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Abstract

Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in 

proton therapy because of its accuracy. Recent studies on biological optimization have also 

indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy 

transfer. Although GPU-based MC engines have been developed to address inverse optimization 

problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in 

MC calculation is not favorable for clinical applications. The previously proposed adaptive particle 

sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the 

computationally expensive MC simulation more effectively. This method is more efficient than the 

conventional approach that performs spot dose calculation and optimization in two sequential 

steps. In this paper, we propose a computational library to perform MC-based spot dose 

calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform 

sampling of the particles from pencil beam spots during the optimization process, favoring those 

from the high intensity spots. The library also conducts two computationally intensive matrix-

vector operations frequently used when solving an optimization problem. This library design 

allows a streamlined integration of the MC-based spot dose calculation into an existing proton 

therapy inverse planning process. We tested the developed library in a typical inverse optimization 

system with four patient cases. The library achieved the targeted functions by supporting inverse 

planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated 

proton therapy, and distal edge tracking. The efficiency was 41.6±15.3% higher than the use of a 

GPU-based MC package in a conventional calculation scheme. The total computation time ranged 

between 2 and 50 min on a single GPU card depending on the problem size.

1. Introduction

Pencil beam scanning has become increasingly common in proton therapy treatments. The 

adjusting intensity of each beam spot can achieve increased target coverage and critical 

organ sparing as compared to conventional passive scattering methods. Different treatment 

†Currently at Image Processing Center, Beihang University, Beijing, 100191, China

HHS Public Access
Author manuscript
Phys Med Biol. Author manuscript; available in PMC 2018 January 07.

Published in final edited form as:
Phys Med Biol. 2017 January 07; 62(1): 289–305. doi:10.1088/1361-6560/62/1/289.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



schemes can be used including single field uniform dose (SFUD), 3D intensity modulate 

proton therapy (IMPT), and distal edge tracking (DET) (Lomax, 1999). In these techniques, 

inverse treatment planning is based on adjusting the weights from individual spots to yield a 

satisfactory dose distribution during the optimization process.

The pencil-beam (PB) algorithm is typically used for spot dose calculations primarily 

because of its high computational speed and acceptable accuracy in most cases. However, in 

cases where the algorithm accuracy is degraded, the inaccurately calculated spot dose 

misleads the optimization process, compromising the resulting quality of the plan. The 

ultimate solution to this problem is to incorporate an accurate dose engine such as Monte 

Carlo (MC) for spot dose calculations (Tourovsky et al., 2005; Paganetti et al., 2008; 

Paganetti, 2012; Mairani et al., 2013). MC-based inverse planning is also important for 

biological optimization. To quantitatively assess the biological effect, the concept of relative 

biological effectiveness (RBE) is commonly used. It is defined as the ratio of the absorbed 

dose under the reference radiation, such as Co-60 gamma rays, and the dose under the 

specific radiation type that produces the same biological effect. Current treatment planning 

for standard proton therapy typically uses a constant value of 1.1 for the RBE. However, it 

has been observed that the RBE of a proton beam varies along its path and hence biological 

treatment plan optimization is needed (Wilkens and Oelfke, 2005; Frese et al., 2011; 

Grassberger et al., 2011; Wedenberg et al., 2013). It has also been proposed to consider 

physics quantities closely related to RBE in optimization, such as linear energy transfer 

(LET) (Romano et al., 2014; Giantsoudi et al., 2013). Yet, it is difficult for the conventional 

PB algorithms to accurately measure these quantities of interest in these scenarios. In 

contrast, MC simulation may be the ideal selection because of faithful simulation of the 

particle transport process via physics principles.

Despite its promise, MC-based inverse planning exhibits low computational efficiency. The 

total dose computation time for a typical IMPT case with ten thousand spots is too long for 

clinical use under the current MC packages, e.g. TOPAS/Geant4 (Perl et al., 2012). GPU-

based proton MC packages have recently been developed (Jia et al., 2012; Wan Chan Tseung 

et al., 2015; Renaud et al., 2015; Yepes et al., 2009). The computation time was substantially 

reduced via both hardware accelerations and the use of simplified physics models, showing 

great promise for fast and accurate MC-based inverse plan optimization. For instance, a 

novel MC-based IMPT optimization system has been recently developed. With 24 GPUs, the 

computation time for a head and neck IMPT plan was ~ 20 min (Ma et al., 2014). This is a 

substantial improvement over the conventional CPU-based approach. Yet the system is still 

not ideal for clinical use. Although the cost for such a system is not a concern because of 

low GPU price nowadays, managing such a big platform may be a burden for clinical use. 

Meanwhile, in some complicated problems (e.g. robust optimization or biological 

optimization) or time-critical applications (e.g. online adaptive therapy), it is still desired to 

seek a more effective use of the computationally expensive MC simulation to further 

improve computational efficiency.

Existing MC-based inverse planning systems used the MC method to pre-compute spot dose 

distributions needed by the optimization algorithm before launching the optimization 

process. However, performing the dose calculation during optimization may be a better 
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choice. This allows the use of spot intensity information obtained during the optimization 

process to guide MC sampling. The net effect is that the amount of MC simulation is 

reduced on the less important spots, i.e. those with small intensities after inverse 

optimization. This method, known as adaptive particles sampling (APS), has been 

successfully used in photon intensity modulated radiation therapy (IMRT) where an 

acceleration factor of ~5 was achieved, when compared with the conventional use of MC 

that pre-computes beamlet dose distributions (Li et al., 2015).

It is the objective of this paper to propose a new software framework to allow the 

streamlined integration of the MC-based spot dose calculation under the APS scheme into a 

proton therapy inverse planning system. A number of proton therapy inverse optimization 

systems have been developed over the years. When incorporating the MC-based spot dose 

calculation into these systems, a design that is maximally compatible with existing systems 

is needed to ensure practical applications of the developments. For instance, a library that 

can be readily plugged into an existing system without major modification on the system is 

preferred. If MC spot dose calculations were performed before plan optimization, the 

integration would be straightforward. The dose engine could be replaced at the spot dose 

calculation stage, and the optimization part would be left unchanged. However, if we would 

like to employ the aforementioned APS scheme, the integration requires a carefully designed 

interface between the MC component and the optimization system. In this paper, we will 

develop a library under a particularly designed framework to offer an existing inverse 

planning system the capability of GPU-enabled MC-based spot dose calculations. We will 

also extend the APS scheme previously developed in the photon therapy context to the 

proton therapy inverse planning regime.

2. Methods and Materials

2.1 Overall system structure

The general structure of an inverse optimization workflow employing a gradient-based 

algorithm is illustrated in Fig. 1(a). The algorithm iteratively performs several steps as 

follows: 1) computing gradients based on the current solution, 2) computing an objective 

function, and 3) updating the solution. The first step typically involves two matrix-vector 

operations, namely computing the dose distribution d = Dx and its adjoint operation g = 

DTy. Here, x or d and y or g are the vectors residing in the domain of the dose distribution 

and spot intensity, respectively. Specifically, x is the spot intensity, d is the dose distribution. 

Computing the gradient g typically involves multiplication with DT. The exact form of this 

computation depends on the specific objective function of interest. D is the dose deposition 

matrix (DDC) with its entry Dij as the dose deposit to a voxel i from a spot j at its unit 

intensity.

The role of the MC dose calculation in the optimization problem is reflected as the DDC 

matrix computation. In the conventional approach, this matrix is pre-calculated using the 

MC method, before the optimization starts, as illustrated in Fig. 1b). In contrast, we propose 

a GPU library that supports the optimization problem as a plug-in to the gradient 

computation step and that is responsible for the two matrix-vector operations d = Dx and g = 

DTy, as illustrated in Fig. 1c). The reason for this selection is to achieve a more effective use 
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of MC than the conventional approach and to use the GPU processing power for matrix-

vector operations that are known to be well suited for GPU-based parallel computation (Bell 

and Garland, 2008).

2.2 GPU modules supporting inverse optimization

The first time we launched our GPU library, an initialization function was called. The 

function initialized a GPU computational environment, patient data, physics data, and plan 

geometry. The GPU module mainly included two components: 1) updating the DDC matrix 

with APS and 2) forward and backward dose calculations.

2.2.1 Updating the DDC matrix with APS—Because we want to develop a library that 

supports an existing inverse optimization system, the iterative plan optimization process in 

the system should not be changed. Let us use k to index the iteration number of the inverse 

optimization process in the existing system. An input parameter NUpdate was set, such that 

the DDC matrix was updated every NUpdate iteration steps. In the steps when the DDC 

matrix was not updated, the matrix was directly used in the matrix-vector operations for 

optimization. When it came to the step of updating the DDC matrix, the matrix was first 

updated using the APS method. After that, it was used for optimization.

When the DDC matrix was updated, a user first specified a total number of source protons 

for MC simulation NMC. The APS method sampled  particles from spot j, so that  was 

approximately proportional to the currently optimized spot intensity . As an initial 

condition for the first iteration, we used equal spot intensities to guide the particle sampling, 

because the spot intensity was not yet available. This idea was first proposed in a previously 

published IMRT regime (Li et al., 2015). To adapt the APS method to the IMPT problem, 

we made the following modifications from the previous work.

Computing the DDC matrix is essentially the problem of calculating dose distribution for 

each proton spot. With multiple GPU threads, it is possible to simultaneously transport 

protons from different spots. In our implementation, we sequentially looped over energy 

layers and simultaneously transporting protons for spots in a layer, as illustrated in Fig. 1(c). 

Here iE is the index for the energy layer. For each layer, we first computed the total proton 

number as NE = NMC ∑j∈E(xj + ε) / ∑j(xj + ε), where the summation in the numerator is 

within the layer iE with respect to the spots, and the summation in the denominator is with 

respect to all the spots. ε is a parameter with a small value. It was introduced to avoid 

sampling zero particles from a spot, even when the spot intensity was zero (Li et al., 2015). 

With NE determined for the layer iE, we sampled the particles among the spots in the layer 

and simultaneously simulated the particles’ transport in the patient’s body. The reason for 

this layer-by-layer spot dose calculation was to avoid efficiency loss in parallel processing. 

In fact, the computation time to transport a proton is approximately proportional to its range, 

which is a function of particle energy. If protons with drastically different energies were 

transported simultaneously, those GPU threads transporting low-energy protons would be 

completed first, and would wait for those with high-energy protons to end, wasting 

computational resources.
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To sample the particles from spots in an energy layer, we employed the Metropolis sampling 

method (Metropolis et al., 1953). Metropolis method is an iterative approach to draw 

samples from a given distribution. One sample is generated per iteration step, such that the 

distribution of all the generated samples approaches the desired one. In our implementation, 

all GPU threads ran the Metropolis algorithm but were independent of each other. 

Specifically, each GPU thread kept a variable Iprev to store the spot index from which a 

particle was sampled at the previous iteration step. In each iteration step, a trial spot index J 
was uniformly generated among all the candidate spots and accepted with a probability xJ/
xIprev. If accepted, a proton was sampled from the spot J, if not, the proton was sampled 

from Iprev. In addition, if the trial spot index J was accepted, Iprev was set to J. The reason for 

this strategy was to mitigate the problem of the GPU memory-writing conflict (Jia et al., 
2012). When multiple threads were transporting spatially-close protons, there was a high 

probability to access the same voxel while depositing the dose. Dose depositions among 

multiple threads have to be serialized, compromising the parallel efficiency of GPU. With 

the simple Metropolis algorithm, the spatial locations of sampled protons from different 

GPU threads were uncorrelated, which was expected to reduce the chance of having multiple 

protons from the same spot. This was an effective way to mitigate the memory conflict 

problem.

After each thread determined a proton spot index with the Metropolis method, a source 

proton was sampled in the thread. The GPU then simultaneously transported these protons 

and scored the dose deposition. In our implementation, we modified gPMC, a fast GPU-

based MC package for proton dose calculation previously developed in our group (Jia et al., 

2012), to tag each source proton with the spot index it came from. During transport 

simulations, the index was also passed on to all the secondary particles. Each dose 

deposition event was directed to the dose counter corresponding to the spot based on the tag 

value. After completing all the proton transports, the resulting dose distribution for each spot 

was normalized to yield the dose per source particle using the number of particles sampled 

from that spot. The dose values were further converted into dose per MU using the gPMC 

calibration factor.

2.2.2 Forward and backward dose calculation—After being updated, the DDC 

matrix was ready for the forward dose calculation Dx and its adjoint calculation DTy, where 

x and y are vectors in the spot weight and dose domains. These are the two most frequently 

used operations to evaluate the objective function and its gradient when solving an 

optimization problem. Hence their performances are critical to the overall system efficiency. 

In our implementation, the library took input of x and y from the optimization part and 

returned the calculated results. The computations were achieved on GPU via the algorithm 

previously reported by Bell and Garland (2008).

The matrix D storage needs special attention. This is a sparse matrix, because a spot only 

deposits the doses to a few voxels close to its central axis. During particle transport 

simulation, the dose deposition information was recorded in three vectors corresponding to 

the spot indices, the voxel indices, and the deposited dose value to a voxel from a spot at its 

unit weight, respectively. This storage method actually corresponds to the coordinate list 

(COO) format of a sparse matrix. For efficient matrix-vector multiplication Dx on GPU, a 
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compressed sparse row (CSR) format is required (Bell and Garland, 2008; Men et al., 2009). 

For the efficient operation of DTy, a format compressed sparse column (CSC) format is 

needed. Hence, the immediate step after the DDC matrix update was to convert the matrix 

from the COO to the CSR and CSC formats using the cuSparse library provided by NVIDIA 

(NVIDIA, 2015). After this step, the computation of Dx and DTy was performed.

2.3 Integration of MC library in an optimization problem

In this section, we describe how the developed MC library was integrated into a 

representative inverse planning problem.

2.3.1 Spot arrangement—For a proton therapy plan optimization problem, the first step 

is to place the proton pencil beam spots within the target volume. We adopted a typical 

approach as follows. We first created a scanning target volume (STV) that was expanded 

from the optimization target volume (OTV) with a margin of 0.5 cm. Here we used the term 

OTV instead of planning target volume (PTV) to follow the ASTRO model policies for 

proton beam therapy (Ma et al., 2014; American Society of Radiation Oncology, 2014). We 

uniformly placed proton spots on a square grid in BEV with a resolution of 0.5 cm. To 

determine the energy layers for 3D-IMPT, we first calculated the minimum and maximum 

water equivalent distance from the patient’s body surface to the STV proximal and distal 

ends. The energy layers were determined by placing the Bragg peaks between the minimum 

and maximum depths among all the spots with an increment of 0.4 g/cm2. We finally 

removed all the spots with the Bragg peaks outside the STV and the remaining spots were 

used for optimization. For DET, we placed one proton spot on the distal edge, one inside the 

distal edge by one step, and one outside the distal edge by one step for each proton pencil 

beam (Li et al., 2008; Liu et al., 2012). For SFUD, the spot placement was similar to that of 

3D-IMPT but the spots from each beam were positioned separately.

2.3.2 Inverse Optimization—We used a representative optimization model to 

demonstrate the effectiveness of our proposed GPU library. Of note, the structure of our 

system is not restricted to this particular optimization model but can be applied to any 

gradient-based optimization algorithm that attains the general structure shown in Fig. 1a). In 

this study, we used a popular two-sided quadratic objective function:

(1)

where S denotes the structure set including both targets and critical structures, and T is the 

set of targets. vs represents the set of voxels in a structure s ∈ S. xj is the intensity of spot j. 
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The dose di at voxel i can be calculated as di = ∑j Dij · xj, where Dij is the element at voxel i 

from spot j in the DDC matrix.  and  are under-dose and over-dose organ weighting 

factors. Pi denotes the prescription dose for the target or the threshold dose for critical 

structures. C is the minimum MU constraint for proton spots.

The number of voxels and spots are large for a typical clinical case, requiring large GPU 

memory. To perform computations under a relatively small GPU memory, we only used 

some voxels in the optimization. As such, we first down-sampled the original CT image with 

a resolution of 512 × 512 voxels on a transverse plane to 256 × 256 voxels. The final image 

resolution on a transverse plane was ~2 mm × 2 mm. After that we singled out the voxels 

involved in the optimization. For OTV and organs at risks (OARs) with a relatively small 

volume (e.g., cord) we kept all the voxels for optimization. For other OARs we kept all the 

voxels on its surface and for the interior voxels we selected one in every 2 × 2 voxels on 

each transverse plane. For body structure, we used a more coarse resolution and selected one 

voxel in every 4 × 4 voxels on each transverse plane.

The Barzilai-Borwein gradient method with projections to the feasible set was used to solve 

the optimization problem (Barzilai and Borwein, 1988). During the iterations of the Barzilai-

Borwein algorithm, forward and backward dose calculations were conducted with our 

proposed GPU modules. After calculating the dose and gradient vectors and transferring 

them back to CPU, the following objective function evaluation, step size search with the 

Barzilai-Borwein algorithm, and spot intensity updates were performed. To deal with the 

minimum MU constraint in each update stage of the spot intensity, we rounded the spot 

intensity down to 0 for spots with weights lower than 0.5C or alternatively up to C.

The stopping criterion for the optimization process was based on the relative difference 

between the dose vectors at two iterations corresponding to the last two DDC updates:

(2)

where|․|2 denotes the standard L2 norm of a dose vector. l is the index of the DDC update 

number, dk is the dose vector at the kth iteration step of the inverse optimization process, and 

Dp is the prescription dose. The use of the dose difference at two successive steps is a typical 

stopping criterion. However, since the DDC matrix was updated throughout the optimization 

process, we actually compared the dose vectors at two steps when two successive DDC 

updates were performed. This strategy was employed so the iteration would not appear 

converged, although changing the DDC matrix could further alter the solution. When a 

criterion of ε < 0.002 was met, we assumed that any further iterations and updates in the 

DDC matrix would not significantly change the resulting dose distribution. Hence the 

optimization was terminated. In SFUD, the optimized doses of different beams were added 

with the beam weighting factors manually adjusted for a good plan quality.

2.3.3 Evaluations—To evaluate our developments, we first tested a 3D-IMPT prostate 

cancer patient case. With a spot spacing of 0.5 cm and an energy layer spacing of 0.4 g/cm2, 
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we found 4243 spots from two opposite lateral beam angles. The plan was first optimized 

with the MC-based spot dose calculation performed in a conventional fashion. MC was 

repeatedly used to perform dose calculations for each spot to generate the DDC matrix. 

After that, plan optimization was conducted to solve the problem in Eq. (1). The DDC 

matrix was stored on GPU during optimization. Matrix multiplications were conducted on 

GPU, because the GPU-based matrix-vector multiplication was faster than CPU. We 

conducted this conventional MC-based optimization method for several runs, each with a 

proton number per spot ranging from 103 to 107. The purpose of this step was to determine 

the minimum number of protons per spot required in the conventional approach to 

objectively demonstrate the advantages of the APS scheme. We proceeded with the study on 

the proposed scheme where MC-based spot dose calculations and optimizations were 

iteratively performed.

In both cases, after a plan was developed, a final forward MC dose calculation was 

performed using the optimized spot weights and 105 protons per spot. We compared the 

resulting differences in proton fluence, final dose, and dose volume histograms (DVH) 

between the conventional and the APS methods. For fair comparisons, identical parameters 

were used in all cases, including the number of particles used for the final dose calculations, 

the parameters in the optimization model in Eq. (1), and those in the optimization algorithm.

The efficiency improvement in our proposed GPU module was expected to come from two 

reasons other than the inherent fast GPU-based MC proton transportation simulation. The 

first was the APS technique that reduced the total simulated proton number in DDC 

calculation. The second was the GPU-based matrix-vector operations. To evaluate the 

efficiency improvements in these two aspects separately, we recorded the computation time 

for the DDC calculation and the matrix-vector multiplications in four different scenarios. In 

all the scenarios, GPU-based MC simulation was employed. The first scenario (S1) was the 

conventional approach to perform the MC-based spot dose calculation and optimization in 

two sequential steps. The matrix-vector operations were performed on the CPU side. The 

second scenario (S2) involved the use of the APS scheme to iteratively perform MC spot 

dose calculations and optimization. The third scenario (S3) was the same as S1 except for 

the matrix-vector operations being ported to the GPU platform. The last scenario (S4) 

represented the proposed approach that enabled MC-based dose calculations with the APS 

scheme. The matrix-vector operations were also performed on the GPU side. The 

computation time reported was for a single NVIDIA GTX Titan GPU.

We also evaluated the capability and efficiency of the proposed MC-based inverse 

optimization system in different planning schemes. We optimized the following cancer 

cases: one prostate, one pancreatic, one lung and one head and neck with SFUD, 3D-IMPT, 

and DET, respectively. SFUD and 3D-IMPT used three beams for the head and neck case 

and two beams for the other cases, while DET employed seven equally spaced beams. We 

did not intend to compare plan quality of these three different treatment techniques. The 

inclusion of different treatment techniques and clinical cases was to show the validity of our 

developments.
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3. Results

3.1 Conventional optimization method

Fig. 2 shows the relative dose error for a prostate cancer 3D-IMPT plan resulting from the 

conventional use of MC with different number of particles per spot for the DDC matrix 

calculation. The relative dose error ε was defined as , 

where d* is the optimized dose distribution with 107 protons per spot. As expected, the 

relative dose error appeared as a monotonically decreasing function of the number of 

protons per spot. At 105 protons per spot the resulting error was 0.33%, a clinically 

acceptable result. Increasing the proton numbers further did not yield a significant error 

reduction. We also compared the DVHs for the optimized plan under 104~106 protons per 

spot as shown in Fig. 3. The DVHs for the cases using 106 and 105 protons per spot were 

very similar to each other. When reducing the particle to 104, clear deviations in DVHs were 

observed. Based on these results, we concluded that 105 protons per spot were sufficient for 

the use of MC in inverse optimization under the conventional framework.

3.2 Proposed optimization method

We then sought to study the use of the developed package for MC-based inverse 

optimization. In the case of prostate cancer 3D-IMPT, the number of protons sampled for 

each spot was found to be closely related to the resulting optimized spot weights by the 

Metropolis biased sampling (Fig. 4). The top panel in Fig. 4 depicts optimized intensities at 

different spots in an energy layer, while the bottom panel shows the sampled particle number 

from these spots. A clear correlation between the two quantities can be observed.

The comparison between the conventional optimization method and the APS method in 

terms of optimized DVH curves for the same prostate case is reported in Fig. 5. The two 

results were visually close to each other and the mean difference between the two set of 

curves was ~0.1%. Because the number of protons per spot varied in the adaptive sampling 

scheme, we used the average number of protons in MC over the total number of spots to 

characterize the computational loads. This number is simply expressed as NMCNiter/Ns, 

where NMC is the user-specified total number of particles each time the APS sampling was 

used. Ns is the number of spots and Niter is the number of iterations for APS. In this example 

case, we set NMC = 5000Ns. With the Niter = 12 iterations needed for the optimization to 

complete, the average number of protons per spot was 6 × 104 with the APS method. In 

contrast, 105 proton spots were required in the conventional method to yield the same 

optimization results.

Again, we plotted the error of the optimized dose distribution as a function of the average 

particle per spot (Fig. 6). d*, the optimized dose distribution with 107 protons per spot in the 

conventional approach, was regarded as the ground truth. We observed that at ~6 × 104 

protons per spot, the relative dose error reached 0.33%, the same level achieved by the 

conventional method with 105 protons per spot. This reduction in required number of 

particles directly led to an improvement in computational efficiency, which will be 

quantified later.
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3.3 Different proton therapy planning techniques

The optimized dose distribution for a representative prostate cancer case with three different 

treatment techniques is illustrated in Fig. 7. The top row displays the dose distribution from 

one of the beams. Subfigures in the bottom row illustrate the final dose distributions from all 

the beams in the three approaches. The target was well covered in all cases (V100%~95%). 

Optimized DVHs for prostate, lung, pancreatic, and head-and-neck cancer cases under the 

three different techniques are displayed in Fig. 8. These studies demonstrated the 

functionality of our proposed MC-based inverse optimization in different setups.

3.4 Efficiency evaluation

The computation time for the prostate cancer 3D-IMPT case with four different scenarios is 

presented in table 1. The total time was slightly higher than the sum of the MC simulation 

time and the vector multiplications time due to an additional cost in other steps, e.g. the 

computation of step length in the Barzilai-Borwein algorithm and data communication 

between CPU and GPU.

In S1, the dose engine of an existing CPU-based IMPT optimization system was simply 

replaced with a GPU-based MC package. As expected, the majority of the computation was 

spent on dose calculations for the DDC matrix. With the GPU-based MC package for spot 

dose calculations, the total MC simulation time for 4243 spots with 105 protons per spot was 

about 397s, showing promise for fast MC-based inverse plan optimization. With the APS 

method, the MC simulation time can be further reduced to about 233s as shown in S2 and 

S4. Both scenarios demonstrated that the APS method used MC more effectively and 

yielded a lower computation time.

For the matrix-vector operations performed on the CPU side, the total time was 48.3s as 

shown in S1. When the operations were ported to the GPU platform, the time was 

substantially decreased to 1.5s in the S3 scenario, showing remarkable acceleration due to 

the GPU-based parallel processing for matrix-vector operations. For S2 and S4, the time for 

matrix-vector operations increased significantly as compared with S1 and S3, respectively, 

because of the increased iteration number in the APS scheme.

In S4 scenario, the computation time for the MC part was reduced, although the increased 

iteration number with APS prolonged the time of the matrix-vector operations as compared 

with S3. The total computation time was the lowest of all the scenarios. It improved 

efficiency by ~37% as compared with S1 and ~30% compared with S3.

The total calculation time for the prostate, pancreas, lung, and head-and-neck cancer cases 

for different treatment techniques with both conventional and APS methods are shown in 

table 2. In all cases, the matrix-vector operations were performed on the GPU side and 

hence, the time presented here are for the S3 and S4 scenarios. The proposed method was 

more efficient than the conventional use of GPU. On average, the computation time was 

reduced by 41.6±15.3%. We also noted that the computation time depended on the problem 

size. The OTV volume was larger for the tested head-and-neck case with a total of 30255 

spots. Optimization by the proposed APS method was completed in ~50 min, as compared to 

the ~87 min needed for the conventional method.
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4. Discussion and Conclusion

We have developed a library that enables a proton inverse optimization system to perform 

MC-based spot dose calculation on GPU. The APS method previously developed by our 

group in the photon IMRT regime was extended to the IMPT problem and modified to adapt 

to proton MC simulations. We tested the developed library in an example inverse 

optimization system with four patient cases. We found that the library could achieve the 

targeted functions to support various proton therapy schemes, e.g. SFUD, 3D-IMPT, and 

DET. Efficiency was 41.6±15.3% higher than in the conventional use of a GPU-based MC 

package for the IMPT optimization problem. On a single NVIDIA GTX Titan GPU card, the 

total computation time (including both dose calculation and optimization times) ranged from 

2 to 50 min depending on the problem size.

The convergence process of the proposed approach was governed by two facts: 1) 

convergence of the inverse optimization algorithm with any given DDC matrix, and 2) 

convergence of MC updates of the DDC matrix. The latter was affected by the parameter 

NMC, the average number of protons per spot at each APS-based DDC matrix calculation, 

and NUpdate, the number of iteration steps after which the DDC update was performed. The 

smaller NUpdate is, the more frequent the DDC is updated. This result is favorable because 

the system will have more chances to distribute the MC particles among the spots under the 

guidance of the solution spot intensity, allowing a more effective use of the expensive MC 

simulations. However, frequently updating the DDC matrix, e.g. under the extreme of 

NUpdate = 1, is not ideal, because the inverse optimization algorithm may take a few steps to 

yield a reliable estimate for the solution. Similarly, an optimal NMC level was also observed. 

A small NMC cannot accurately estimate the DDC matrix in the initial stage of optimization, 

wasting the optimization process performed on an inaccurate DDC matrix. In contrast, 

although a large NMC can immediately yield a favorable result for the DDC matrix once 

optimization begins, it reduces the chances of distributing particles among the spots, making 

the APS scheme less effective. In our simulations, we manually selected these parameters to 

yield an acceptable efficiency. Future studies will be aimed to further improve efficiency by 

fine-tuning these two parameters.

A GPU-based MC dose calculation for IMPT optimization was also reported in a novel 

study recently (Ma et al., 2014). In this approach, a GPU-based MC package was adopted to 

calculate the DDC matrix before plan optimization with a total of 24 GPUs. Because of 

different GPU numbers, optimization algorithms, and problem sizes, the plan optimization 

efficiency cannot be directly compared with our findings. However, we believe that the APS 

technique introduced in this study may also be applied to their system to further improve 

computational efficiency. Meanwhile, a major advantage of using multiple GPUs is the large 

memory space. In our system, only one GPU card was used and the GPU memory was 6 

GB. While this was sufficient for the four cases shown in this paper, the memory limitation 

may restrict our developments from lager cases. For instance, the head and neck cases 

studied in Ma et al. (2014) had bilateral tumors and hence the problem size was larger than 

ours. It would be challenging to handle these large cases in our current setting. The 

computation time for the head and neck case in our study was also longer, due to the 

Li et al. Page 11

Phys Med Biol. Author manuscript; available in PMC 2018 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computation power from only one GPU. Our future work will involve extending the system 

to a multi-GPU platform to enable applications for those large cases.

The APS method is expected to maintain the accuracy of the plan optimization. Along with 

the iteration (alternatively performing MC-based DDC calculations and plan optimization), 

more and more particles were transported for each spot and the statistical uncertainty for all 

the spots were continuously reduced. If the iteration could run indefinitely, the uncertainty of 

all the spot doses would be eventually small enough, and hence the optimization result 

would approach the ground truth one. Therefore, the APS approach always converges to the 

true solution. However, early termination of the iteration could lead to deviations of the 

solution from the truly optimized one. This problem can be mitigated by using a large 

enough particle number per spot per iteration, NMC. This makes the uncertainty in the DDC 

matrix small enough even in the first iteration. In our experiments, we empirically found 

NMC = 5000Ns was a good choice, as demonstrated by the agreement between the optimized 

solution obtained in our APS approach and that in the conventional approach.

The proposed GPU library can also be used for biological optimization problems. The RBE 

of protons depends on various factors such as LET, dose, endpoint, and tissue type. When 

including biological effect in the optimization problem, the objective function will be much 

more complicated than the simple quadratic form in Eq. (1) (Wilkens and Oelfke, 2005; 

Frese et al., 2011; Grassberger et al., 2011; Wedenberg et al., 2013). It has also been 

proposed to optimize physics quantities that are closely related to RBE in optimization, such 

as LET (Romano et al., 2014; Giantsoudi et al., 2013). In these scenarios, since the DDC 

matrix is still needed for the evaluation of physical doses and biological quantities, our 

library with the APS scheme is expected to be applicable and beneficial in terms of 

accelerating computations. It should be also noted that biological optimization relies on 

many not well-known quantities, e.g. alpha and beta of each tissue type. However, since the 

current study focuses on developing a GPU library for MC-based inverse optimization, this 

uncertainty issue is beyond the scope of this paper.

One particular benefit in our framework in terms of efficiency comes from the fact that the 

DDC matrix D is always kept on GPU. The plan optimization process requires the DDC 

matrix. Because the DDC matrix is frequently updated in the APS scheme, a straightforward 

idea is to transfer the updated matrix back to the optimizer. However, this leads to frequent 

transfer of a large amount of data (typically a few GB). In contrast, storing the DDC matrix 

on GPU reduces the amount of transferred data size, as only data transfer of vectors between 

GPU and the optimization system is involved. This approach also allows using GPU to 

perform matrix-vector operations, which is known suitable for the GPU platform.

Metropolis algorithm was used to sample particles from different proton spots. For an 

energy layer E, the problem was to sample particles from a group of spots, such that the 

number of particles from a spot j was approximately proportional to the spot intensity xj. 

Meanwhile, to reduce the memory-writing conflict, it was desired to make concurrently 

sampled particles in different GPU threads from spatially separated locations. This can be 

indeed achieved by using some complicated algorithms. Hence the Metropolis algorithm 

was not absolutely necessary. However, this algorithm was a simple but effective approach to 
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achieve the goal. In our implementation, each GPU thread performed the Metropolis 

sampling independent of each other. The generated spot indices at different threads were 

uncorrelated. This was expected to reduce the chance of having multiple protons from the 

same spot. Moreover, in the simple Metropolis algorithm, all the threads performed the same 

operation with different data, which was favorable because of GPU’s single-instruction 

multiple-data scheme. We would also like to remark that the Metropolis sampling method is 

a statistical approach to achieve the biased sampling. It, however, does not strictly enforce 

that the number of particles is exactly proportional to the spot weight. This fact can be 

observed in Fig. 4. Nonetheless, because the biased sampling was realized, we achieved our 

goal of spending the MC computations on those important spots.
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Figure 1. 
(a) Typical CPU-based IMPT optimization workflow. (b) Structure to integrate MC 

simulation in to the optimization in the conventional approach. (c) Proposed structure with 

the development in the dot box on the right side. The dashed lines indicate data transfer. (d) 

Workflow for of updating D step using APS.
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Figure 2. 
Relative dose error as a function of the particle numbers per spot in the conventional 

optimization method.
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Figure 3. 
DVH curves for the prostate 3D-IMPT case with 104 (dotted), 105 (dashed), and 106 (solid) 

particles per spot with the conventional optimization method.
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Figure 4. 
Optimized proton spot intensities (top) and total sampled particles number (bottom) for the 

spots from one energy layer.
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Figure 5. 
DVH curves for the prostate 3D-IMPT case with 105 particles per spot in the conventional 

method (dashed lines) and 5000 particles per spot in each iteration with 12 iterations in our 

proposed method (solid lines).
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Figure 6. 
Relative dose error as a function of the particle numbers averaged per spot for our proposed 

optimization method. The horizontal lines correspond to the results for the conventional 

method with 105 protons per spot.
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Figure 7. 
Dose distribution for three different IMPT techniques from one beam (top row) and all 

beams (bottom row). Beam directions are indicated by the red arrows.
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Figure 8. 
DVH curves for prostate (top-left), pancreas (top-right), lung (bottom-left) and head-and-

neck (bottom-right) cancer cases with three different planning techniques, SFUD (dotted 

lines), 3D-IMPT (dashed lines), and DET (solid lines).
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Table 1

Calculation time (in seconds) for each component and total computation time for the prostate 3D-IMPT case. 

MVO stands for matrix-vector operations.

S1. Conventional
use of MC with

CPU-MVO

S2. APS with
CPU-MVO

S3. Conventional
use of MC with

GPU-MVO

S4. APS
with GPU-MVO

MC 396.9 231.9 397.6 233.5

Dx and DTy 48.3 701.8 1.5 27.6

Total time 450.0 962.4 403.8 284.5
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