicate the predictive 

significance of the biomarker.
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Biomarkers for oncogenic pathways

For a successful pathway-based therapy, it is imperative to develop clinical assays that 

accurately measure activated oncogenic pathways. As shown in Table 2, several diagnostic 

platforms have been successfully used to select patients for specific therapies. Many of these 

platforms are also being explored to measure pathway activation based on evaluating tumour 

DNA, RNA, and protein expression status.

Genetic mutations

Modern sequencing platforms have improved the efficiency of testing for genetic aberrations 

and substantially decreased its cost. In lymphoma, whole-genome, exome, and transcriptome 

sequencing methods have been used to study recurrent mutations.21–25 In the near future, 

whole-genome sequencing results will be achieved in a matter of days, and possibly in a few 

hours.65 A limiting factor is the ability to perform data analysis in a timely manner, and to 

provide simple and clear results that can be used by investigators and treating physicians to 

make therapeutic decisions.

A more-practical approach would be to sequence a panel of genes that are known to be 

recurrently mutated in lymphoma. Such a panel may consist of one to two hundred genes. 

As the technologies improve they can be performed on existing formalin-fixed paraffin-

embedded tissue sections, avoiding the need for fresh tissue biopsies. This strategy is 

currently being explored by several clinical diagnostic laboratories, such as Foundation 

Medicine.66 The advantage of using mutation status to assign patients to specific therapy is 

the robustness of the assay. This approach was successful in obtaining the FDA approval of 

vemurafenib for the treatment of melanoma patients carrying BRAF V600E mutations.19 A 

similar approach can be applied to evaluate specific inhibitors in patients with lymphoma 

carrying frequent recurrent mutations, such as EZH2, CD79B, and MYD88.25,67,68 

However, although mutation analysis assays can be easily developed, the majority of 

mutated genes in lymphoma have low prevalence. For example, PIK3CA mutations are 

observed in 27% of breast carcinoma cases, but in less than 5% of lymphoma cases.22,69 

Therefore, it is important to develop additional biomarkers that may be relevant for 

lymphoma and that can be assessed in clinical laboratory settings.

Gene-expression profiling

Gene-expression profiling provides a detailed analysis of the composition of disease 

subtypes. Even in histologically uniform lymphoma subtypes, gene-expression profiling 

reveals heterogeneity at the molecular level. Such broad molecular subsets carry different 

prognostic features, and in some cases may be useful in stratifying patients for treatment on 

clinical trials. A good example is the molecular classification of DLBCL into the subtypes 

GCB, ABC and PMCL.15 Although this classification is widely accepted, it is infrequently 

used in clinical practice, mainly because of the requirement for fresh tissue samples and the 

need for special equipment and expertise. Attempts to translate gene-expression profiling 

classification into more practical IHC-based classification produced concordant results in 

only 80% of cases.70 More recently, the procedure has been simplified by the ability to 

perform gene-expression profiling analysis on archived formalin-fixed paraffin-embedded 
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tissue sections.71 However, such a broad classification results in combining several pathways 

into a single category. Because gene-expression-profiling signatures are different among 

histological subtypes,72–74 there is no one unifying signature that can be applied across 

different histologies.

An alternative approach is to examine a gene signature that is associated with a specific 

oncogenic pathway activation. These signatures are generated by genetic transfer of driver 

oncogenes into tumours cells, including MYC, RAS, SRC, and CTNNB1. Other pathway 

signatures have been characterized by examining gene-expression profiling in cells that 

carry mutant genes, such as PIK3CA. In other models, deletion of a tumour-suppressor gene, 

such as PTEN, has been used to develop an activated pathway gene signature.75 Some of 

these signatures have been shown to have prognostic significance across different tumour 

types, including breast, bladder, and prostate carcinomas.75

To investigate whether these signatures are relevant for lymphoma, we applied two activated 

PI3K pathway gene signatures to different primary lymphoma histological subtypes using 

publicly available gene-expression profiling data (Y. Yuan, D. Berry & A. Younes, 

unpublished work). Using Gene Expression Omnibus, we selected uniformly processed 

primary tissues representing DLBCL, follicular lymphoma, MCL, PTCL and Hodgkin 

lymphoma. An activated PI3K pathway gene signature that was developed from PTEN-null 

tumour models was successfully applied to these histological subsets (Figure 2b and Table 

3). The proportion of cases with an activated PI3K pathway gene signature was within the 

range of response rates reported with agents targeting this oncogenic pathway (Figure 2 and 

Tables 1 and 3). Further studies should address whether only the patients who benefit from 

these agents are those that have this gene signature.

In an ongoing phase II clinical trial, we are treating patients with relapsed lymphoma with 

an oral AKT inhibitor (MK-2206, Merck, Whitehouse Station, NJ). Pretreatment tissue 

biopsies are obtained from all patients to assess whether they have the activated PI3K gene 

signature and to correlate this signature with clinical responses.76 This approach can also be 

used to link gene signatures of other oncogenic pathways and agents that target components 

of these pathways. Showing a therapeutic benefit for patients with an activated gene 

signature is possible by focusing exclusively on tumours having the signature, but it leaves 

open the question of whether the signature can predict which patients derive a benefit. To 

address that question requires randomly assigning patients who do not have the signature to 

the experimental and control agent. Ethical concerns can be mitigated by taking an adaptive 

approach and dropping patients with signature-negative tumours from the trial, possibly by 

gradually lowering their probability of being assigned to the drug in question, should interim 

results indicate this to be appropriate.48,77 However, when dealing with a large data set, 

simple errors can result in major problems leading to the wrong conclusions. Because of the 

potential harms of incorrectly applying large genomic data in clinical practice, the Institute 

of Medicine recently published recommendations for developing ‘omics’-based tests in the 

clinical setting.78–80
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Immunohistochemistry

Although IHC is widely used for establishing the diagnosis of most cancers, this diagnostic 

method is rarely used to guide the use of targeted therapy (Table 2). Although IHC is more 

practical to use and is widely available, the method frequently produces inconsistent results 

among different laboratories, mainly because of the lack of standardization of reagents and 

methods, scoring criteria, and interobserver variations.38 The Lunenburg Lymphoma 

Biomarker Consortium recently reported how the prognostic significance of commonly 

assessed IHC-based biomarkers can change with newer therapies.81 The development of a 

standardized clinical diagnostic test using IHC that accurately measures the expression level 

of key targets on oncogenic pathways is challenged by technical difficulties. For example, 

the expression of the active phosphorylated form of AKT (p-AKT) is clearly associated with 

an activated PI3K pathway status, yet no simple or inexpensive test has been established on 

formalin-fixed, paraffin-embedded tissue specimens. Instead, other phospho-proteins are 

being explored as surrogate biomarkers, including p-PRAS40 and p-S6.82 Many proteins 

that can be therapeutically targeted can be examined by IHC in diagnostic specimens, 

including Bcl-2 and Myc.83,84 However, the lack of standardized technical and scoring 

methods complicate their potential use for patient selection.81 Even simple tests to measure 

proliferation using the Ki-67 antigen have failed to give reproducible results.85 Continued 

collaborative efforts among investigators—similar to the Lunenburg Lymphoma Biomarker 

Consortium—to standardize these clinical diagnostic methods are needed to help develop 

reliable diagnostic tests that can guide future therapeutic decisions.30,54

Designs of biomarker-driven trials

In a recent analysis, the success rate of cancer drug development that entered clinical trials 

was estimated to be around 20%.56 Approximately two-thirds of failures occur in phase III 

trials, which is the most expensive part of drug development. This high failure rate can be 

attributed to several factors, including excessive toxicity and lack of significant efficacy in 

unselected patients. This problem is compounded by the fact that although the current 

traditional design of phase II studies may accurately identify ineffective agents, it fails to 

predict the success of follow-up randomized phase III trials.56,57 Furthermore, the end point 

in phase II studies (for example, tumour response) may bear little relationship with clinical 

end points such as progression-free survival or overall survival that are standard in phase III 

studies. Another culprit is the erstwhile convention of using single-arm, non-randomized 

designs in phase II trials. Comparisons with historical control data usually overestimate but 

sometimes underestimate the efficacy of a drug, leading to unexpected results in randomized 

phase III trials. Importantly, drugs are typically effective in only a subset of patients. To see 

a benefit in unselected patient populations requires very large randomized trials.

Drawing conclusions about responding patient subsets is fraught with inferential traps. 

Foremost among them are false positives. Consider investigating the effect of a drug as it 

relates to a moderate number of biomarkers, say 20. Consider the simplest case in which the 

markers are dichotomous and consider the 40 single-marker subsets (one each for each 

marker being positive and negative). Under the conventional assumption of a 5% false-

positive rate, two of the 40 subsets are expected to show a statistically significant drug effect 
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when the drug has no effect at all. Hence, the conventional practice of adjusting for multiple 

comparisons is to claim statistical significance only when the P value of drug effect in a 

subset is less than 0.05/40 or 0.00125. Paradoxically, considering more biomarkers can make 

discovering predictive biomarkers more difficult. Combinations of biomarkers are more 

interesting scientifically, but they are even more problematic statistically. For 20 markers 

there are over a million possible ‘drug signatures,’ and subsets of patients who benefit from 

a drug (more precisely, there are 220 − 1 = 1,048,576 subsets). Suppose a drug is effective 

for exactly one of these subsets. Even if one is lucky in picking the right 20 biomarkers for 

defining this subset, it is very difficult—one chance in a million if it’s a guess—to correctly 

identify a drug’s signature.

The FDA was correct with their Critical Path Initiative: in a 2006 update they announced 

that their “outreach efforts uncovered a consensus that the two most important areas for 

improving medical product development are biomarker development (Topic 1) and 

streamlining clinical trials (Topic 2)”.58 In a subsequent guidance document they addressed 

adaptive clinical trials.59 Two successful combination ‘biomarker signatures’ were 

developed for oestrogen-receptor-positive, tamoxifen-treated adjuvant breast cancer: 

Oncotype DX® and MammaPrint.86–89 The developers took the elegant but simple approach 

of combining a variety of biomarkers (numbering 21 and 70, respectively) into a single 

index. This approach makes confirmation easier, but it is difficult to change the indices by 

adding or subtracting biomarkers or otherwise modifying their contributions to the index. 

Also, such an index does not help in learning which patients benefit from which therapies 

(although both indices have been shown to predict the benefits of chemotherapy in the 

general sense).

Novel clinical trial designs will be needed to expedite drug development and to save on the 

high cost of potentially futile large-scale phase III trials.77,90–92 Indeed, the need for phase 

III randomized studies in the era of highly effective biomarker-driven targeted agents has 

been recently questioned.91 Furthermore, because many small-molecule inhibitors are not 

highly selective, they may have favourable off-target effects that can influence biomarker 

prediction. For this reason, evaluating treatment outcome in both biomarker-positive and 

biomarker-negative patient subpopulations may provide valuable information that could 

assist in generating new hypothesis and developing new biomarkers that can improve the 

accuracy of predicting clinical responses. Positive and negative interactions between various 

biomarkers may need to be examined to improve prediction of treatment outcome. For this 

reason, there is no uniquely optimal design for biomarker-driven clinical trials. Instead, there 

are several trial designs that can be used based on biomarker prevalence, causality of the 

target in lymphoma pathogenesis, availability of patients, and the robustness of the clinical 

biomarker assays.67 Furthermore, the selection of trial design is influenced by the 

availability of rapid turnaround time for obtaining and using the results of a biomarker status 

in a multicentre setting.

The dependence of tumour cells on a single driver oncogenic defect can lead to the 

identification of one predictive biomarker that can assist in selecting patients for a specific 

therapy (such as BRAF mutation in patients with melanoma). However, lymphoma cells 

frequently use several parallel survival mechanisms that may require identification of a 
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combination of predictive biomarkers (Figure 3). This situation may also require the use of 

rationally designed drug combinations to achieve the best treatment outcome. In the breast 

cancer field, oncologists are used to evaluating three biomarkers to assist in the selection of 

the most-appropriate therapy (according to the biomarkers oestrogen receptor, progesterone 

receptor, and HER2). In patients with lymphoma, using three biomarkers that are associated 

with distinctive oncogenic pathways will result in eight different biomarker-defined 

subgroups that can be linked to therapeutic outcome (Figure 4). Such an approach can be 

adopted to uniformly screen pathway-targeted agents to define the subsets of patients that 

are likely to have the most benefit.

Biomarker-selected and biomarker-enriched trials

The simplest clinical trial addressing performance of a drug targeted to a biomarker is to 

restrict patients whose tumours have the biomarker target in question (Figure 5a).68 This 

may be appropriate in some circum-stances, but it prevents defining whether and how well 

the drug is actually hitting its target (as measured in the trial). A simple but still useful 

adaptive biomarker-driven trial is one involving a single dichotomous biomarker and two 

treatment arms; an experimental arm compared with control (Figure 5b). Treatment effect is 

evaluated periodically or even continuously during the course of the trial, separately within 

the biomarker-positive and biomarker-negative subpopulations. If the experimental arm 

shows little or no improvement over control in either subset then that subset is dropped from 

consideration in the trial. If the experimental arm performs sufficiently poorly in both 

subsets then the trial is stopped. Rather better from the perspective of efficiency and, 

arguably, ethics as well, is to employ response-adaptive randomization throughout the trial 

within both subsets.77,93 The poorer performing arm in a subset is assigned to a smaller 

proportion of patients within that subset as the trial proceeds, until the randomization ceases 

within that subset. This trial design addresses at least three questions: first, is the 

experimental arm effective within the biomarker-positive subset? Second, is the 

experimental arm effective within the biomarker-negative subset? Third, is the experimental 

arm effective in the entire patient population?

Combined dynamic multi-arm biomarker trials

A biomarker-driven trial that addresses many questions, and consequently is very 

complicated, is I-SPY 2.77,94 This study is more a process than a trial. The setting is 

neoadjuvant breast cancer and the primary end point is pathological complete response 

(pCR). The focus is on 10 predefined tumour biomarker signatures depending on 

combinations of hormone-receptor status, HER2 status, and MammaPrint.77 Experimental 

agents are added to the trial as they become available and are compared with the control 

using response-adaptive randomization within biomarker-defined subsets. Experimental 

agents that are successful in the trial are matched with one or more of the signatures and are 

‘graduated’ into a small confirmatory trial. Experimental agents that show insufficient 

improvement in pCR in all 10 signatures are dropped from the trial.77

A critical aspect of both simple and complicated adaptive trials as described above is 

confirmation that preliminary observations in the trial are real. Asking many questions is 

possible in a single trial without much cost in terms of sample size, but it does have a cost. 
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Biomarker-driven trials have to be somewhat larger than traditional one-question clinical 

trials to enable addressing positive conclusions (for example, that a drug is effective for a 

particular signature) to decide whether they are true positives or false positives. To be 

specific, the total number of patients assigned to any experimental agent in I-SPY 2 ranges 

from 20 to 120, with a total of at least 60 patients required for any agent for a conclusion 

that it has a matching biomarker signature.77 Applying the I-SPY 2 model to lymphoma is 

feasible, but requires modifications. Having a common control arm in a process of 

evaluating many experimental therapies (including combinations of experimental drugs) is a 

simple device that makes for greater efficiency in any setting. This study includes 

experimental drugs from different companies in a single trial, which is not a trivial matter, 

but I-SPY 2 shows that it is possible. Combinations of lymphoma histologies are possible 

signatures, and biomarkers can be incorporated within those signatures, possibly applying 

across histologies. The neoadjuvant approach does not apply to lymphoma end points, such 

as tumour response and times to event (progression-free survival). As some of the new 

agents may modulate glucose uptake and metabolism, the use of interim FDG-PET scan 

results should be used with caution to guide therapy.71 On the other hand, the adaptive 

randomization that improves efficiency in I-SPY 2 relies on information available before the 

primary end point becomes available: MRI volume measured at various times while the 

patient is receiving systemic therapy. The patient’s tumour burden is modelled over time to 

help inform the primary end point of pCR at surgery. More generally, including in 

lymphoma, auxillary information, such as imaging or other biomarkers, can be incorporated 

in a longitudinal model that is updated based on data from the trial to help predict the course 

of disease for individual patients. These are not necessarily ‘surrogate’ markers, and might 

turn out to be uncorrelated with the primary end point. If they are correlated then the early 

information about each patient improves the efficiency of the design. Should the 

accumulating data show that the early end points are not predictive of the primary end point 

then the model will be updated accordingly and the information from the early end points 

will not be used in making adaptations or other decisions in the trial. This is an example of 

the range of questions that can be addressed and at least partially answered in an adaptive 

clinical trial. So, trial end points in lymphoma will be different and will be subject to 

practical and ethical standards. A multi-arm trial that considers combinations of targeted 

agents with standard R-CHOP (that is, R-CHOP + drug X) in comparison with R-CHOP 

alone will need to be tailored based on the natural history of the disease and treatment 

outcome (Figure 5c).

Conclusions

In summary, as more drugs and molecular targets are identified, proper inclusion of clinical 

biomarkers in the development plans of novel agents is becoming important for successful 

outcome. Incorporating such biomarkers in novel clinical trial designs may expedite drug 

development and reduce their cost. Such an approach has been moderately successful in a 

variety of solid tumours, and it will be important to follow a similar path to develop new 

agents for the treatment of lymphoma. We also have the advantage of learning from their 

mistakes. Finally, adopting collaborative multi-arm randomized studies with one control arm 

is likely to improve the time for clinical trial completion. Careful preclinical assessment and 
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clinical biomarker evaluation in pre-treatment and on-treatment specimens will be required 

to better understand mechanisms of resistance to targeted agents, and to develop rationally 

designed novel combination regimens that may produce higher response rates, longer 

duration of response, and may overcome resistance due to tumour heterogeneity.72,73
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Key points

■ Recent studies demonstrated that histological subtypes of lymphoma consist 

of diverse molecular entities creating new challenges for basing treatment 

decisions on histological classification

■ Most single targeted agents produce low response rates in unselected 

lymphoma patients

■ Preselecting patients based on predictive biomarkers is needed to improve 

treatment outcome

■ Different clinical diagnostic platforms that are currently being evaluated for 

patient selection include genetic sequencing, immunohistochemistry, and 

gene-expression profiling tests

■ Multi-arm randomized biomarker-driven clinical trials using one control 

arm provide a rapid and efficient strategy to screen novel agents before 

conducting phase II studies
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Review criteria

Information for this Review was compiled by searching the PubMed, Highwire Press, and 

ClinicalTrials.gov databases for articles published before June 2012, including abstracts. 

Search terms included “lymphoma”, “Hodgkin”, “biomarker”, “sequencing” and 

“mutations”. Only articles published in English were considered and references were 

chosen based on the best clinical evidence.
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Figure 1. 
Targeted therapy of lymphoma. a | Although targeting the underlying driver oncogenic 

process is logical, recent progress in lymphoma therapy has resulted from targeting non-

oncogenic proteins, such as CD20 and CD30. b | Hundreds of genetic alterations in tumour 

cells have been identified in tumour-suppressor genes or oncogenes. Rather than designing 

unique drugs for each genetic alteration, several genetic defects can be grouped within well-

defined oncogenic pathways. Such an approach may simplify drug development as only a 
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dozen or so oncogenic pathways have been described. Within each pathway, multiple 

proteins can be targeted, regardless of their mutation status.
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Figure 2. 
Clinical rationale for targeting oncogeneic pathways. a | Patients with different lymphoma 

histologies show response to pathway-targeted therapy (Table 1), indicating that a fraction of 

these histologies is driven by specific pathway activation. b | Applying gene-expression 

signature of PI3K pathway activation to primary lymphoma biopsy specimens demonstrated 

that the signature can dichotomize the patients into signature-positive and signature-negative 

cases (Table 3). Abbreviations: DLBCL, diffuse large B-cell lymphoma; FL, follicular 

lymphoma; GS, gene signature; HL, Hodgkin lymphoma.

Younes and Berry Page 21

Nat Rev Clin Oncol. Author manuscript; available in PMC 2017 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Rationale for combination therapy in lymphoma. Lymphoma cells frequently use several 

activated oncogenic pathways to promote their growth and survival. In some cases, 

activation of one receptor or several receptors is involved in the oncogenic process. 

Furthermore, within one pathway, such as the PI3K/AKT/mTOR pathway, several proteins 

can be therapeutically targeted.
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Figure 4. 
Defining lymphoma subsets based on biomarkers of activated pathways. This approach to 

select patients for pathway-directed therapy is expected to result in higher response rates in 

biomarker-enriched populations. In this example, the inclusion of three biomarkers will 

result in eight unique subsets of biomarker sets that may have different response to therapy.
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Figure 5. 
Examples of biomarker-driven clinical trials for lymphoma. a | Patients can be preselected 

based on single driver genetic mutations. In each biomarker-defined subset, patients can be 

randomized to standard R-CHOP regimens or experimental R-CHOP + drug x. Depending 

on the incidence of the biomarker, this approach may not be practical because the patient 

population may be too small to perform a timely randomized study. This approach was 

successful in developing therapy for patients with BRAF mutant melanoma, and may be 

more practical for screening single agents in the relapsed lymphoma setting. b | Several 
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mutations can be grouped in well-defined signalling pathways. This strategy may be more 

practical as the number of patients can be higher than those with a single genetic defect. 

However, a standardized approach to accurately measure pathway activation, using surrogate 

biomarkers, will be required. Examples of biomarkers are shown. c | A multi-arm 

randomized trial design comparing several experimental arms with one standard control arm. 

Initially patients are enrolled in an unselected manner. After treating a certain number of 

patients, clinical responses are evaluated within each of the biomarker-defined subgroups 

and responses are compared between the experimental and control groups. Biomarker-

defined subsets that have low probability of improved outcome are subsequently closed to 

patient enrollment, and patients are enrolled prospectively in a biomarker-selected manner. 

Coloured cells indicate where the highest clinical responses are observed in a theoretical 

example.
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Table 2

Diagnostic platforms used to guide treatment decisions

Drug Cancer Target/biomarker Diagnostic method

Rituximab B-cell NHL CD20 IHC, flow cytometry

Brentuximab
vedotin

Hodgkin lymphoma
and ALCL

CD30 IHC, flow cytometry

Tamoxifen Breast Oestrogen receptor IHC

Imatinib CML ABL PCR

Trastuzumab Breast HER2
HER2

IHC
FISH

Crizotinib NSCLC EML4/ALK FISH

Vemurafinib Melanoma BRAF V600 RT-PCR

Adjuvant therapy for
breast carcinoma

Breast Oestrogen receptor,
progesterone
receptor, HER2

RT-PCR

Adjuvant therapy for
breast carcinoma

Breast 70 genes
(MammaPrint)

GEP

Adjuvant therapy for
colon carcinoma

Colon 12 genes RT-PCR

Gefitinib or erlotinib Lung EGFR mutation PCR

Gefitinib or erlotinib Colon, lung KRAS mutation PCR

Abbreviations: ALCL, anaplastic large-cell lymphoma; CML, chronic myeloid leukaemia; FISH, fluorescence in situ hybridization; GEP, gene-
expression profiling; IHC, immunohistochemistry; NHL, non-Hodgkin lymphoma; NSCLC, non-small-cell lung cancer; RT-PCR, reverse 
transcription-PCR.
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Table 3

Predicting response rates for therapies based on pathway signatures

Histology n Incidence of activated PI3K
pathway gene signature (%)

Predicted response rate
to PI3K and mTOR
pathway inhibitors (%)

Absent Present

DLBCL 73 38 62 30–36

FL 184 54 46 50–56

HL 130 52 48 53

MCL 15 73 27 32–67

PTCL 50 44 56 63

Abbreviations: DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; HL, Hodgkin lymphoma; MCL, mantle-cell lymphoma; PTCL, 
peripheral T-cell lymphoma.
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