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Abstract

Background—We control the movements of our body and limbs through our muscles. However, 

the forces produced by our muscles depend unpredictably on the commands sent to them. This 

uncertainty has two sources: irreducible noise in the motor system's processes (i.e. motor noise) 

and variability in the relationship between muscle commands and muscle outputs (i.e. model 

uncertainty). Any controller, neural or artificial, benefits from estimating these uncertainties when 

choosing commands.

Methods—To examine these benefits we used an experimental preparation of the rat hindlimb to 

electrically stimulate muscles and measure the resulting isometric forces. We compare a functional 

electric stimulation (FES) controller that represents and compensates for uncertainty in muscle 

forces with a standard FES controller that neglects uncertainty.

Results—Accounting for uncertainty substantially increased the precision of force control.

Conclusion—Our work demonstrates the theoretical and practical benefits of representing 

muscle uncertainty when computing muscle commands.

Significance—The findings are relevant beyond FES as they highlight the benefits of estimating 

statistical properties of muscles for both artificial controllers and the nervous system.
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I. Introduction

Muscle forces can be difficult to predict. For a given command, the force produced by a 

muscle depends on a large number of variables distributed across many spatial and temporal 

scales [1]. While the nervous system clearly has knowledge of some of these variables (e.g. 

muscle length, velocity and force), other aspects of muscle dynamics may be much more 

difficult to measure and estimate (e.g. the detailed dynamics of molecules at the level of 

individual myofibrils and sarcomeres). With knowledge of those variables the nervous 

system has access to, the relationship between commands and muscle forces can be 

estimated and used to predict, or model, force generation. This relationship itself cannot be 

estimated exactly, hence the presence of model uncertainty. The remaining unaccounted 

aspects of muscle dynamics will result in what appears to be random fluctuations in force, 

which can be attributed to motor noise. The effects of model uncertainty and motor noise on 

muscle force can be mitigated but never altogether eliminated. Thus a central problem for 

the nervous system, or any artificial controller, is how to command muscles effectively in the 

presence of uncertainty.

Many studies use computational models to understand how the nervous system commands 

muscles when executing behavior. These studies investigate issues ranging from how groups 

of muscles are coordinated [2-6], to the adaptation of muscle coordination after injury or 

altered dynamics [7, 8], to the optimality of muscle commands [9-11]. However, most of 

these studies neglect noise and uncertainty and rely on deterministic descriptions of control. 

While some studies do model noise in the command, they rely on assumed accurate models 

of muscles, neglecting model uncertainty [10, 12-15]. Thus the implications of these two 

aspects of uncertainty on neural control remain poorly understood.

These two aspects of uncertainty in muscle force production are also potentially important in 

studies that directly stimulate muscle. The chief clinical application is functional electrical 

stimulation (FES). Here the goal is to replace weak or absent muscle commands with 

artificial stimulations that restore impaired behaviors, e.g. toe drag in stroke/multiple 

sclerosis [16, 17], or command paralyzed limbs with brain-machine interfaces [18-23]. In 

this application, as in the previous studies, some aspects of muscle force dynamics can 

usually be estimated. However, the force expected from stimulating a muscle often remains 

very inaccurate, both because models are imperfectly estimated and because of unaccounted 

muscle dynamics. Yet these uncertainties are usually neglected when designing FES 

controllers.

In this study, we examine the issues of uncertainty in muscle force production in the context 

of control. We present a data-driven, probabilistic model of force production, explicitly 

representing both motor noise and model uncertainty. We validate these ideas using a 

clinically relevant animal FES model. We find that the forces produced using our 

feedforward probabilistic controller are substantially more accurate than standard 

deterministic FES controllers. The results of this study demonstrate the benefits of 

estimating muscle uncertainty to enable precise control.
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II. Materials and Methods

We first present a toy model analysis illustrating the methods and concepts we used in our 

approach. We then apply these same methods to an experimental situation, validating their 

applicability to the clinical application of FES.

A. Muscle Models

For our simulated experiments as well as the experimental modeling, we consider steady 

state, isometric force production. We assume each muscle's force production varies with 

activation level as described by the conventional sigmoidal recruitment curve,

(1)

where u is the activation level, α, β, δ, γ are model parameters that describe the recruitment 

curve's overall shape and n is a noise term (a random variable drawn from some 

distribution). The noise term accounts for errors in capturing the true functional relationship 

and any unmodeled dynamics that result in trial-to-trial variability. Data pairs consisting of 

activation levels and the measured forces, {ui, fi} are used to fit these model parameters.

Typically, data is used to find point estimates for the model parameters such that some 

“best” fit is achieved. For instance, α, β, δ, and γ may be chosen to minimize the sum of 

squared errors between the model predictions and the data, the so-called least-squares 

solution. The residuals of this fit can be used to approximate the noise term (motor noise), or 

as is often done, neglected all together. Using these point estimates, and neglecting the 

motor noise, the muscle model is deterministic and models the average muscle force for a 

given value of activation, u.

Under a full statistical treatment of the model, we recognize that many model parameter 

values may be equally likely given a particular set of observations. Therefore, rather than 

find point estimates for α, β, δ, and γ, we seek the distributions over their values induced by 

our data, i.e. P(α, β, δ, γ|{ui, fi}). This distribution characterizes our confidence in the 

model parameters, i.e. the model uncertainty. Similarly, we can characterize the motor noise, 

the remaining variability in the data that the model parameters cannot account for. Then, 

rather than find a deterministic function for the force value, we now describe the probability 

of forces by integrating out over all the model parameters. The end result is a posterior 

distribution of possible muscle forces given the activation level and our experimental data.

Since our model is nonlinear in its parameters, a closed form representation for these 

posterior distributions is intractable. We approximate these distributions by implementing a 

Markov Chain Monte Carlo (MCMC) sampling technique using software written for this 

purpose [24]. Briefly, for each muscle's data, “samples” are drawn, where each sample is a 

set of muscle parameters described in equation 1. 10,000 samples were drawn for a burn-in 

period, effectively settling to a location in parameter space where the values accurately 

describe the data. Thereafter each 50th sample was stored, collecting 5,000 samples in total 
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(see e.g., [25, 26] for a review of this approach). From these samples the median values and 

standard deviations were computed for all parameter values.

The MCMC algorithm returns many sample recruitment curves representative of the 

posterior distribution (given our data), similar to a boot-strapping technique. With these 

samples we can then compute the mode, or most probable recruitment curve, which also 

serves as a deterministic model. In addition we computed the standard deviation of the curve 

as a function of the level. This process was repeated for each individual muscle, yielding 

approximations to the posterior distribution of forces conditioned on the activation level and 

the data.

The above procedures were used to compute both deterministic and probabilistic muscle 

models of force (for both the toy models and the experimental models). In the animal 

experiments isometric muscle forces were modeled as vectors in a plane. Therefore, for each 

muscle, the direction of its force vector was assumed constant across stimulation levels and 

obtained by averaging over that muscle's data [27]. The total force output of the limb was 

then modeled as the vector sum of the individual muscles.

B. Controllers

To compute activation levels for our deterministic models we minimized the error between 

the desired force and our model-predicted force, while penalizing large activations. Since 

many activations can produce the same desired force, penalizing unnecessarily large values 

sidesteps this redundancy. This approach also has the practical advantage of minimizing 

metabolic costs and muscle fatigue. We note that the relationship between a muscle's 

command and its metabolic cost, or any other number of characteristics such as fatigue and 

noise, are difficult to describe. Thus we take an agnostic approach, and merely assume that 

commands that produce the same output with less activation are desirable. As is standard, 

we quantified this trade-off with a quadratic cost function and used the minimizing 

commands as our activations.

(2)

where uo is the optimal command, F(u) is the force produced by command u, Fd is the 

desired force, and Φ and R are weights penalizing errors from the desired force and size of 

command, respectively. In this general form all the terms are matrices appropriate for 

deriving multi-dimensional activations.

To compute activations for our probabilistic models we minimized the same cost function, 

but, since we consider the distribution of forces that might be produced by an activation 

pattern, now we must instead minimize its expected value. That is, we found activations 

according to the rule,

(3)
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Which, after rearranging terms is,

(4)

where Σ is the covariance of the force vector, which is a function of the motor noise, model 

uncertainty and activation. The distribution of forces produced by an activation pattern was 

determined using the posterior distributions estimated by the MCMC described above.

To compute activations for the controllers that maximized and minimized uncertainty, we 

used the following cost,

subject to the constraint, F(u)=Fd.

For our simulated muscles, F(u) is the scalar sum of the individual muscle outputs, Φ = 100, 

and R is the identity matrix. For the experiments, Φ = 1e10, and R = 10 in all cost functions 

described above. To find optimal activations, these cost functions were minimized using 

software written for Matlab.

To quantify uncertainty we operationally define it as the mean squared expected error in 

force, which in close approximation is equal to the trace of the covariance.

F̂ = E[F(u)] is the mean force value, (F̂ – Fd) and is the bias error, which in practice was 

several orders of magnitude smaller than the trace of the covariance.

Finally, we note that for multivariate Gaussian variables, the principle axes of the confidence 

ellipse are the eigenvectors of the covariance matrix. Their size is found by scaling the 

eigenvalues by according to a Chi-squared distribution. If the variance in both Fx and Fy is 

equivalent and σ2, the 95% confidence ellipse is a circle with radius (χ2
2(0.95)* σ2)1/2.

C. Experimental Methods

An experimental test bed designed specifically for examining FES systems was used to 

analyze different controllers on a rat model. All procedures were conducted under protocols 

approved by Northwestern University's Animal Care and Use Committee. Details of the 

experimental preparation can be found elsewhere [27]. Briefly, seven female, Sprague 

Dawley rats were anesthetized (80mg/kg ketamine and 10mg/kg Xylazine) and implanted 

with stimulating electrodes (stainless steel, 1-3mm exposure) in 9-13 muscles in their left 

hindlimb. Subcutaneously implanted plates at the back and belly served as return electrodes. 

We have shown in our previous work that this configuration of electrodes minimizes current 

spread and allows for isolated stimulation of implanted muscles. The muscles used for 
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stimulation typically included biceps femoris anterior (BFa) and posterior (BFp), 

semitendinosus (ST), semimembranosus (SM), adductor magnus (AM) and longus (AL; 

activated together), vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF), 

iliopsoas (IP), gracilis (anterior and posterior heads activated together), and caudofemoralis 

(CF). Each animal's hip was immobilized and ankle fixed to a 6-axis force transducer with 

the use of bone screws and surgical posts. In this orientation the hip joint, knee and ankle 

were approximately in the same, sagittal plane and remained isometric throughout the 

experiment. Using custom software written in Matlab, stimulations were systematically 

delivered to the limb's implanted muscles (FNS-16 Multi-Channel Stimulator, CWE, Inc.) to 

gather data necessary for estimating recruitment curves. Muscles were stimulated with a 

75Hz, 0.1msec biphasic pulse train of varying current, typically between 0.05mA and 4mA 

for 1.5 seconds. We waited at least 1 minute between stimulation of the same muscle in 

order to minimize effects of fatigue. Experiments were conducted until the health of the 

animal degraded, typically after about 6 hours. The animal was then euthanized using a 1ml 

intraperitoneal injection of Euthasol followed by a bilateral thoracotomy.

For each implanted muscle, force data was recorded at a series of stimulation levels. Forces 

elicited from each muscle generally increased monotonically with the stimulus level and had 

a consistent direction. Due to the animal's posture, as well as the muscles chosen, elicited 

forces were strongest within the sagittal plane of the limb, although the same analyses 

described here can be readily extended to handle three-dimensional forces. Forces elicited 

during co-stimulation of multiple muscles were approximately equivalent to the vector sum 

of their individual forces (see [27]). As a result, we could model the ankle forces as the 

vector sum of the individual muscle models.

To gather the data necessary to build models of force production, the maximum isometric 

forces and corresponding plateau stimulation values were determined for each muscle. Then 

for each muscle, we swept through a series of 5 activation levels, starting at baseline levels 

and moving through plateau levels, measuring the resulting isometric forces. In order to 

minimize muscle fatigue, we cycled through all muscles at their first stimulation level 

waiting one minute between each muscle before moving to the next stimulation for each 

muscle. With 9-13 muscles implanted for each animal, this allowed for adequate recovery 

time between stimulations of the same muscle. When this process was complete, we had a 

data set appropriate for building our force production models (see Fig 3 for an example 

animal's data). For each activation level, we used the steady-state forces to compute all 

muscle recruitment parameters (see Methods and [27]).

We repeated this data collection approximately every 2 hours to redefine each muscle's 

recruitment curve. As the number of samples increases, the amount of model uncertainty 

could decrease. However, a large number of stimulations is often impractical in clinical 

scenarios such as FES and, therefore, we restricted ourselves to 5 samples for each muscle. 

Each experiment was terminated when we noticed a significant reduction in force from the 

majority of muscles.
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III. Results

A. Model Study

Two distinct factors contribute to uncertainty in muscle force production. Model uncertainty 

accounts for the uncertainty in the explicitly modeled relationship between muscle 

commands and muscle outputs. Motor noise refers to muscle properties that are not 

accounted for by our model and that therefore appear as random “noise” in muscle forces. 

Neglecting either of these inherent uncertainties a controller eliminates the means to actively 

reduce them and in turn accepts potentially degraded performance. To illustrate this point, 

we begin by presenting results from a toy model system.

Suppose we wish to characterize the force output of a muscle whose individual properties 

we initially do not know. To estimate these properties we collect data pairs consisting of 

commands (stimulation to the muscle) and the resulting forces (Fig 1A, black dots). For 

each stimulation level we measure the resulting force output multiple times. Further suppose 

that both the average force and its variability increases with increasing stimulation levels -- a 

common phenomenon classified as signal-dependent noise.

Based on the collected data we can build a statistical representation of the unknown model 

parameters and the overall force output (see Materials and Methods). This representation 

characterizes a probabilistic relationship between stimulation levels and evoked forces, 

whereby each stimulation induces a distribution over possible forces. With this distribution 

we can identify the most likely (ML) forces for each stimulation level (Fig 1A solid line); a 

curve that is equivalent to what we would obtain with a conventional deterministic approach 

(e.g. least squares regression). However, unlike the deterministic approach, we also 

characterize two sources of uncertainty: our uncertainty in the model and the additional 

uncertainty due to motor noise (dark and lightly shaded regions, respectively).

To illustrate the dependence of model uncertainty on data collection, consider what happens 

if we used stimulation levels that provide poor information about the recruitment curve 

(sampling responses around baseline and plateau portions of the recruitment curve, Fig 1B). 

We find that our uncertainty in both baseline and plateau force levels is relatively low and 

constant, while our uncertainty in intermediate force levels (and the corresponding model 

parameters) is high. We could ignore this uncertainty and merely rely on our ML estimates 

(as is conventionally done), but the forces we predict are likely to be inaccurate.

Neglecting these sources of uncertainty can lead to degraded motor control. Suppose we 

wish to produce a force using two new muscles, characterized by recruitment curves 

illustrated in Figure 2A,B. With Muscle 1, the recorded forces are very consistent at each 

stimulation level, and as the stimulation level increases the force output gradually climbs and 

then plateaus (Fig 2A, block dots). Muscle 2 produces larger forces than Muscle 1, but the 

recorded forces are more variable (Fig 2B, black dots), this variability increases with 

stimulation, and data is not available at intermediate force levels.

Consider first a deterministic controller that neglects muscle uncertainty (see Materials and 

Methods). The result is a set of commands that have small magnitude and produce a 

Berniker et al. Page 7

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



negligibly small average force error (i.e. a small bias force error). Since Muscle 2 produces 

larger forces for the same level of stimulation, it is preferentially used. Note in particular that 

Muscle 1 is only used when the force output of Muscle 2 has plateaued (Fig 2C, D). 

Although this example only considers control of force magnitude, this same approach can be 

used with minor variations to compute commands for multiple muscles acting in multiple 

dimensions.

Consider now the performance of a controller that relies on our probabilistic model of 

muscle force production (see Materials and Methods). Unlike the approach above, 

stimulations that produce uncertain forces are penalized since they decrease performance 

accuracy. Again the controller produces negligibly small average force errors but uses a very 

different pattern of commands (Fig 2E). Now Muscle 1, with its relatively small uncertainty, 

is preferentially used. Muscle 2, with its relatively large uncertainty at intermediate and 

plateau force values, is used in what is essentially “bang-bang” control: at low stimulation 

levels where its forces are relatively certain, or at large levels when Muscle 1 can no longer 

produce increasing forces (Fig 2F).

The deterministic and probabilistic treatments of our data lead to different motor commands 

for the same desired motor output. The deterministic controller finds commands that use 

little motor effort, but produces forces whose accuracy is unknown and unreliable. The 

probabilistic controller produces forces that are more accurate and less uncertain (Fig 2, 

compare error bars in D & F), but relies on a relative increase in motor effort. This toy 

problem illustrates how, by incorporating information about the uncertainty in motor output, 

a probabilistic controller can improve motor performance.

B. Experimental evaluation of a probabilistic controller

To evaluate the performance of a probabilistic controller, we utilized an FES test bed using 

the rat hindlimb as a model system (see Materials and Methods and [27]). We use the same 

approach presented above with the simulated system. First we use experimental data to build 

probabilistic models of individual muscles. Then we evaluate the expected performance of 

deterministic and probabilistic controllers side-by-side, focusing on the uncertainty in the 

resulting forces and the accompanying command effort. We then directly test whether these 

analyses improve FES controller performance by controlling forces in arbitrary directions 

and magnitudes in the rat hindlimb.

Just as with the simulated muscles, the experimentally measured forces were noisy and 

varied from one stimulation to the next. Combining data from many stimulation trials, we 

built a probabilistic model of each muscle, whereby arbitrary activation values evoke a 

planar force vector with a known orientation but a distribution of possible magnitudes (see 

Fig 3A). Using these models we could then compute the expected distributions of force 

vectors for any combination of muscle commands (Fig 3B). This force data also determined 

the range of possible forces for each animal; i.e. the feasible force space (FFS) describing 

the two-dimensional bounding region of all possible force vectors [28]. Each animal's FFS 

served as a workspace for eliciting forces and comparing controllers.
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As with our toy model system, we compared the expected performance of the two different 

controllers by examining their commands and force distributions. For each animal, the 

controllers were used to find a set of commands (9-13 for each animal) for a grid of target 

force vectors covering the entire FFS (Fig 4A). These commands determined a distribution 

of forces, which we characterized with a mean error, or bias, and a covariance matrix, 

describing the spread or uncertainty in forces. Just as with the toy system, both controllers 

predict forces with small biases. Averaging these biases across each animal's FFS and then 

across animals, the mean bias for the probabilistic controller was 0.015N and that of the 

deterministic controller was 0.004N (a significant difference, paired t-test, p < 0.001). These 

biases were small relative to the range of desired forces and their expected uncertainty (see 

below). Thus both controllers predict accurate forces with small average errors relative to the 

range of force values available.

Since both controllers predicted accurate forces on average, our next goal was to quantify 

the uncertainty expected in each controller's force production; this describes how broad the 

spread of possible force errors were. We defined the uncertainty of a force vector by the 

trace of its covariance matrix. This very closely approximates the mean squared expected 

force error (see Materials and Methods). The uncertainty varied across the workspace of the 

hindlimb differently for each animal (see Fig 4A for a typical animal), likely due to details 

of that animal's muscles and the stimulating electrode placement. However, across most 

animals the uncertainty associated with small forces was relatively small (the region around 

the depicted axis in Fig 4A) since weak muscles, and small commands, often resulted in 

consistent and predictable forces. Note too that this variation in uncertainty across an 

animal's FFS verifies the need to treat motor noise as signal-dependent [10, 11, 29].

To compare the controllers in terms of their uncertainty, we computed the average 

uncertainty across the entire FFS. Across 7 animals there was a statistically significant 

reduction in this average uncertainty when using the probabilistic controller (0.29N2, paired 

t-test, p < 0.001, Fig 4B). This demonstrated that the probabilistic approach, taking into 

account muscle uncertainties in the form of motor noise and model uncertainty, could 

generate more reliable forces.

We then examined whether the benefits of the probabilistic controller came at the expense of 

increased motor commands. For example, the probabilistic controller may have used a large 

number of weak but precise muscles, relying on a large net command signal to reduce 

uncertainty. For each force value in the FFS, the magnitude of the corresponding command 

was computed (Fig 5A). As might be expected, for small force values (near the axis) the 

commands were relatively small, and progressively increased with increasingly large forces. 

Interestingly, we found that the decreased uncertainty of the probabilistic controller was not 

the result of an increased amount of control effort. Averaging across each animal's FFS there 

was actually a small but significant reduction in command strength using the probabilistic 

controller (paired t-test, p < 0.001, Fig 5B).

The fact that the probabilistic controllers used slightly lower control effort might seem 

counterintuitive. The deterministic controller balances two terms, the effort of a command 

and that command's resulting force error. Thus a small but non-zero bias error in the 
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commanded force can be accepted if the command effort is reduced. The probabilistic 

controller balances not only these two terms, but also the force's uncertainty. This controller 

therefore accepts a relatively larger non-zero bias error if both the command effort and 

uncertainty in the forces are reduced; precisely what was found. However, these biases in 

forces were small relative to their uncertainty. For example, for the deterministic controller 

the across-animal average uncertainty was ~0.9 N2, (see Fig 4B) suggesting that if the 

variance in Fx and Fy was on average 0.45 N2 (assuming the x and y forces contribute 

equally to the uncertainty), then the 95% confidence interval for force errors is contained 

within a radius of 1.64 Newtons (see Materials and Methods). Yet the across-animal average 

bias was only 0.004 Newtons.

The specific results thus far are based on controllers that optimize a particular choice of 

controller gains for balancing effort and accuracy. To demonstrate that these reductions in 

uncertainty were not the serendipitous outcome of our specific cost function, we performed 

an additional analysis. We constrained the probabilistic controller to be perfectly accurate, 

with zero bias error in target forces, while maximizing or minimizing uncertainty (see 

Materials and Methods). Not surprisingly, the deterministic controller's uncertainty (and in 

turn mean squared expected error) was between these two extremes (Fig 4C). The command 

strength however, was lower than either extreme (Fig 5C). Again, as mentioned above this is 

an outcome of balancing biases (mean errors) in the target force with the command effort. 

Finding this same balance, our probabilistic controller found forces with less than the 

minimal uncertainty, with less command effort (Fig 4B, 5B). Regardless, these two extreme 

controllers demonstrated that an average reduction in uncertainty of 0.34 N2 was available. 

This serves as further evidence that reducing muscle force uncertainty can be achieved by 

cleverly exploiting the redundancies of the muscles rather than relying on large activations.

The results presented above demonstrate that a probabilistic controller is expected to 

produce more accurate forces than standard deterministic controllers. To test this possibility 

directly, we performed a series of FES experiments. For each animal a series of target forces 

were arbitrarily chosen throughout its FFS. The corresponding commands were then 

obtained from our probabilistic and deterministic controllers. For each target force, we 

stimulated the hindlimb muscles multiple times with each of the two controllers’ commands 

in a randomized order (see Fig 6A, B for examples). The forces obtained using the 

probabilistic commands were on average closer to the target values, both within each animal 

(data not shown) and across animals (Fig 6C). Across animals the average reduction in error 

was 0.06N (paired t-test, p < 0.001). As shown previously [27], we found that noise in forces 

was strongly correlated with command size. Therefore we also computed a normalized error 

to control for this effect, but the results were similar (Fig 6C, paired t-test, p < 0.001). The 

results demonstrate that a probabilistic controller that models both motor noise and model 

uncertainty outperforms a controller that ignores it.

IV. Discussion

There are two categories of uncertainty in muscle force production, model uncertainty and 

motor noise. Ignoring either of these uncertainties can harm controller performance and is 

generally suboptimal. Explicitly representing both we built probabilistic models using 
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experimentally gathered force data. A model-based comparison across each animal's feasible 

force space revealed the degree to which the probabilistic approach could reduce uncertainty 

compared with a standard deterministic controller, and that this reduction would not come at 

the cost of larger commands. Finally, we found that experimentally produced forces using 

our probabilistic controller were more accurate. The results emphasize the benefits of 

representing both kinds of uncertainty, information that may be crucial for artificial 

controllers and the nervous system to effectively produce motor commands.

Our experimental results in force production constitute a proof of concept for FES systems. 

In contrast with our approach, many recent FES studies use deterministic controllers and 

rely heavily on feedback commands to achieve good performance [30-32]. Some FES 

studies attempt to improve performance by incorporating knowledge about motor noise and 

designing robust or adaptive controllers [33-36]. Still others have attempted to optimize 

stimulation parameters for improved performance [37]. However, with a fully probabilistic 

treatment that characterizes motor noise and model uncertainty a controller can achieve its 

maximum potential. Our approach has characterized this potential mathematically and 

validated it experimentally in the context of an application that approximates the relevant 

clinical problem.

Analyzing muscles in terms of the uncertainty they produce in forces, and ultimately 

behaviors, is potentially a valuable new tool. For example, recent studies examining the 

contribution of muscles to behavior rank muscles in terms of their robustness, defined by 

how their absence would reduce the limb's possible forces, and the feasible force space [2, 

38]. Other factors such as the metabolic cost of individual muscles should also play a factor 

in recruitment. Our work complements these studies by providing a new functional measure 

for quantifying muscles contributions to behavior in terms of the resulting uncertainty. 

Future work could pursue this topic further, illuminating how muscle uncertainty may 

influence their recruitment.

In this study we focused on how to optimally generate commands when relying only on a 

model; that is, how to compute feedforward commands. Of course information about on-

going performance, i.e. feedback information, can be used to improve commands. Many 

studies on motor behavior search for the relative contributions and importance of 

feedforward and feedback commands [39, 40]. For example, an important question is how 

accurate the motor system is in the absence of feedback [41, 42] and how accurately 

behaviors can be planned [34, 43, 44]. In this regard the analysis we present here defines the 

upper bounds on motor performance when the nervous system relies on strictly feedforward 

commands, and how important feedback control must be when further increases in 

performance are needed.

A related matter is whether the performance benefits of this approach warrant the increased 

computational demands. For example, in our experimental comparison of FES controllers 

we found a modest reduction in error as compared to the analyses illustrated in Figures 4 

and 5. Those analyses used data pooled over multiple sessions of recruitment curve 

measurements. Owing to the fact that recruitment curves varied over time, this data set 

predicted relatively large variability in muscle responses and there was a correspondingly 
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large benefit to using the probabilistic controller. In the experimental control evaluation, 

however, we used the most recent recruitment curve for each muscle, so that the muscle 

responses produced during control more closely matched the predicted responses. Thus in 

situations where recruitment curves can be measured quickly and frequently relative to how 

quickly recruitment curves vary, this probabilistic approach may not offer significant 

improvements.

As a first step, we have examined a controller for generating isometric forces; an obvious 

FES application where motor uncertainty can play a key role. This approach, by design, 

bypassed the muscle's dynamical properties and the inertial mechanics of the limb. To 

examine more sophisticated controllers, for either clinical applications or neuroscience, 

future work could include additional independent variables (e.g., initial limb configuration, 

muscle length and velocity) to describe the muscle force distributions. Additionally, while 

we choose to penalize command strength and target force error, alternative tasks or 

controller designs might require altogether different objectives to be optimized. All these 

changes, though computationally intensive, are conceptually equivalent to the approach we 

have presented here.

Finally, it is worth noting that there are many hurdles that must be overcome before making 

the transition from a successful FES application in a rat model, to a human clinical 

population. As with the many other studies that examine FES our hope is that the continued 

work on animal models, along with new preliminary work in humans [45] will ultimately 

justify these new approaches in patients.

V. Conclusion

We have demonstrated the theoretical benefits of representing muscle uncertainty when 

computing muscle commands. These benefits were then verified experimentally in an FES 

application. We propose that the nervous system, when producing commands, may solve the 

same fundamental problem: how to build probabilistic representations of muscle output and 

choose commands that maximize the probability of a successful outcome. Future studies can 

examine the extent to which this uncertainty is represented and how it is used when 

producing commands. How this information is encoded may be found via imaging 

techniques [46], electrophysiology [47] or perhaps in the muscle commands themselves. 

Regardless, if the nervous system is acting rationally [48] these uncertainties will influence 

its behavior.
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Fig. 1. 
Two fundamental sources of noise in muscle force. A) Data collected for Muscle 1 is used to 

find a maximum likelihood estimate of the recruitment curve along with a distribution of 

possible forces. Note how the signal-dependent noise induces greater uncertainty with 

increasing activation. B) Data collected for Muscle 2 and its distribution. Due to the limited 

data, there is a large amount of uncertainty in the intermediate force values.
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Fig. 2. 
Control of two simulated muscles. In all panels, Muscle 1 is denoted in grey, Muscle 2 in 

magenta. A) Data collected for Muscle 1 is used to find a maximum likelihood estimate of 

the recruitment curve along with a distribution of possible forces. B) Data collected for 

Muscle 2 is used to find the same distribution, though the signal-dependent noise induces 

greater uncertainty. C) A deterministic controller finds commands for the two muscles that 

achieve desired forces while minimizing the command cost. D) Using these commands we 

compute the expected forces and the uncertainty associated with them. E), F) A probabilistic 

controller solves the same problem but uses different commands to achieve reduced 

uncertainty.
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Fig. 3. 
A) Depiction of experimental setup and force vector orientations. All forces were measured 

in the animal's sagittal plane. For illustrative purposes hypothetical force vectors are shown 

for adductor magnus (AM) and vastus medialis (VM). The orientation of each muscle's force 

vector is an angle measured relative to horizontal. B) Experimentally obtained recruitment 

curves for rectus adductor magnus and vastus medialis illustrate the variability in predicted 

forces. Displayed are the maximum likelihood values (solid lines), model uncertainty (+/−1 

standard deviation) and motor noise (+/−1 standard deviation). C) An example force vector, 

demonstrating how individual muscle forces and uncertainty (depicted at the activation 

levels marked with the green and magenta arrows from B) are used to make predictions for 

forces resultant force prediction.
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Fig. 4. 
Comparison of the controller's expected force uncertainty. A) The uncertainty in force 

production across an example animal's FFS using deterministic and probabilistic controllers. 

This uncertainty is quantified via the trace of a force's covariance matrix. B) Uncertainty is 

averaged across each animal's FFS and then averaged across animals for the deterministic 

(grey) and probabilistic (light blue) controllers. C) The across-animal averages for 

controllers that maximize (red) and minimize (blue) uncertainty, respectively.
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Fig. 5. 
Comparison of the controller's commands. A) The command magnitudes across an example 

animal's FFS using deterministic and probabilistic controllers. The color coding depicts the 

Euclidean norm of each force's command. B) Command magnitudes are averaged across 

each animal's FFS and then averaged across animals for the deterministic (grey) and 

probabilistic (light blue) controllers. C) The across-animal averages for controllers that 

maximize (red) and minimize (blue) uncertainty, respectively.
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Fig. 6. 
Experimental validation of controllers. A), B) Example force vectors created with 

deterministic (grey) and probabilistic (light blue) controllers. Target force vectors are 

displayed in black. C) Across animal results in terms of Euclidean error (left) and 

normalized Euclidean error (right).
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