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Abstract

The goals of this paper are to 1) examine the current practices of diagnostics, prognostics, and 

maintenance employed by United States (U.S.) manufacturers to achieve productivity and quality 

targets and 2) to understand the present level of maintenance technologies and strategies that are 

being incorporated into these practices. A study is performed to contrast the impact of various 

industry-specific factors on the effectiveness and profitability of the implementation of prognostics 

and health management technologies, and maintenance strategies using both surveys and case 

studies on a sample of U.S. manufacturing firms ranging from small to mid-sized enterprises 

(SMEs) to large-sized manufacturing enterprises in various industries. The results obtained 

provide important insights on the different impacts of specific factors on the successful adoption of 

these technologies between SMEs and large manufacturing enterprises. The varying degrees of 

success with respect to current maintenance programs highlight the opportunity for larger 

manufacturers to improve maintenance practices and consider the use of advanced prognostics and 

health management (PHM) technology. This paper also provides the existing gaps, barriers, future 

trends, and roadmaps for manufacturing PHM technology and maintenance strategy.

1. Introduction

1.1. Overview

Reducing waste, improving equipment up-time, and optimizing product quality are three 

metrics important to manufacturing enterprises. Organizations have developed methods and 

metrics to measure their performance with respect to waste reduction, uptime, and quality to 

quantify their manufacturing performance. The most widely adopted metric by 

manufacturers is the Overall Equipment Effectiveness (OEE), which is used to evaluate the 

utilization rate or efficiency of factory equipment (Nakajima, 1988; Liker, 2014). Equipment 
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and process health states are highly correlated to OEE, thus there is growing interest in 

developing intelligent maintenance systems to improve OEE, and predict and prevent 

unexpected equipment and process downtime.

The various maintenance strategies that manufacturers have deployed are in a constant state 

of evolution given the increasing complexity of manufacturing equipment and processes. 

Manufacturers use a combination of reactive maintenance (RM), preventive maintenance 

(PM), predictive maintenance (PdM), and proactive maintenance (PaM) to maintain their 

fleet of assets, in which the maintenance strategy for a given asset depends on the 

complexity of the machine and the impact an unexpected failure has on that machine. With 

improvements of Internet of things (IoT) augmented with computing power, sensors, 

network communication, and machine automation, real-time diagnostic and prognostic 

technologies become emerging research topics in various manufacturing sectors (Coble, et 

al., 2015; Samah et al., 2015; Lee et al., 2011). Despite the increased interest in prognostics 

and more advanced maintenance strategies, manufacturers lack a standard process and 

methodology for using prognostic and health management (PHM) technologies on the shop 

floor.

It is important to understand and define a common set of performance metrics for 

productivity, maintenance, and product quality that are being used by manufacturers to 

develop a methodology and standard for PHM technology for manufacturing. These metrics 

can quantitatively evaluate the effectiveness of diagnostic, prognostic, and intelligent 

maintenance activities when compared with other maintenance strategies. In addition, it is 

important to understand the best practices in industry for achieving their maintenance and 

productivity goals. Surveying various manufacturers can help determine these best practices 

as well as which strategies are less effective.

1.2. Research Objectives

The main objectives of this pilot study are the following:

• Identify the common metrics used by the manufacturing industry to assess 

their productivity, maintenance and reliability, and product quality.

• Investigate the best practices that manufacturers are using to improve their 

productivity, lower their maintenance costs, and improve their product 

quality.

• Assess the current states of the practice in the manufacturing sector with 

respect to diagnostic and prognostic activities, and review some past 

successes and failures.

Sections 3 and 4 present the outcomes of the aforementioned objectives in detail.

The information from the survey-based study will provide a strong foundation for 

developing a set of standards and a methodology for deploying intelligent maintenance 

systems technology across manufacturing applications. The results from this study could 

determine several important aspects, including 1) whether there is a statistical difference 

between the number of successful implementations of diagnostic activities for large 
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manufacturers when compared with small to medium size enterprises (SME) manufacturers 

and 2) developing an understanding of the common challenges for manufacturers for 

implementing prognostic and diagnostic technology. The reporting of these key findings and 

statistical results would be imperative for understanding the current status and needs of the 

manufacturing industry. These results would be later used to develop appropriate standards 

for prognostic and diagnostic activities that address the identified needs in this survey.

1.3. State-of-the-Art Research on Maintenance Strategy and PHM

1.3.1. Maintenance Strategy—Manufacturers employ a range of maintenance strategies 

to reduce waste, maximize equipment up-time, and optimize product quality. Maintenance 

strategies are also determined based upon available resources, including technology and 

personnel. Resource availability/limitations can ultimately be traced back to available 

finances. Manufacturers are seeking to optimize the amount of money they invest in their 

equipment, technology, and workforce to maximize their profit. Part of this optimization 

problem is to determine the most appropriate maintenance strategy for the many 

components, machines, work cells, and lines within the factory. Selecting the appropriate 

maintenance strategy(ies) is non-trivial where each strategy is unique with varying 

characteristics.

Table 1 presents the evolution and overview of maintenance strategy. Each maintenance 

strategy (or practice) has a variety of characteristics. They are described as:

• Maintenance Interval – The determination of when maintenance is 

conducted

• Object – The primary areas of focus of a particular maintenance strategy

• Planning & Scheduling – Strategy in which maintenance activities are 

planned and scheduled

• Human Factors (inspection & decision-making) – the overhead (i.e. 

cognitive and time demands) placed on operators, maintenance personnel, 

supervisors, etc. under the various maintenance strategies

• Cost Effectiveness – Projected/estimated cost of implementing the 

maintenance strategy

• Requirement for Technology Readiness – Necessity of advanced 

technology to enable a maintenance strategy

A brief discussion of each maintenance strategy (identified as the column headers of Table 

1) is provided to highlight the advantages and disadvantages of each approach.

Reactive maintenance is a corrective action applied on observable failures. RM has a 

relatively low investment cost although cost increases typically arise from unscheduled 

equipment downtime and production losses. Preventive maintenance involves the repair, 

replacement, and/or maintenance of equipment at predetermined unit, cycle, or time interval 

to avoid unexpected failure during operation. The objective of any maintenance program is 

to minimize of the total cost of inspection, repair, and equipment downtime (measured in 
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terms of lost production capacity or reduced product quality). A successful PM strategy that 

improves equipment availability has two drawbacks: 1) time-based or operation count-based 

PM programs lead to potentially over-maintained equipment, especially in instances when 

the PM interval is predetermined without considering various operational regime shifts; and 

2) replacing the component before it severely degrades or fails does not allow for insightful 

information to be learned about the equipment’s lifecycle (Lee et al. 2013).

PM can become a major expense for many industrial companies. Therefore, more efficient 

maintenance approaches, such as predictive maintenance are being implemented. PdM is a 

right-on-time maintenance strategy. Predictive maintenance can be classified into reliability-

centered maintenance (RCM) and condition-based maintenance (CBM). However, this 

maintenance strategy is more commonly implemented as CBM in most production systems 

where certain performance indices are periodically (Barbera et al. 1996; Chen et al. 2002) or 

continuously monitored (Marseguerra et al. 2002). CBM is a technique or a process for 

monitoring the operating characteristics of processes and machines (or components). 

Changes and trends in the monitored characteristics can be used to predict the need for 

maintenance before serious deterioration or breakdown occurs. Thus, CBM attempts to 

avoid unnecessary maintenance tasks by taking maintenance actions only when there is 

evidence of abnormal behavior in a process or machine. By reducing the number of 

unnecessary scheduled preventive maintenance operations, a properly established and 

effectively implemented CBM program can significantly reduce maintenance costs (Jardine 

et al. 2006, Mann et al. 1995). For example, based on a high-level analysis of the automotive 

industry, Barajas et al. (2008) stated that the best return on investment is achieved through 

predictive maintenance as opposed to reactive or preventive maintenance.

Proactive maintenance focuses on understanding the failure modes, detecting precursors to 

failure, tracking degradation mechanisms, and predicting the remaining useful life of 

components, systems, and processes. Proactive maintenance commissions corrective actions 

aimed at the sources of failure. It is designed to extend the life of mechanical machinery as 

opposed to 1) making repairs when often nothing is broken, 2) accommodating failure as 

routine and normal, and 3) preempting crisis failure maintenance.

The decisions to implement an appropriate maintenance program must be based on the 

probability and magnitude of the failure along with the associated costs and consequences. 

Designing an effective and efficient maintenance strategy requires engineering efforts that 

optimize the relationship between equipment ownership and operating profits by balancing 

the cost of maintenance with the cost of equipment degradation and failures, and resultant 

production losses. PdM and PaM usually require an initial higher maintenance investment 

due to higher requirement for technology readiness, but can substantially save unnecessary 

failures, extend the life of equipment more so than simple RM and PM, and further 

minimize bad part/product generation.

1.3.2. Manufacturing PHM—Prognostics and Health Management refers to a set of 

technologies that link studies of failure mechanisms to system lifecycle management. 

Specifically, PHM includes health monitoring, diagnostics, prognostics, and maintenance 

techniques. PHM can be used to determine the root causes of failures, predict degradation 
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trends, and support decisions for optimal maintenance schedules to eliminate the sources of 

failure before problems occur. With an effective use of PHM technologies, maintenance can 

be planned more proactively and thus reduce unplanned downtime, unnecessary 

maintenance activities, and labor cost.

Manufacturing PHM research can be divided into machine-level and system-level studies. 

Much of the machine-level research has focused on machine tools, and this includes prior 

work on machine tool spindles (Cao et al., 2012; Vogl et al., 2015-1), cutting tool wear or 

breakage (Aliustaoglu et al. 2009; Amer et al. 2007, Malekian et al. 2009), and machine tool 

feed-axis systems (Liao et at. 2012; Sztendel et al. 2012; Vogl et al., 2015-2; Zhou et al. 

2011). For machine tool PHM applications, the algorithms used by researchers include both 

data-driven and first-principal methods. For data-driven methods, a common approach 

includes the use of a classification method after features were extracted from the various 

signals; support vector machines, self-organizing maps, and variations on neural networks 

were some of the classification methods used in these machine tool case studies, respectively 

(Malekian et al. 2009; Liao et at. 2012; Demetgul, 2013). First principles methods include 

the work by Cao et al. (2012), in which a physical model of the spindle was used to 

determine the optimal sensor location for monitoring the health state of the spindle.

Industrial robot health monitoring is another popular machine-level monitoring application 

for PHM manufacturing research studies. First principle approaches that model the 

kinematics and dynamics of a particular type of robot were considered by Brambilla et al. 

(2008) and Liu et al. (2005), in which a residual-based diagnostic can be made by comparing 

the actual and predicted sensor responses. A data-driven approach that compares the robot 

joint angle speed and joint angle torque from a baseline condition using principal component 

monitoring statistics was conducted by Sjöstrand et al. (2010). This work used a variety of 

signal measurements for robot health monitoring, such as axis speed, axis torque, motor 

temperature, gearbox temperature, and calculated quantities such as cycle time and energy 

consumption.

The topic of validation is a challenge for many PHM studies including manufacturing 

applications. A common approach in the literature is to use machine (Aliustaoglu, et al., 

2009; Amer et al., 2007; Malekian et al., 2009, Sztendel et al., 2012) or subsystem or 

component testbeds for generating data sets to help validate PHM methods and algorithms 

(Vogl, et al. 2015). Testbeds provide a controlled environment that allows one to introduce 

various failure modes at a controlled severity level. Data from the factory floor is less 

frequently used to develop and validate PHM health models in the literature. This approach 

is reasonable given that there are many uncontrolled factors in the factory environment that 

would make the validation aspect more difficult to accomplish. The National Institute of 

Standards and Technology (NIST) is actively developing numerous testbeds, including 

platforms at the component, work cell, and system levels, to support verification and 

validation of PHM methods and techniques (Helu & Hedberg, 2015; Weiss et al., 2015).

Although the majority of the work is conducted in controlled settings, some prior research 

work used factory data for developing their health models. The work of Skritich (2012) used 

various statistical anomaly detection methods for monitoring several machine tools used in a 
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production setting. In this study, an axis pulley failure occurred on one of the machine tools; 

this problem could have been detected several days earlier using the proposed monitoring 

approach.

For system-level PHM manufacturing applications, the work conducted by Muthiah et al. 

(2008) introduced a new metric called the overall throughput effectiveness, which can 

provide a way to benchmark the factories current performance with respect to a baseline 

value. In addition to providing a way to monitor factory performance, this proposed metric 

could also be used for detecting factory bottlenecks, which are important in diagnosing the 

root-cause in a drop in factory performance. For conventional metrics, such as OEE, its 

success depends on the ease of collecting the data and enabling operators and plant 

personnel to visualize the information. Given the overwhelming majority of the prior work 

on machine-level PHM applications in comparison to system-level PHM applications, there 

appears to be a research gap on system-level PHM research methods and techniques that 

should be addressed. In addition, even the PHM machine-level methods would be aided by 

common data sets for improving and validating their methods and algorithms; generating 

PHM manufacturing benchmarking data sets should be considered as a future direction for 

manufacturing PHM research.

2. Methodology

2.1. Survey Questionnaire Development

Research personnel from the University of Cincinnati (UC) and the University of Michigan 

(UM) – Ann Arbor performed pilot surveys and case studies in 2015. The data were solicited 

via emailed questionnaires followed by phone interviews and onsite visits of 23 selected 

U.S. companies. The survey questionnaire was formulated to cover a broad range of 

manufacturing industry sectors. The questions were based on different perspectives of 

maintenance practices and contained six categories of questions: (1) manufacturing system 

performance measurement, (2) diagnostics and prognostics technology, (3) maintenance 

strategy and effectiveness, (4) key factors that affect maintenance performance, (5) future 

trends for PHM technology for smart manufacturing from an industrial perspective, and (6) 

challenges and future plan for intelligent maintenance technology.

Sample data were solicited by the UC/UM team via questionnaires, phone interviews, and 

on-site facility visits with a variety of manufacturing enterprises ranging in size. The focus 

of the survey and interviews was on manufacturing managers, maintenance managers and 

engineers, and other senior professionals within the production and maintenance function. A 

total of fifteen (15) manufacturers ranging in type and size and eight (8) technology/

consulting companies provided responses to the questions through surveys and interviews. 

Table 2 summarizes the profile of the respondents. The manufacturing enterprises provided 

the most direct responses to the questions based on their own maintenance strategy, 

operations and practices in PHM development and implementation, while the technology/

consulting companies provided more comprehensive information such as common PHM 

solutions to various types of industrial sectors. The enterprises represent various sectors 

within manufacturing, including: automotive, aerospace, transportation, machinery and 

equipment, consumer products, and electronics.
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Respondent feedback was based upon individual’s own daily observations and estimations. 

Although the use of objective measures would have been more desirable, it has been difficult 

to acquire exact data for a variety of reasons such as limited data collection capability, 

confidentiality, and accounting conventions.

By analyzing the responses from the survey and summarizing the present status of 

manufacturing enterprises in diagnostics/prognostics technology and maintenance strategy, 

this paper undertakes exploratory work in this area to address numerous questions including:

• What are the commonly used maintenance objectives and performance 

metrics for manufacturing enterprises?

• Which factors influence the selection of maintenance strategy and its 

effectiveness?

• Are the manufacturers willing to improve their maintenance technologies 

and strategies? Which factors are the barriers for manufacturing 

enterprises to improve their maintenance strategies?

2.2. Open-Ended Discussions

Personnel from NIST conducted case studies complementary to the efforts of the UC/UM 

team. NIST personnel organized their case studies to better understand existing 

manufacturing processes and operations including the investigation of high-value challenges, 

fault/failure modes, and bottlenecks for processes and equipment. Case study engagement 

began with a brief phone conversation so that the study’s goals could be presented, and any 

potential concerns shared. NIST personnel then conducted a site visit of the participants’ 

facility that featured discussions and a tour. The conversations evolved according to the 

participants’ preferences. Given UC/UM’s focus on large manufacturers, NIST focused the 

case studies on SME manufacturers, technology providers/integrators, and consulting 

enterprises. Space limitations restricted discussion of all of NIST case studies in this paper; 

NIST personnel spoke to representatives from ten different SME organizations. Three case 

studies conducted by NIST are presented in this paper: two represent manufacturers and one 

represents a technology provider. All case study participation was voluntary.

3. Case Studies and Insights

3.1. Large-Sized Manufacturing Enterprises

Case Study 1—During the observational studies and site visits to various manufacturers, 

one particular transportation manufacturer’s initiatives on predictive and proactive 

maintenance technologies are worth highlighting. At the time of the survey, this rolling stock 

transportation manufacturer was in their first year of implementing new technology at their 

remanufacturing facility, in which they have approximately 30 different machines, including 

machine tools and washer equipment. It should be noted that the factory could be considered 

a pilot factory for the company considering PHM technology.

As data is one of the critical bottlenecks for developing more predictive maintenance 

practices, this manufacturer has put many significant efforts in the past year to develop a 
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data collection infrastructure and sensor strategy for various machines. In particular, their 

washer equipment has received added instrumentation and sensing, including flow rate, 

temperature, pressure, and conductivity measurements. This organization is also in the 

process of instrumenting the machine tools; a deliberate pace is being set to ensure the 

appropriate strategy is focused upon that will align with a proper cost-to-benefit ratio for the 

machine tools. Less critical equipment in the plant will not obtain the same level of sensing 

and monitoring but would be upgraded to pull out information about the operational status of 

the machine. This operational status information would help facilitate OEE calculations and 

provide a more tractable way of comparing and trending the current plants performance.

Although this is a rather significant investment in resources for monitoring their 

manufacturing equipment, the organization has already obtained some early success from 

monitoring one of the critical washer machines in their remanufacturing facility. For this 

particular machine, they have had three different alarming events, in which they had an early 

indication of an impending failure that was correctly detected and corrected before any 

costly downtime or failure occurred. Although the current detection method was a 

combination of statistical process control and visual inspection of the sensor signals, the 

goal is to automate this analysis in the future. The organization’s plan is to leverage their 

company’s existing portfolio of data analytics and anomaly detection algorithms to automate 

this process as they collect more data and have a better baseline fingerprint for each 

machine.

Case Study 2—A case study visit with an aerospace manufacturer provided another 

insightful perspective on some of the barriers for achieving success with implementing this 

PHM technology. This manufacturing facility performs assembly of aviation systems, and 

consists of machine tool and quality inspection equipment. In one of their past monitoring 

examples, the organization developed an early warning (anomaly detection) system that had 

a detection accuracy with a low false alarm rate. From a technology perspective, this early 

warning system was a success; however, there were additional challenges that resulted in 

this monitoring system not providing the value that was expected. In particular, the operators 

ignored the early warning system even though the early warning system was accurate in 

providing a correct detection. It is hard to conclude why the operators ignored this warning 

system, yet it shows that there are significant work cultural barriers for implementing PHM 

technology within a manufacturing facility.

This same aerospace manufacturing facility also had a manufacturing PHM case study with 

machine tools that highlighted some additional challenges for achieving successful 

implementation of this technology. During a pilot research study, they developed a machine 

tool health monitoring system, in which various controller parameters were collected and 

monitored during a routine machine motion profile/test that was conducted once per shift or 

day. Various analytics and multivariate statistical tools were then applied to the collected 

data to generate a health metric. In turn, this metric was used to estimate the health condition 

of the various machine tool subsystems and components over time.

During the pilot study, the developed analytics were evaluated against historical data and the 

results showed that this approach could provide an early detection of a failure with one of 
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the machine tool axes. After the pilot study, the solution was deployed and used to monitor a 

set of machine tools over a one-year time-period. However, during this time-period, no 

failures occurred. Considering that the routine test took time away from production and that 

no failures occurred since the solution was implemented, they eliminated the routine test and 

monitoring solution. However, after this monitoring was discontinued, a similar axes failure 

occurred on one of the machine tools and they are now considering renewing this monitoring 

solution.

This chain of events highlights the challenge that many PHM solutions could face, in that 

they will have to overcome short-term performance and evaluation metrics. For many 

manufacturing equipment, it might be difficult to justify PHM solutions in the short-term 

given that many components degrade over time and failures would likely not occur in the 

short-term.

Case Study 3—A large consumer products manufacturer has been actively developing and 

adopting its own PHM and maintenance optimization methodologies. The manufacturer’s 

methodology goes beyond the traditional fail-and-fix maintenance mode, and uses to high-

end engineering with predictive capabilities and an uptime vs. downtime focus. The main 

challenges for the manufacturer to implement new PHM technologies and preventive 

maintenance strategies are mainly attributable to the unique characteristics of the high-

throughput, high-speed production systems. Yet fail-and-fix is a costly option. Stoppages 

due to machine breakdown could significantly reduce the OEE, and cause hundreds of 

defects during the restart/transient period. Hence, the goal of the manufacturer is to improve 

the OEE ratios to be at or exceed 95 %, and reduce the downtime-induced defect.

This manufacturer has realized that, although the adoption of lean and sigma programs 

creates greater awareness that optimized production pays big dividends in output and quality, 

the production speed and efficiency are not sufficient enough to compete globally. The 

manufacturer envisions that a set of intelligent maintenance tools and PHM technologies 

need be adopted within their manufacturing facilities in the near future. These technologies 

include smart sensors found on automated controls, remote monitoring systems, and 

software applications that can detect and diagnose problems – even remotely – or generate 

repair orders directly to maintenance management system. The manufacturing system would 

also need other specialized machines to monitor key operational indicators such as abnormal 

hot spots, leaks, and vibration problems.

The challenge of investing in resources for new sensing, diagnostic, and analysis 

technologies has more to do with motivation rather than money. The first step for the 

company to move from a fail-and-fix mode to a preventive and/or predictive mode is to 

create a culture of change that moves from passive to proactive maintenance. The next step 

is to update operators and maintenance technicians with the expertise to run the latest 

computerized monitoring tools and devices. To address these challenges, additional 

incentives for interdepartmental collaboration and research and development (R&D) 

development will be needed.
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3.2. Small to Mid-Sized Manufacturing Enterprises

Three SME case studies are presented in this section. Perspectives from two manufacturers 

and one technology integrator are specifically highlighted.

Case Study 4—The first SME case study participant is a relatively small original 

equipment manufacturer (OEM) who is responsible for manufacturing a component of 

varying sizes for their parent company. This OEM produces these components using a 

combination of sheet-metal forming, machining, and welding processes. These components 

are predominantly used in the shipping, chemical, pharmaceutical, and food industries. The 

company currently employs a little less than 100 people where approximately 75 % work on 

the shop floor. This organization delivered nearly 20,000 parts in 2015 where it typically 

takes two to four weeks to fabricate a single part. At any given moment, the shop has 

between 400 to 600 orders as work in progress (WIP). The company’s current enterprise 

resource planning software is SAP (Karnouskos et al. 2010; Giriraj and Muthu, 2010) 

whereas their previous solution was custom-made to handle day-to-day operations. The 

transition was expensive for the company and challenging – there was little experience with 

SAP and it did not integrate well with the existing systems.

For this organization, it is critical they measure and track conformance to original cost 

estimate, expected time of delivery, and part specification. Their maintenance strategy is 

driven by the high operation and tooling costs, and challenges faced when ordering spare 

parts (i.e., they are not readily available). Preventative maintenance is the dominant strategy, 

yet reactive maintenance still occurs if/when machines unexpectedly fail. Most of these 

failures are typically tied to bearing issues. To minimize this downtime, the company has 

invested in a spare parts inventory, which is kept in an adjacent warehouse. The company is 

very interested in transitioning to a predictive maintenance strategy. With the high demand 

of their machines, the hope is that a predictive maintenance strategy will enhance the ability 

to plan necessary maintenance around critical machining operations with both minimal 

downtime and minimal financial impact.

To achieve a predictive maintenance strategy, the company is taking the very critical step of 

transitioning from manual (their current modus operandi) to paperless data collection. Data 

collection is challenged, and the transition will be challenged, by the large WIP. To support 

this transition, the company is exploring networking equipment and systems, cloud-based 

services for data storage, and job tracking systems to determine status and improve 

scheduling. Significant concerns exist in making this transition including expected 

difficulties with integrating solutions across heterogeneous systems, lack of sufficient data to 

support analysis and decision-making (i.e., there is not paperless baseline data with which to 

draw upon), and the disruptions to daily operations that can occur with such a transition.

Case Study 5—The second SME case study participant can be described as a larger-scale 

contract shop that specializes in large work volumes. This shop is predominantly focused on 

computer numerical control (CNC) machining. The produced parts and components support 

the chemical processing, energy, mining, machine tool, aerospace, paper, plastic, and steel 

industries. Two of this SME’s key metrics are basic utilization (in-cycle versus not-in-cycle), 
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and start-time versus in-cycle. The company has thousands of part numbers (in total) where 

approximately 600 are currently under contract. Low volumes are typically requested when a 

specific part is produced. Standardization of software packages, machine tools, and 

controllers is sought as challenges when working with heterogeneous systems and interfaces.

Given the company’s high burn rate1 for equipment, successful maintenance and scheduling 

strategies are required to minimize nonproductive times. Job estimates (including cost and 

resource allocations) are based upon tribal knowledge, yet there has been a historic trend of 

underestimating when comparisons are made to actuals, which has a negative impact on burn 

rate. Another job scheduling issue is that jobs are not planned beyond 2+ weeks of 

operation. A significant challenge to enhancing their maintenance strategy is the lack of staff 

that are open to and support modernization and emerging technology. The company’s 

current maintenance strategy is largely reactive where prior efforts to introduce preventative 

maintenance were met with heavy resistance from the staff due to culture. Another attempt is 

being made to implement preventative maintenance.

Presently, unexpected breakdowns occur every few days which usually take, on average, 

over a day to resolve. Unexpected issues have been more prevalent in the summer when 

temperatures are above normal during operations. Given these factors, the organization is 

also interested in condition-based maintenance where active health monitoring can better 

inform personnel of when and where maintenance should occur. As such, support is 

increasing for real-time supervisory monitoring and control of shop-floor operations along 

with dynamic scheduling. In addition to the cultural challenges of advancing their 

maintenance strategy, the company also faces a lack of sufficient data to support equipment 

health analysis. Low volume part runs have made it difficult to learn much from current 

operations so data collection efforts have mostly targeted work centers that maintain 

relatively consistent operations. Similar to the Case Study 4, this organization is also 

challenged by the heterogonous systems mix given their lack of common interfaces and 

licensing issues. Another challenge is with respect to communications given specific cyber 

security requirements. These requirements are usually imposed internally to maintain the 

integrity of the data and the overall manufacturing operations.

3.3. Technology Providers/Consulting Enterprises

Case Study 6—One case study participant is a SME technology integrator; they are 

contracted by manufacturing customers to provide various solutions to enable specific 

manufacturing capabilities, typically in the form of developing and deploying new work 

cells. These work cells often blend industrial arm robotics, programmable logic controllers, 

networking equipment, and other automation technologies to complete a specific process. 

This integrator is not tied to any specific industry, and has provided work cell solutions to a 

range of organizations including those in power tools, medical devices, and food/beverage 

packaging.

In creating work cell solutions, the integrator noted it is very rare for their customers to ask 

for specific diagnostic and prognostic techniques; rather, they have specific productivity, 

1Burn Rate is the rate at which an enterprise spends money, especially venture capital, in excess income.
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performance, and quality requirements that the integrator must target. Any maintenance 

information that is provided to the customer comes from the manufacturers of the individual 

pieces of equipment (e.g., embedded sensors, robotics, and safety systems) that the 

integrator builds in to create the work cell. Two example work cells that the integrator 

recently developed incorporate multiple industrial robotic arms, and feature a majority of the 

work cell secured behind a fence. Minimal diagnostic and prognostic capabilities are 

integrated into these work cells because these were not requested by the customers. It is 

typical for the customer to not specify any diagnostic or prognostic capabilities because they 

are either unaware of such capabilities, or they recognize that this will increase the cost of 

the solution. However, the customer requirements typically dictate that the integrator is 

responsible for designing and creating the human-machine interfaces. These interfaces 

provide the operators with the necessary controls and information to operate the machines 

effectively and safely. Since the integrator’s solutions are motivated by the customer’s 

requirements, there is little motivation for the integrator to add/enhance their PHM 

capabilities in their engineering solutions if the customer is not requesting it.

4. Results, Analysis, and Discussion

4.1. Preliminary Observations

Based on the survey and case studies, we summarize the maintenance objectives across the 

various manufacturing enterprises and technology/consulting companies and classify the 

commonly used maintenance performance measures into six categories:

1. Equipment performance (e.g., availability, reliability, mean time to 

failure),

2. Product quality performance (e.g., defect rate, yield),

3. Maintenance productivity performance (e.g., manpower utilization, 

efficiency),

4. Maintenance cost (e.g., maintenance labor and material cost),

5. Safety and environment (e.g., safety, health and environment incidents), 

and

6. Production/process performance (e.g., work-in-process, cycle time).

4.1.1. Survey Results and Analysis—The key findings according to the respondent’s 

selection of important objectives are the following: (1) safety (92 %) and (2) availability and 

reliability (77 %) are the top two highly rated maintenance objectives. Productivity and 

quality are equally important (69 %) to the manufacturers because they directly affect the 

cost-effectiveness of their production systems. Typically, manufacturing organizations use 

performance metrics to measure system-level performance such as productivity, 

maintenance, product quality, or a combination of these metrics. The majority of the 

manufacturer surveys draw both statistically significant conclusions on individual metrics 

(e.g., throughput, defective parts per hour, and maintenance-related metrics) and a 

combination of these metrics. This is well aligned with the trend of companies adopting 
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OEE metrics to measure for factory performance monitoring and evaluation (Jonsson and 

Lesshammar, 1999; Liker, 2014).

For maintenance strategy, it was important to have a grasp on the manufacturers’ current 

maintenance practices and whether these practices are effective, or if they have room for 

improvement. This provides some measure of where manufacturing organizations are in 

terms of maintenance strategy and this could influence their future adoption of more 

advanced maintenance technologies. For preventative maintenance effectiveness, the 

response from the manufacturers is provided in Figure 1. The noted level of effectiveness 

was diverse among the surveyed manufacturers. The general observations from the surveyed 

companies were that some of the larger manufacturing facilities had a more effective 

preventative maintenance program. However, this would also depend on the diversity of 

assets that they had in their facilities along with the age of the factory and equipment. For 

some of the smaller manufacturing facilities visited during this study, reactive maintenance 

(instead of preventative maintenance) was noted as their current strategy.

Some important insights were also gained on whether condition-based maintenance (CBM) 

strategies for certain types of machines or processes had been considered by manufacturing 

organizations surveyed in this study. A vast majority of organizations (72.7% of the survey 

manufacturers) are considering condition-based maintenance (CBM) approaches. We 

performed a Chi-square statistical hypothesis test in the following general form of equations 

(1) and (2) to provide statistical evidence that manufacturing organization are starting to 

consider and move towards CBM strategies. Chi-square test is used to investigate the 

“goodness-of-fit” between the observed and expected. The test statistic χ2 is defined as 

equation (1) with degree of freedom (df) of n-1, where n is the number of observations. The 

test-statistic and p-value with a significance level of α = 0.05 indicate that there is evidence 

that the responses are not random and the null hypothesis is considered as true.

(1)

(2)

We further investigated whether the manufacturers who have started CBM had past and/or 

active projects in manufacturing diagnostics and prognostics. A Chi-square test is a 

statistical test procedure for categorical variables consists of comparing the expected bin 

frequencies to the observed bin frequencies. Based on the hypothesis that the responses are 

random, one would assume an expected frequency count that was even for each bin group. 

Test results reveal that manufacturing organizations are starting to move towards CBM 

strategies although the sample size is relatively small. More test details can be found in a 

prior publication (Jin et al. 2016).
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One of the interesting questions that was asked to both the surveyed technology providers 

and manufacturers is how does one determine which machine(s) or process(es) has the 

greatest need for a prognostics and health management system. Determining which machine 

is important and which failure mode to target can help determine the value and return on 

investment that a PHM system provides to the manufacturing organization. The response 

from the surveyed technology providers is highlighted here, since a technology provider 

might have a more diverse perspective if one considers that they work with multiple 

manufacturing organizations. The responses from the technology providers in Figure 2 

indicate that the majority of them consider the impact/cost of failure as a key criterion for 

ranking machines and failure modes. The frequency of failure was also mentioned, although 

some mentioned that the frequency of failure might be misleading if the cost of the failure or 

downtime is low for that failure mode.

A Chi-square hypothesis was also performed for this response and the results in Table 3 

indicate that there was not significant evidence to reject the null hypothesis that the 

responses were random. Perhaps there is not an overwhelming consensus on which criterion 

for failure mode ranking and criticality should be used.

One of the other important elements to gain some observations during this study was the 

perspective of manufacturers and technology providers on the future outlook for 

manufacturing PHM. With respect to the technology providers, the majority had a very 

optimistic view on manufacturing PHM (Figure 3). A few thought manufacturing PHM 

would have a slight increase or remain flat, while the vast majority felt that it would have a 

large increase in the next few years. The Chi-square test results in Table 4 also highlight that 

there was sufficient evidence to reject the null hypothesis and the responses appear to favor 

the optimistic viewpoint. One interesting comment was that there was past precedence 

within manufacturing to adopt trends from some leading manufacturing organizations, such 

as lean manufacturing. The rationale was that a similar trend would occur for manufacturing 

PHM, once a few leading manufacturing organizations had successful demonstrations of 

PHM systems and could highlight the value and cost savings.

Although the technology providers had a very optimistic viewpoint on the future trend for 

manufacturing PHM, it was also important to see if the same sentiment was obtained from 

the manufacturers. The manufacturers would be the ones that would ultimately deploy and 

use this technology on their manufacturing floor and their level of optimism for 

manufacturing PHM might be a better gauge for the future trend and outlook in this 

technology area. The responses in Figure 4 indicate that many manufacturers have planned 

future diagnostic and prognostic projects, while only a few are just focused on RCM with no 

future PHM projects on the horizon. With the vast majority of manufacturers having future 

projects planned in this area, the manufacturers also appear to be optimistic about 

manufacturing PHM.

4.1.2. Case Study Findings of SMEs and Technology Providers—NIST’s 

discussions with SMEs and technology providers were very insightful. From the SME 

perspective, this category of manufacturers is typically limited in their equipment and 

computing resources investment unless they can clearly justify the cost(s) and reasonably 
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estimate the pay-back period of such investments. In most instances, this holds true for 

investing in PHM technology. These expenditures may be risky to a SME’s survival. If the 

investment yielded or exceeded the expected returns, then the company increases its overall 

health and profitability where further growth can be achieved. On the other hand, if the 

expected financial returns are not met, a SME may be faced with tough decisions in terms of 

cutting its workforce or even closing its doors.

Technology providers are in a different position with respect to investing in PHM 

technologies. Their technology development and implementation is motivated by their 

customer’s requirements. In this case, the manufacturer is the customer where a significant 

percentage of the technology providers’ customer base is from the SME community. 

Technology providers will add technology/feature enhancements to their solutions if it is a 

financially sound decision (i.e., if the customer is willing to pay for it, then the technology 

provider will do it). Unless technology providers are aware of emerging and advanced PHM 

technologies, and can highlight their value to the manufacturing customers or manufacturers 

have a direct appreciation of PHM, the PHM technology advancement within the SME 

community will be very limited.

Another insight that was discovered is that culture has a tremendous impact on how the 

overall organization perceives advanced and emerging technologies that are intended to 

augment an operator’s knowledge and capability at the shop floor level. PHM is one such 

technology where some SME operators viewed it with distrust or skepticism. In this case, 

the operators viewed the technology as supplanting some of their responsibilities (e.g., “the 

technology is doing something that I am equipped to do”) or the technology was not trusted 

to provide accurate information (e.g., false alarms). Several SMEs highlighted how culture 

played a significant role in how easily PHM was embraced or they noted how a resistant 

culture forced upper management to revise their PHM deployment strategy.

A strong commonality among the SMEs that were surveyed was that they are all subjected to 

reactive maintenance (i.e., as much as they tried to prevent failures, they still occurred). 

However, all took steps to balance this out with limited preventive maintenance strategies. 

Very few SMEs surveyed employed predictive maintenance approaches. Any predictive 

maintenance that was performed is very limited in scope for a SME. None of the SMEs that 

participated presented end-to-end predictive maintenance strategies that covered the entirety 

of their manufacturing processes. Rather, when predictive maintenance was found, it was in 

isolated instances at the machine or component level.

Technology providers illuminated the fact that their only motivation to incorporating PHM 

technologies into their manufacturing solutions was if it was required to satisfy specific 

customer requirements. Granted, added levels of PHM increase the cost of the overall 

solution where some manufacturers pushed back against higher costs. In turn, the 

technology providers noted that achieving a lower cost called for stepping down the 

capabilities of the system. The manufacturers had to weigh whether or not the added the cost 

of the PHM solution was worth the investment.
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4.2. Maintenance Factors: Comparison between SMEs and Large-Sized Manufacturers

This section focuses on comparing the level of development of intelligent maintenance 

technologies and the strategies between SME manufacturers and large-sized manufacturers 

from various aspects. This study has identified eight key factors related to maintenance 

based on the questionnaire results. Each factor is scored on a 0 % – 100 % scale, where 

66.7 % – 100 % represents the most advanced level in terms of performance and 

effectiveness (level 3), 33.3 % – 66.7 % represents the intermediate level (level 2), and 0 % – 

33.3 % corresponds to the beginning level which is least intelligent in maintenance 

technology and strategy as well as their effectiveness (level 1). Table 5 in the Appendix of 

this paper defines the levels for each of the eight factors.

The responses to the interval questions are averaged and plotted in radar charts for large-

sized enterprises and SMEs, respectively, to study how enterprise size may influence these 

key factors of maintenance. According to the responses to the interval questions based on 

Table 5, the average levels of eight key factors are presented for large firms and SMEs in 

Figure 5.

4.3. Correlation Analysis for Maintenance Factors

The survey responses, as obtained by UC/UM, can be seen as ordinal data; thus, correlation 

analysis is adopted. The Spearman’s rank correlation and Kendall’s tau correlation are both 

recommended for the analysis of ordinal data (Muchiri et al., 2010). Therefore, both the 

Spearman’s rank correlation and Kendall’s tau correlation are adopted.

The Spearman’s rank correlation coefficient is defined as the Pearson correlation coefficient 

[Edwards, 1976] between the ranked variables. For a sample of size n, then raw scores Xi, Yi 

are converted to ranks xi, yi, and the Spearman correlation coefficient ρ is computed as:

(3)

where di is the difference between the two ranks of each observation and n is the number of 

observation [Daniel, 1990].

The results of Spearman correlation analysis for eight maintenance-related factors are 

presented in Table 6. The Kendall’s tau correlation is a measure of rank correlation: the 

similarity of the orderings of the data when ranked by each of the quantities. The results of 

Kendall’s tau correlation analysis are presented in Table 7.

It was found that maintenance effectiveness, maintenance strategy, profitability, continuous 

improvement, human resources for maintenance, and organizational readiness are 

significantly correlated with the size of the manufacturing enterprise. In particular, the 

organizational readiness is highly correlated with maintenance strategy and company size 

(p<=0.01 in both Spearman’s correlation and Kendall’s tau correlation). It is also 

significantly correlated with human resources for maintenance and continuous improvement 
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(with p<=0.05 in Spearman’s correlation). However, the correlations between Scheduling, 

Total Productive Maintenance (TPM) and Size are not significant.

4.4. Correlation Analysis: PHM and Size of Manufacturers

The correlation analysis indicates that a relationship exists between the size of the 

manufacturing enterprise and the eight key factors. A statistic test is adopted to do the 

hypothesis testing to see whether the differences between SMEs and large-sized 

manufacturers are statistically significant.

Due to the small sample number, the Student’s t test is used to check whether there are 

significant differences in each factor between large manufacturers and SMEs. All eight 

factors in Table 5 are tested between SMEs and large-sized manufacturers. Two examples of 

maintenance strategy level and scheduling level for SMEs versus large firms is presented 

below to explain how the hypothesis test works.

Example 1: Maintenance Strategy Level—The null hypothesis on maintenance 

strategy level H0 is that the mean maintenance strategy level of SMEs equals the mean 

maintenance strategy level of large-sized manufacturers. The results of a Student’s t-test are 

shown in Table 8 in Appendix.

Levene’s test is used to check whether the variances of two groups are equal because 

Levene’s test is an inferential statistic used to assess the equality of variances for a variable 

calculated for two or more groups. The significance of F-value is 0.023, which is less than 

0.05, meaning that the variances in the two groups are not equal, i.e., equal variance is not 

assumed. According to the T table, two-tailed t(0;05,9) is less than the absolute t-value, i.e., |

t| > t(0.05,9). Therefore, H0 is rejected, indicating that the mean maintenance strategy level 

of large-sized manufacturers is significantly larger than the mean maintenance strategy level 

of SMEs.

Example 2: Scheduling level

H0: The mean scheduling level of SMEs equals the mean scheduling level of 

large-sized manufacturers.

Ha: The mean scheduling levels of SMEs and large-sized manufacturers are 

different.

The Levene’s test result, the significance of F-value, 0.362, which is greater than 0.05, so the 

variances of two groups are assumed to be equal; thus, |t|=−1.028 < t(0.05,11), so accept H0. 

It can be concluded that the mean scheduling levels of large-sized manufacturers and SMEs 

are equal. The results of Student’s t test are shown as in Table 9 in Appendix.

From the hypothesis testing results for all eight factors, the key findings can be summarized 

as follows: large manufacturers, in contrast to SMEs, have the ability to focus on two 

distinct strategies: 1) continuous improvement on condition-based maintenance and/or 

predictive maintenance technology and level of sophistication, and 2) a combination of low-

cost maintenance technology and strategy innovation.
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5. Gaps, Future Trends, and Research Directions

We identify some gaps, challenges and future trends for manufacturing PHM and 

maintenance strategy based on the observations from the case studies and statistical analysis 

of the data collected from survey respondents. The overall state of the art for manufacturing 

PHM has many current gaps, which can be divided into two categories: (1) maintenance 

strategy levels, and (2) diagnostics/prognostics technologies.

Maintenance strategy levels are relatively low in most manufacturing enterprises. These 

levels range from reactive maintenance to preventive maintenance (time-based or cycle-

based maintenance). Very few predictive or proactive maintenance practices were adopted 

by the surveyed manufacturing enterprises. The common barriers that inhibit these 

manufacturers to improve their maintenance strategies are mainly costs, workforce and level 

of skills, organizational and technology readiness, and complexity of system design changes. 

In addition, compared with SMEs, large manufacturing enterprises are making more efforts 

to improve their maintenance strategy because of their size-related advantages such as R&D 

support, leadership involvement, skilled workforce and other resources. In addition, having a 

clear strategy on how to motivate and train plant personnel on this technology and take 

appropriate action from these diagnostic and prognostic alerts should not be overlooked.

Diagnostic and prognostic technologies implemented in most of the manufacturing 

enterprises have been limited to component and machine level fault detection diagnosis. 

There are very few system-level diagnostics and prognostics implementations that support 

multiple components interacting within a production system. Although some research has 

been looking at system-level health monitoring and assessment, very few successful 

implementations have been found in real applications due the complex interdependencies 

among components and subsystems within a manufacturing system. Some technology 

providers are making more efforts to develop system level health monitoring system and 

PHM by using large amount of data collected from sensors, controllers and automation 

systems in the plant floor to monitor or predict system health. In addition, even current 

component-level and machine-level prognostics and diagnostics techniques lack robustness 

and adaptiveness, thus limiting their successful implementation by manufacturers. Common 

issues noted by the manufacturers include unsatisfactory number of false alarms, and 

difficulty in setting up baseline conditions for fault detection and diagnosis that consider 

various operating conditions. It was also noted by the technology providers that the lack of 

failure data makes it more challenging to develop robust prognostic and diagnostic methods. 

Furthermore, without reference data sets that include failure data, validation of the 

technology becomes very difficult. Gaps and barriers for implementing advanced PHM 

technologies identified in the study are also well aligned with the findings of the 2015 NIST 

PHM workshop report (NIST, 2015).

Based on these findings and current gaps, future research needs and directions should focus 

on the development of new technologies and infrastructure to support PHM system 

implementation for smart manufacturing. One important step for industry, to move from a 

fail-and-fix paradigm to a predictive-and-proactive paradigm, is to create incentives and 

evolve the culture, so they can change from passive to proactive maintenance and operations. 
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Interdepartmental collaboration, R&D support and leadership will also be primary to the 

success of the paradigm shift. Other future PHM research and technology development 

would include more system-level diagnostics and predictive analytics by fully utilizing both 

engineering knowledge and industrial big data, as well as automated decision-making for 

maintenance scheduling and operations planning.

6. Conclusions and Future Work

This paper conducted a comprehensive study to investigate the best practices that the United 

States manufacturing enterprises are currently using to achieve their performance goals by 

incorporating both diagnostic and prognostic technologies and maintenance strategies. With 

that notion in mind, data was collected by phone interviews and on-site facility visits from 

various manufacturing enterprises, including a total of fifteen manufacturing enterprises and 

eight technology/consulting companies. NIST also provided additional case studies of SMEs 

to complement the survey-based study during site visits and factory tours of several 

manufacturing and technology integration facilities. While the UC/UM team analyzed the 

detailed survey data, both teams (UC/UM and NIST) assessed the information from the 

conversational case studies. This team-based approach allowed UC/UM and NIST to jointly 

formulate what they see as the future directions in PHM given the identified gaps and issues.

One of the interesting findings during this study was that the maintenance effectiveness, 

maintenance strategy, and human resources for maintenance were significantly correlated 

with the size of the manufacturing enterprise. There was an obvious difference in 

maintenance technology and strategy when comparing large and small/medium 

manufacturing enterprises. Even for the larger manufacturing enterprises, it was noted that 

the effectiveness of their intelligent maintenance programs varied between the different 

organizations. Many organizations had mixed success with respect to their past diagnostic 

and prognostic projects. Despite this mixed level of success, many of the manufacturing 

organizations surveyed had active diagnostic and prognostic projects and had an 

overwhelming positive and optimistic viewpoint when considering the future outlook for 

manufacturing PHM.

The results from this study illustrate many future research directions to address the gaps 

identified in this study. The literature review highlighted a sparse set of technical work on 

system-level PHM for factory applications, in comparison to the machine-level and 

component-level PHM work for robotics, machine tools, and other manufacturing 

equipment; thus the need to develop technical approaches for system-level PHM for factory 

applications is one potential future research direction. In addition, some manufacturers were 

unsatisfactory in the threshold setting and overall robustness in the PHM machine-level 

models; this reiterates that there is a still a need to improve the current state of the art with 

respect to PHM for manufacturing components and machines. Lastly, there is a significant 

gap between SME and large manufacturing organizations, in which the SME would benefit 

from at least learning from the large manufacturers and their early trials and success with 

PHM and maintenance technology. With this notion, it would be beneficial to make a 

concerted effort to disseminate the PHM manufacturing case studies, with the aim that 

SMEs would eventually consider adopting these maintenance technologies with a good fit.
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Besides the gaps and issues being identified in this study, many other challenges and barriers 

that prevent manufacturers from adopting advanced PHM technologies will be further 

explored and discussed in the future work, such as the need for using digital technologies for 

data collection and handling and interpreting “industrial big data,” the need to develop 

protocols and tools to communicate data, information and metrics across the component, 

machine and system levels for diagnostics and prognostics in manufacturing, and the need to 

enhance operations and maintenance intelligent by predictive and preventive control and 

management.

Acknowledgments

The authors would like to acknowledge the support of the National Institute of Standards and Technology (NIST), 
U.S. Department of Commerce in providing the grant support (#70NANB14H234). The authors would also like to 
acknowledge the contributions of Moneer Helu, Gregory Vogl, Guixiu Qiao, and Jeremy Marvel for supporting 
NIST’s information gathering discussions with the various manufacturers that participated, and Xiaolong Xie for 
collecting literature information with the University of Michigan research team.

References

Aliustaoglu C, Ertunc HM, Ocak H. Tool wear condition monitoring using a sensor fusion model 
based on fuzzy inference system. Mechanical Systems and Signal Processing. 2009; 23(2):539–546.

Amer W, Grosvenor R, Prickett P. Machine tool condition monitoring using sweeping filter techniques. 
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control 
Engineering. 2007; 221(1):103–117.

Barajas, LG.; Srinivasa, N. Proc ASME International Manufacturing Science and Engineering 
Conference. ASME Foundation; 2008. Real-time diagnostics, prognostics health management for 
large-scale manufacturing maintenance systems; p. 85-94.

Barbera F, Schneider H, Kelle P. A condition based maintenance model with exponential failures and 
fixed inspection intervals. Journal of the Operational Research Society. 1996:1037–1045.

Brambilla D, Capisani LM, Ferrara A, Pisu P. Fault detection for robot manipulators via second-order 
sliding modes. Industrial Electronics, IEEE Transactions on. 2008; 55(11):3954–3963.

Cao H, Niu L, He Z. Method for vibration response simulation and sensor placement optimization of a 
machine tool spindle system with a bearing defect. Sensors. 2012; 12(7):8732–8754. [PubMed: 
23012514] 

Chen D, Trivedi KS. Closed-form analytical results for condition-based maintenance. Reliability 
Engineering & System Safety. 2002; 76(1):43–51.

Coble J, Ramuhalli P, Bond L, Hines JW, Upadhyaya B. A Review of Prognostics and Health 
Management Applications in Nuclear Power Plants. International Journal of Prognostics and Health 
Management. 2015; 6 (Special Issue Nuclear Energy PHM) 016, 22. 

Daniel, Wayne W. Applied Nonparametric Statistics. 2. Boston: PWS-Kent; 1990. Spearman rank 
correlation coefficient; p. 358-365.

Demetgul M. Fault diagnosis on production systems with support vector machine and decision trees 
algorithms. The International Journal of Advanced Manufacturing Technology. 2013; 67(9–12):
2183–2194.

Edwards, AL. An Introduction to Linear Regression and Correlation. Vol. Ch. 4. San Francisco, CA: 
W. H. Freeman; 1976. The Correlation Coefficient; p. 33-46.

Helu M, Hedberg T. Enabling Smart Manufacturing Research and Development using a Product 
Lifecycle Test Bed. Procedia Manufacturing. 2015; 1:86–97.

Giriraj M, Muthu S. Layerless manufacturing & SAP creating responsive shop floor in the supply 
chain. Internatinoal Journal of Engineering and Technology. 2010; 2(2):59–64.

Jardine AK, Lin D, Banjevic D. A review on machinery diagnostics and prognostics implementing 
condition-based maintenance. Mechanical Systems and Signal Processing. 2006; 20(7):1483–
1510.

Jin et al. Page 20

Int J Progn Health Manag. Author manuscript; available in PMC 2017 January 03.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Jin X, Siegel D, Weiss B, Gamel E, Wang W, Lee J, Ni J. Manufacturing Review. 2016 forthcoming. 

Jonsson P, Lesshammar M. Evaluation and improvement of manufacturing performance measurement 
systems – the role of OEE. International Journal of Operations & Production Management. 1999; 
19(1):55–78.

Karnouskos S, Savio D, Spiess P, Guinard D, Trifa V, Baecker O. Real-world service interaction with 
enterprise systems in dynamic manufacturing environments, Artificial Intelligence Techniques for 
Networked Manufacturing Enterprises Management. Part of the series Springer Series in 
Advanced Manufacturing. :423–457.

Lee J, Atat H, Siegel D. A Systematic Methodology for Gearbox Health Assessment and Fault 
Classification. International Journal of Prognostics and Health Management. 2011; 2(1):002,16.

Lee J, Siegel D, Lapira ER. Development of a Predictive and Preventive Maintenance Demonstration 
System for a Semiconductor Etching Tool. ECS Transactions. 2013; 52(1):913–927.

Liao L, Pavel R. Machine tool feed axis health monitoring using plug-and-prognose technology. Proc 
Proceedings of the 2012 Conference of the Society for Machinery Failure Prevention Technology. 
2012

Liker JK. Is OEE a Useful Key Performance Indicator? Industry Week. 2014 Mar 7.

Liu H, Coghill GM. A model-based approach to robot fault diagnosis. Knowledge-Based Systems. 
2005; 18(4):225–233.

Malekian M, Park S, Jun MB. Tool wear monitoring of micro-milling operations. Journal of Materials 
Processing Technology. 2009; 209(10):4903–4914.

Mann L, Saxena A, Knapp GM. Statistical-based or condition-based preventive maintenance. Journal 
of Quality in Maintenance Engineering. 1995; 1(1):46–59.

Marseguerra M, Zio E, Podofillini L. Condition-based maintenance optimization by means of genetic 
algorithms and Monte Carlo simulation. Reliability Engineering & System Safety. 2002; 77(2):
151–165.

Measurement Science Roadmap for Prognostics and Health Management for Smart Manufacturing 
Systems. National Institute of Standards and Technology (NIST). Aug. 2015 

Muchiri PN, Pintelon L, Martin H, De Meyer AM. Empirical analysis of maintenance performance 
measurement in Belgian industries. International Journal of Production Research. 2010; 48(20):
5905–5924.

Muthiah KM, Huang SH, Mahadevan S. Automating factory performance diagnostics using overall 
throughput effectiveness (OTE) metric, The International. Journal of Advanced Manufacturing 
Technology. 2008; 36(7–8):811–824.

Nakajima, S. Introduction to TPM: Total productive maintenance. Productivity Press, Inc; P.O. Box 
3007, Cambridge, Massachusetts 02140, USA: 1988. p. 129

Samah A, Shahzad MK, Zamai E, Hubac S. Effective Maintenance by Reducing Failure-Cause 
Misdiagnosis in Semiconductor Industry (SI). International Journal of Prognostics and Health 
Management. 2015; 6(1):18.

Sjöstrand, N.; Blanc, D.; Tavallaey, SS. Google Patents. 2010. Method and a control system for 
monitoring the condition of an industrial robot. 

Skirtich, T. ProQuest Dissertations Publishing. 2012. A comparative study of prognostic and health 
assessment methods in sensor rich and sensorless environments, University of Cincinnati; p. 
1515047

Sohal A, Olhager J, O’Neill P, Prajogo D. Implementation of OEE–issues and challenges. Competitive 
and Sustainable Manufacturing Products and Services. 2010:1–8.

Sztendel, S.; Pislaru, C.; Longstaff, AP.; Fletcher, S.; Myers, A. Journal of Physics: Conference Series. 
IOP Publishing; 2012. Five-Axis Machine Tool Condition Monitoring Using dSPACE Real-Time 
System, Proc; p. 012091

Vogl GW, Donmez MA. A defect-driven diagnostic method for machine tool spindles. CIRP Annals-
Manufacturing Technology. 2015–1; 64(1):377–380.

Vogl, GW.; Weiss, BA.; Donmez, MAA. A Sensor-Based Method for Diagnostics of Machine Tool 
Linear Axes. Annual Conference of the Prognostics and Health Management Society; 2015–2. 

Jin et al. Page 21

Int J Progn Health Manag. Author manuscript; available in PMC 2017 January 03.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Weiss, BA.; Vogl, GW.; Helu, MH.; Qiao, G.; Pellegrino, J.; Justiniano, M.; Raghunathan, A. 
Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems: 
Key Findings from a Roadmapping Workshop. Annual Conference of the Prognostics and Health 
Management Society; 2015. 

Zhou Y, Tao T, Mei X, Jiang G, Sun N. Feed-axis gearbox condition monitoring using built-in position 
sensors and EEMD method. Robotics and Computer-Integrated Manufacturing. 2011; 27(4):785–
793.

Biographies

Dr. Xiaoning Jin is an Assistant Professor in the Department of Mechanical and Industrial 

Engineering at Northeastern University. She was an Assistant Research Scientist in the 

Department of Mechanical Engineering at the University of Michigan, Ann Arbor. Xiaoning 

received her M.S. and Ph.D. degrees in Industrial and Operations Engineering from the 

University of Michigan, Ann Arbor, in 2008 and 2012, respectively. Her Ph.D. research was 

focused on the optimal control strategies for remanufacturing systems of End-of-Life (EOL) 

products with stochastic return and demand, with particular application to electrical vehicle 

batteries. Her primary research is to develop advanced models for prognostics and health 

management using physics-based models and data analytics, and to design predictive and 

preventive strategies for manufacturing operations. Xiaoning has authored more than 16 

journal publications and 17 conference proceedings. Two of her papers have won the Best 

Paper Awards at 2014 ASME Manufacturing Science and Engineering Conference (1st 

place) and 2014 International Conference on Frontiers of Design and Manufacturing, 

respectively. She has also been selected as the recipient of 2016 SME Outstanding Young 

Manufacturing Engineer.

Dr. Brian A. Weiss is the Associate Program Manager of the Smart Manufacturing 
Operations Planning and Control program and the Project Leader of the Prognostics and 
Health Management for Smart Manufacturing Systems project within the Engineering 

Laboratory (EL) at the National Institute of Standards and Technology (NIST). His current 

research efforts are focused on developing the necessary measurement science to verify and 

validate emerging monitoring, diagnostics, prognostics, and maintenance technologies and 

Jin et al. Page 22

Int J Progn Health Manag. Author manuscript; available in PMC 2017 January 03.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



strategies for smart manufacturing. Prior to his leadership roles in the SMOPAC program 

and the PHM4SMS project, he spent 15 years conducting performance assessments across 

numerous military and first response technologies including autonomous unmanned ground 

vehicles; tactical applications operating on Android™ devices; advanced soldier sensor 

technologies; free-form, two-way, speech-to-speech translation devices for tactical use; 

urban search and rescue robots; and bomb disposal robots. His efforts have earned him 

numerous awards including a GCN for IT Excellence (2014), Department of Commerce 

Gold Medal (2013), Colleague’s Choice Award (2013), Silver Medal (2011), Bronze Medals 

(2004 & 2008), and the Jacob Rabinow Applied Research Award (2006). He has a B.S. in 

Mechanical Engineering (2000), Professional Masters in Engineering (2003), and Ph.D. in 

Mechanical Engineering (2012) from the University of Maryland, College Park, Maryland, 

USA.

Dr. David Siegel is currently a PostDoctoral Research Fellow at the University of Cincinnati 

- Center for Intelligent Maintenance Systems and also the Chief Technology officer (CTO) 

for Predictronics Corp. David has several achievements in the Prognostic and Health 

Management (PHM) area and has published numerous influential academic articles in 

prestigious journals such as IEEE Transactions on Reliability, Mechanical Systems and 

Signal Processing, International Journal of PHM, among others. He has won first place in 

the PHM Society Data Challenge Competition in 2009, and 2011, and best paper awards in 

2013 and 2014 at the Machine Failure Prevention Technology Conference (MFPT). David 

has been involved in numerous PHM projects involving various critical assets found in 

applications such as manufacturing, power generation, aerospace, and railway applications. 

David has a bachelors, masters, and PHD in mechanical engineering from the University of 

Cincinnati.

Dr. Jay Lee is Ohio Eminent Scholar, L.W. Scott Alter Chair Professor, and Distinguished 

Univ. Professor at the Univ. of Cincinnati and is founding director of National Science 

Foundation (NSF) Industry/University Cooperative Research Center (I/UCRC) on Intelligent 

Maintenance Systems (IMS www.imscenter.net ) which is a multi-campus NSF Industry/

University Cooperative Research Center which consists of the Univ. of Cincinnati (lead 

Jin et al. Page 23

Int J Progn Health Manag. Author manuscript; available in PMC 2017 January 03.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



institution), the Univ. of Michigan, Missouri Univ. of S&T, and the Univ. of Texas-Austin. 

Since its inception in 2001, the Center has been supported by over 80 global companies. His 

current research focuses on intelligent prognostics and predictive analytics. He has authored/

coauthored numerous highly influential articles and technical papers in the areas of 

machinery monitoring and prognostics, E-manufacturing, and intelligent maintenance 

systems. He has over 20 patents and trademarks. He is a Fellow of ASME, SME, as well as a 

founding fellow of International Society of Engineering Asset Management (ISEAM) and 

has received a number of awards including the most recent Prognostics Innovation Award at 

NI Week by National Instruments in 2012.

Appendix

Table 5

Key factors versus maintenance performance at various levels

Factors

Level 3 (100%) 
Advanced 
(predictive & 
proactive)

Level 2 (66.7%) Intermediate 
(preventive)

Level 1 (33.3%) Beginning 
(reactive)

Maintenance Effectiveness Maintenance 
performance is 
very satisfactory 
where no 
improvement is 
warranted.

Maintenance program is effective 
but could still be improved.

Maintenance has significant 
room for improvement, or 
Preventive maintenance 
program is lacking/reactive 
maintenance

Maintenance Strategy Employ predictive 
maintenance 
(PdM) strategy 
for sustainable 
improvement. All 
problems are 
analyzed and 
permanently 
solved. Reactive 
maintenance is 
minimized.

Use preventive maintenance (PM) 
as a main approach, usually age-
based or cycle-based. Some reactive 
maintenance is required.

Rely heavily on reactive 
maintenance (RM), no 
equipment health 
information involved

Task Planning and 
Scheduling

More than 90 % 
of work that is 
planned is 
accomplished. 
Low overtime for 
maintenance 
activities (<15 %)

More than 50 % work planned 
accomplished. Relatively high 
overtime ( >15 %)

Less than 50 % work 
planned accomplished. 
High overtime ( >30 %)

Profitability Significant cost 
savings due to 
failure reduction 
and life extension

Cost-effectiveness is satisfactory Not cost-effective

Continuous improvement Proactive 
maintenance. 
CBM or PHM 
applied, 
performance 
measurements are 
in place and 
effectively used

Have preventive maintenance in 
place with management involved in 
policy settings and reviews

Have no CBM or PHM. 
Low involvement of 
management. Reactive 
maintenance is very 
common

Maintenance Training 
(Human factors)

Educational plans 
are designed for 
each maintenance 
worker. A global 

Skilled staff normally qualified on a 
few machines. A small team is in 
place that is responsible for 
developing and implementing 

No training on how to use 
maintenance strategies. 
Lack of system to collect 
maintenance knowledge. 
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Factors

Level 3 (100%) 
Advanced 
(predictive & 
proactive)

Level 2 (66.7%) Intermediate 
(preventive)

Level 1 (33.3%) Beginning 
(reactive)

R&D Team is in 
place that is 
responsible for 
developing and 
implementing 
prognostic and 
diagnostic 
techniques

prognostic and diagnostic 
techniques

No team that is responsible 
for developing and 
implementing prognostic 
and diagnostic techniques

Total productive 
performance (TPM)

Overall 
Equipment 
Effectiveness 
(OEE) is greater 
than 80 %

Overall Equipment Effectiveness 
(OEE) is between 50% and 80%

Overall Equipment 
Effectiveness (OEE) is less 
than 50%

Organizational Readiness Leadership 
Involvement and 
strong R&D 
support

Lack of sufficient R&D support & 
leadership involvement

“Fire Fighting” approach

Table 6

The Spearman correlation of different maintenance factors

F1 F2 F3 F4 F5 F6 F7 F8 F9

Size Effect. Strategy Sched. Profitability Impr. HR TPM Readiness

F1 Size 1.000 .663* .758** .298 .660* .670* .660* .463 .755**

F2 Effectiveness .663* 1.000 .199 .224 .870** .728** .762** .491 .370

F3 Strategy .758** .199 1.000 .237 .341 .544 .436 .259 .902**

F4 Scheduling .298 .224 .237 1.000 .085 -.053 -.085 .033 .190

F5 Profitability .660* .870** .341 .085 1.000 .719** .905** .256 .499

F6 Improvement .670* .728** .544 -.053 .719** 1.000 .864** .401 .732**

F7 HR .660* .762** .436 -.085 .905** .864** 1.000 .256 .593*

F8 TPM .463 .491 .259 .033 .256 .401 .256 1.000 .279

F9 Readiness .755** .370 .902** .190 .499 .732** .593* .279 1.000

*
The correlation is significant at the level of 0.05 (two-sided)

**
The correlation is significant at the level of 0.01 (two-sided)

Table 7

The Kendall’s tau correlation of different maintenance factors

F1 F2 F3 F4 F5 F6 F7 F8 F9

Size Effect. Strategy Sched. Profitability Impr. HR TPM Readiness

F1 Size 1.000 .608* .696* .290 .603* .613* .603* .452 .685**

F2 Effectiveness .608* 1.000 .130 .204 .829** .678** .699** .453 .320

F3 Strategy .696** .130 1.000 .202 .258 .443 .339 .225 .857**

F4 Scheduling .290 .204 .202 1.000 .090 -.046 -.090 .031 .155

F5 Profitability .603* .829** .258 .090 1.000 .656** .871** .225 .413
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F1 F2 F3 F4 F5 F6 F7 F8 F9

Size Effect. Strategy Sched. Profitability Impr. HR TPM Readiness

F6 Improvement .613* .678** .443 -.046 .656** 1.000 .820** .365 .613*

F7 HR .603* .699** .339 -.090 .871** .820** 1.000 .225 .492*

F8 TPM .452 .453 .225 .031 .225 .365 .225 1.000 .243

F9 Readiness .685** .320 .857** .155 .413 .613* .492* .243 1.000

*
The correlation is significant at the level of 0.05 (two-sided)

**
The correlation is significant at the level of 0.01 (two-sided)

Table 8

Student’s t-test for maintenance strategy comparison between large enterprises and SMEs

Levene’s test for equality of variances t-test for equality of means

F Significance t df Significance (2-tailed)

Equal variance assumed 6.913 0.023 −5.961 11 0.000094

Equal variance not assumed −11.225 9 0.000001

Table 9

Student’s t-test for scheduling level comparison between large enterprises and SMEs

Levene’s test for equality of variances t-test for equality of means

F Significance t df Significance (2-tailed)

Equal variance assumed 0.906 0.362 −1.028 11 0.326

Equal variance not assumed −0.913 2.855 0.432
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Figure 1. 
Manufacturers – Preventative Maintenance Effectiveness Survey Response
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Figure 2. 
Technology Providers – Failure Mode/Criticality Analysis Survey Response
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Figure 3. 
Manufacturing PHM Trend Optimism - Survey Response
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Figure 4. 
Manufacturers -Prognostic/Diagnostic Future Outlook - Survey Response
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Figure 5. 
Radar charts for manufacturing enterprises with different sizes: (a) large-sized 

manufacturing enterprises, (b) SMEs
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Table 1

Maintenance Strategy Characteristics

Maintenance Strategy Reactive Maintenance (RM) Preventive Maintenance (PM) Predictive Maintenance (PdM) Proactive Maintenance (PaM)

Maintenance Interval Fail-and-fix Time based; Usage based Reliability based; Condition 
based

Improve & sustain

Object Component; Sub-system; System Component; Sub-system; System Component; Function; System Component; Function; System

Planning & Scheduling Planning on the fly Planning & scheduling based on 
ideal PM interval

Predictive planning & 
scheduling

Proactive planning & 
scheduling

Human Factors 
(inspection & decision-
making)

Medium to High Intermediate Low Low (false alarm)

Cost Effectiveness Labor intensive; Labor and 
material

Costly due to over maintenance 
or ineffective & inefficient PM

Cost-effective; extended life & 
less failure- induced costs

Cost-effective: Substantially 
save failures & extend the life 

of equipment

Requirement for 
Technology Readiness

Low Low to Medium High High
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Table 2

Participating enterprises segmented by size & type

SME Large Total Percent

Manufacturing Enterprise 3 12 15 65.2%

Technology/Consulting Enterprise 5 3 8 34.8%

Total 8 15 23 100%
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Table 3

Chi-Square Test Results – Failure Mode/Criticality Analysis Response

cχ2 5.5

α 0.05

df 3

p-value 0.1386

Hypothesis H0
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Table 4

Chi-Square Test Results – Manufacturing PHM Trend Optimism

cχ22 11.6

α 0.05

df 3

p-value 0.0089

Hypothesis Ha
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