
p70S6K1 (S6K1)-mediated Phosphorylation Regulates
Phosphatidylinositol 4-Phosphate 5-Kinase Type I �
Degradation and Cell Invasion*□S

Received for publication, June 8, 2016, and in revised form, October 22, 2016 Published, JBC Papers in Press, October 25, 2016, DOI 10.1074/jbc.M116.742742

Naser Jafari‡§, Qiaodan Zheng‡, Liqing Li‡, Wei Li‡, Lei Qi‡, Jianyong Xiao‡, Tianyan Gao‡, and X Cai Huang‡§¶1

From the ‡Markey Cancer Center and the ¶Department of Pharmacology and Nutritional Sciences, University of Kentucky,
Lexington, Kentucky 40506 and the §Veterans Affairs Medical Center, Lexington, Kentucky 40502

Edited by Alex Toker

Phosphatidylinositol 4-phosphate 5-kinase type I � (PIPKI�90)
ubiquitination and subsequent degradation regulate focal adhe-
sion assembly, cell migration, and invasion. However, it is
unknown how upstream signals control PIPKI�90 ubiquitina-
tion or degradation. Here we show that p70S6K1 (S6K1), a
downstream target of mechanistic target of rapamycin (mTOR),
phosphorylates PIPKI�90 at Thr-553 and Ser-555 and that
S6K1-mediated PIPKI�90 phosphorylation is essential for cell
migration and invasion. Moreover, PIPKI�90 phosphorylation
is required for the development of focal adhesions and invado-
podia, key machineries for cell migration and invasion. Surpris-
ingly, substitution of Thr-553 and Ser-555 with Ala promot-
ed PIPKI�90 ubiquitination but enhanced the stability of
PIPKI�90, and depletion of S6K1 also enhanced the stability of
PIPKI�90, indicating that PIPKI�90 ubiquitination alone is
insufficient for its degradation. These data suggest that S6K1-
mediated PIPKI�90 phosphorylation regulates cell migration
and invasion by controlling PIPKI�90 degradation.

Cell migration and invasion are prerequisites for cancer
metastasis (1, 2). Thus, the elucidation of the molecular mech-
anisms of cell migration and invasion is a compelling goal in
cancer cell biology.

Phosphatidylinositol 4 phosphate 5-kinase type I � (PIPKI�90)2

binds talin and localizes to focal adhesions (FAs) (3, 4). It catalyzes
ATP-dependent phosphorylation of phosphatidylinositol 4-phos-
phate (PIP) to generate phosphatidylinositol 4,5-bisphosphate
(PIP2), which binds and activates talin, vinculin, and focal adhesion
kinase to mediate FA assembly (5, 6). PIP2 also binds many cyto-
skeletal proteins, such as neural Wiskott-Aldrich Syndrome pro-
tein, gelsolin, and profilin, to regulate actin polymerization (7–10).

In addition, PIP2 is a precursor of several lipid second messengers,
such as phosphatidylinositol 3,4,5-triphosphate (PIP3), inositol
1,4,5-triphosphate, and diacylglycerol. We have shown that deple-
tion of PIPKI�90 completely abolishes PIP3 production in
HCT119 human colon cancer cells (11), indicating a critical role of
PIPKI�90 in lipid signaling. PIPKI�90 is necessary for epithelial
cell adherens junction assembly and progression through the
E-cadherin-�-catenin signal pathway (12). PIPKI�90 depletion
inhibits cell proliferation, MMP9 secretion, and cell motility
(13, 14).

PIPKI�90 is essential for cell migration, invasion, and metas-
tasis. It is required for focal adhesion assembly and disassembly,
key steps in cell migration (11). Depletion of PIPKI�90 inhibits
growth factor-stimulated cell migration in MDA-MB-231
breast cancer cells and HeLa cervical cancer cells (14, 15).
PIPKI�90 knockdown also blocks the invasion of breast cancer
and colon cancer cells (11, 16). Furthermore, PIPKI�90-de-
pleted 4T1 breast cancer cells show significant reduction in
tumor progression and metastasis (13). PIPKI�90 also regu-
lates neutrophil migration by controlling cell polarity as well
as rear retraction (17–19). PIPKI�90 is a substrate for Src,
which phosphorylates PIPKI�90 at Tyr-644, enhancing its
binding to talin and reducing talin-� integrin interaction
(20). Talin, in turn, activates integrins and initiates FA
assembly to regulate cell migration and invasion. In addition,
phosphorylation of PIPKI�90 at Tyr-639 by epidermal
growth factor (EGF) receptor influences tumor cell migra-
tion and metastasis (13).

It has been demonstrated that the ubiquitin proteasome
pathway regulates FA assembly and disassembly and, conse-
quently, cell migration and invasion through ubiquitinating FA
proteins (16, 21–26), and our research indicates that PIPKI�90
is a key molecule that mediates the role of the ubiquitin protea-
some pathway in this regard. Our published data indicate that
PIPKI�90 functions to regulate focal adhesion assembly and
disassembly (11). We also demonstrated that PIPKI�90 ubiq-
uitination at Lys-97 by HECTD1, an E3 ubiquitin ligase that
regulates cell migration, results in PIPKI�90 degradation, thus
controlling dynamic PIP2 production to mediate FA assembly/
disassembly, cell migration, invasion, and metastasis (16).
However, it is not clear how upstream signaling pathways con-
trol PIPKI�90 ubiquitination or degradation during cell migra-
tion and invasion.
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Ribosomal protein S6 kinase � 1 (also called p70S6K1 or
S6K1), a serine-threonine kinase, is one of the mTOR path-
way effectors. It is well known that S6K1 regulates cell
growth, survival, and metabolism (27–31). Recent evidence
indicates that it also regulates cancer cell invasion and
metastasis (32, 33), but the molecular mechanisms behind
these processes are less defined. In this study, we demon-
strate that S6K1 phosphorylates PIPKI�90 at Thr-553 and
Ser-555 and that S6K1-mediated phosphorylation controls
PIPKI�90 degradation to regulate the development of FAs

and invadopodia and, consequently, cell migration and
invasion.

Results

The residues Thr-553 and Ser-555 of human PIPKI�90 are
consensus sites for Akt and S6K1 (Fig. 1A). To learn whether
Akt1 and S6K1 phosphorylate PIPKI�90, FLAG-PIPKI�90 was
co-transfected with an empty vector, constitutively active Akt1,
and S6K1 (Myr-Akt1 and S6K1-F5A-E389-R3A) (34, 35).
FLAG-PIPKI�90was immunoprecipitated,andPIPKI�90phos-
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FIGURE 1. S6K1 phosphorylates PIPKI�90 at Thr-553 and Ser-555. A, alignment of the Akt/S6K1 consensus sequences from different species. B, transfection
of constitutively active Akt1 or S6K1 promoted PIPKI�90 phosphorylation. FLAG-PIPKI�90 was co-transfected with an empty vector, Myr-Akt1, and S6K1-F5A-
E389-R3A into CHO-K1 cells. FLAG-PIPKI�90 was immunoprecipitated, and PIPKI�90 phosphorylation was detected with an anti-RXRXXpS/T motif antibody.
a.u., arbitrary unit; *, p � 0.05. C, S6K1 phosphorylated PIPKI� at Thr-553 and Ser-555 in vitro. Recombinant GST-PIPKI�90501– 668, -PIPKI�90501– 668

T553A,
-PIPKI�90501– 668

S555A, and -PIPKI�90501– 668
T553A,S555A were phosphorylated with constitutively active S6K1 that was immunoprecipitated from CHO-K1 cells. D,

S6K1 phosphorylated PIPKI� at Thr-553 and Ser-555 in CHO-K1 cells. HA-S6K1-F5A-E389-R3A was co-transfected with FLAG-PIPKI�90, -PIPKI�90T553A,
-PIPKI�90S555A, and -PIPKI�90T553A,S555A into CHO-K1 cells. Data are presented as mean � S.E. of three independent experiments. **, p � 0.01; ***, p � 0.001
versus WT. E, EGF and HGF stimulated PIPKI� phosphorylation. MDA-MB-231 cells stably expressing FLAG-PIPKI�90 were serum-starved and stimulated with
EGF (20 ng/ml), HGF (50 ng/ml), SCF (20 ng/ml), and PDGF (20 ng/ml) for 20 min. FLAG-PIPKI�90 was immunoprecipitated (IP), and phosphorylation was
detected with an anti-RXRXXpS/T motif antibody. Data are presented as mean � S.E. of three independent experiments. *, p � 0.05; **, p � 0.01 versus control
(Ctrl). F, HGF-stimulated PIPKI� phosphorylation was inhibited by Akt and S6K1 inhibitors. MDA-MB-231 cells stably expressing FLAG-PIPKI�90 were serum-
starved, treated with Akt inhibitor VIII and the S6K1 inhibitors DG2 (10 �M) or PF4708671 (10 �M), and then stimulated with HGF for 20 min. Data are presented
as mean � S.E. of four independent experiments. *, p � 0.05 versus HGF. G, HGF-stimulated PIPKI� phosphorylation was suppressed by depletion of S6K1. S6K1
in MDA-MB-231 cells stably expressing FLAG-PIPKI�90 was depleted using lentiviruses that express S6K1 shRNAs. Cell were serum-starved and then stimulated
with HGF (20 ng/ml) for 20 min. Data are presented as mean � S.E. of three independent experiments. *, p � 0.05.
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phorylation was detected with an anti-RXRXXpS/T motif anti-
body. Both Myr-Akt1 and S6K1-F5A-E389-R3A promoted
PIPKI�90 phosphorylation (Fig. 1B). To examine whether S6K1
phosphorylates PIPKI�90 at Thr-553 and Ser-555 in vitro,
HA-S6K1-F5A-E389-R3A was immunoprecipitated from CHO-
K1 cells and incubated with purified recombinant GST-
PIPKI�90501–668, -PIPKI�90501–668

T553A, -PIPKI�90501–668
S555A,

and -PIPKI�90501– 668
T553A,S555A in a kinase reaction buffer

containing ATP. The phosphorylation of these recombinant
proteins was detected as described in Fig. 1B. Mutation at Thr-
553 or Ser-555 caused a decrease in PIPKI�90 phosphorylation,
whereas mutation at both Thr-553 and Ser-555 abolished its
phosphorylation (Fig. 1C). To determine whether S6K1 phos-
phorylates PIPKI�90 at the same sites in cells, HA-S6K1-
F5A-E389-R3A was co-transfected with FLAG-PIPKI�90,
PIPKI�90T553A, PIPKI�90S555A, and PIPKI�90T553A,S555A into
CHO-K1 cells. The phosphorylation of FLAG-PIPKI�90 and
the mutants was determined as described in Fig. 1B. Substitu-
tion of Thr-553 with Ala caused a significant reduction in
PIPKI�90 phosphorylation, and substitution of Ser-555 with
Ala dramatically inhibited the phosphorylation, whereas sub-
stitution of both Thr-553 and Ser-555 completely abolished
PIPKI�90 phosphorylation (Fig. 1D). These data suggest that
S6K1 phosphorylates PIPKI�90 at residues Thr-553 and
Ser-555.

To find out whether EGF or HGF stimulates PIPKI�90 phos-
phorylation at residues Thr-553 and Ser-555, MDA-MB-231
cells stably expressing FLAG-PIPKI�90 were serum-starved
and stimulated with EGF, HGF, SCF, and PDGF. FLAG-
PIPKI�90 was immunoprecipitated with anti-FLAG-agarose
beads, and PIPKI�90 phosphorylation was detected with an
anti-RXRXXpS/T motif antibody. EGF and HGF stimulated
PIPKI�90 phosphorylation, whereas SCF and PDGF did not
(Fig. 1E). Similar results were observed in MDA-MB-468 cells
(supplemental Fig. S1A). HGF and EGF stimulated Akt and
S6K1 activation in a time-dependent manner, whereas SCF and
PDGF had no obvious effects (Fig. 1E and supplemental Fig. S1,
B and C). Because both S6K1 and Akt were activated by HGF or
EGF in MDA-MB-231 cells, we tested whether S6K1 or Akt
mediate PIPKI�90 phosphorylation. MDA-MB-231 cells that
stably express FLAG-PIPKI�90 were treated with Akt inhibitor
VIII or the S6K1 inhibitors DG2 and PF4708671 and then chal-
lenged with HGF. Akt inhibitor VIII inhibited HGF-stimulated
Akt, S6K1, and PIPKI�90 phosphorylation. The S6K1 inhibi-
tors DG2 and PF4708671 did not influence Akt and S6K1 acti-
vation but inhibited S6K1 activity (as indicated by the reduction
in ribosomal protein S6 phosphorylation) and PIPKI�90 phos-
phorylation (Fig. 1F). To further examine whether S6K1 phos-
phorylates PIPKI�90 in cells, MDA-MB-231 cells that stably
express FLAG-PIPKI�90 were infected with lentiviruses that
express S6K1 shRNAs or empty vector. The resulted cells were
stimulated with vehicle or HGF. S6K1 knockdown significantly
inhibited HGF-induced PIPKI�90 phosphorylation (Fig. 1G).
These results indicate that PIPKI�90 is a substrate for S6K1.

We showed previously that depletion of PIPKI�90 using
shRNA inhibited the migration of MDA-MB-231 cells and that
re-expression of PIPKI�90 restored the migration of PIPKI�90-
depleted cells (16). Based on these data, we decided to test the

effect of phosphorylation site mutants PIPKI�90T553A,S555A

and PIPKI�90T553E,S555E on cell migration. MDA-MB-231 cells
that express PIPKI�90 shRNA were infected with retroviruses
expressing codon-modified ZZ-PIPKI�90, -PIPKI�90T553A,S555A,
and -PIPKI�90T553E,S555E (Fig. 2A), and cell migration was
determined by time-lapse cell migration assays as described
previously (16). As shown in Fig. 2B, cells that express
PIPKI�90T553A,S555A had a reduction in cell migration whereas
those expressing PIPKI�90 or PIPKI�90T553E,S555E did not. Fur-
ther analysis indicated that PIPKI�90T553A,S555A inhibited cell
migration by disrupting the directionality (Fig. 2C). This result
implies that PIPKI�90 phosphorylation regulates cell migration
basically by modulating the directionality of the migrating cells.

Because PIPKI�90 is a master regulator of FAs (11, 16), key
machineries for cell migration, we examined whether the phos-
phorylation site mutant PIPKI�90T553A,S555A influences FA
formation. To this end, PIPKI�90-depleted MDA-MB-231 cells
that stably express FLAG-PIPKI�90WT and -PIPKI�90T553A,S555A

were plated on fibronectin, fixed, and co-stained with PIPKI�90
and paxillin antibodies using PIPKI90-depleted cells as a con-
trol. FAs were viewed with a TIRF microscope. PIPKI�90WT

was co-localized with paxillin at FAs, whereas
PIPKI�90T553A,S555A was deficient in localizing to FAs (Fig.
2D). Cells expressing PIPKI�90T553A, S555A had a significant
reduction in FA formation in comparison with the WT (Fig. 2,
D and E), suggesting that PIPKI�90 phosphorylation may reg-
ulate cell migration through modulating FA assembly.

To assess the potential role of PIPKI�90 phosphorylation
in cancer cell invasion, the Matrigel-invasive capabilities of
PIPKI�90-depleted MDA-MB-231 cells that express ZZ-
PIPKI�90, ZZ-PIPKI�90T553A,S555A, or ZZ-PIPKI�90T553E,S555E

were measured. Re-expression of PIPKI�90WT in PIPKI�90-
depleted cells restored cell invasion to an extent comparable
with the invasion of cells expressing empty pLKO.1 vector, and
that of PIPKI�90T553E, S555E partially rescued cell invasion. In
contrast, re-expression of PIPKI�90T553A, S555A only slightly
enhanced cell invasion (Fig. 3, A and B). Similar results were
observed when PIPKI�90 and the mutants were expressed in
parental MDA-MB-231 cells (supplemental Fig. S2), suggesting
a dominant negative function of PIPKI�90T553A,S555A. To
explore the role of S6K1 in cell invasion, we examined the effect
of the S6K1 inhibitor DG2 on the invasion of MDA-MB-231
cells. We found that S6K1 inhibition impaired invasion of the
cells (Fig. 3C). In particular, 10 �M S6K1 inhibitor DG2 signif-
icantly decreased the invasive potential of the cells by �90% (in
the absence of HGF) and 80% (in the presence of HGF). To
further examine the requirement for S6K1 in cell invasion, this
kinase was depleted in MDA-MB-231 cells using S6K1 shRNA
(Fig. 3D). Cells transfected with S6K1 shRNA could not invade
efficiently compared with cells expressing shRNA control (Fig.
3E). S6K1-depleted cells, even in the presence of HGF, could
not invade normally compared with cells expressing shRNA
control. Akt1, another protein kinase that potentially phosphor-
ylates PIPKI�90, was also depleted in MDA-MB-231 cells by
using two different shRNAs. Depletion of Akt1 caused a slight
reduction in the phosphorylation of S6K1 and S6 ribosomal
protein (Fig. 3F). Depletion of Akt1 in MDA-MB-231 cells did
not exhibit a significant reduction in invasive ability. As shown
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in Fig. 3G, depletion of Akt1 slightly reduced HGF-induced
invasion of MDA-MB-231 cells. However, in the absence of
HGF, cells expressing Akt1 shRNAs had higher number of
invaded cells compared with cells with shRNA control, imply-
ing that Akt1 is not mandatory for the invasion of MDA-MB-
231 cells. To further examine the role of S6K1-mediated
PIPKI�90 phosphorylation in cell invasion, the effects of
the S6K1 inhibitor DG2 on the invasion of PIPKI�-depleted
cells that express ZZ-PIPKI�90, -PIPKI�90T553A,S555A, or

-PIPKI�90T553E,S555E were examined. DG2 significantly inhib-
ited the invasion of cells expressing PIPKI�90 but had only
marginal effects on the invasion of cells expressing
PIPKI�90T553A,S555A or -PIPKI�90T553E,S555E (Fig. 3H). These
results indicate that S6K1-mediated PIPKI�90 phosphoryla-
tion regulates cell invasion.

Because of the crucial role of matrix metalloproteinase-me-
diated matrix degradation in cell invasion (36 –38), we set out to
determine whether the S6K1-PIPKI�90 pathway regulates
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matrix degradation. To examine whether the phosphorylation-
deficient mutants of PIPKI�90 influence matrix degradation,
we examined the gelatin degradation activity of PIPKI�90-
depleted MDA-MB-231 cells that were rescued with
PIPKI�90WT, PIPKI�90T553A,S555A, and PIPKI�90T553E,S555E.
Glass-bottom dishes were coated with Alexa 488-conjugated
gelatin. The coated dishes were then dried, fixed with glutaral-
dehyde, and reduced with sodium borohydride. The cells were
plated on dishes and treated with HGF. The cells were fixed and
stained with cortactin, an invadopodium marker. Matrix deg-

radation was examined by TIRF microscopy. Cells expressing
PIPKI�90WT had similar matrix degradation activity compared
with cells expressing shRNA control. However, cells with
PIPKI�90T553A,S555A had significantly lower matrix degrada-
tion activity, whereas cells expressing PIPKI�90T553E,S555E

showed a slight reduction in degraded areas (Fig. 4, A and B). To
further corroborate these findings, we tested the effect of S6K1
inhibition on matrix degradation. Similar to invasion, S6K1
inhibition affected this function and considerably decreased
the gelatin degradation (Fig. 4C). These data suggest that
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S6K1-mediated PIPKI90 phosphorylation regulates matrix
degradation.

To examine the possible association of the S6K1 pathway
with cancer metastasis, human breast cancer tissue array slides,
including primary tumors and the matched metastatic tumors
of lymph node tissues (US Biomax), were stained for phos-
pho-S6 ribosomal protein (Ser(P)-235/236), a substrate of
S6K1. Among the tissues from 50 subjects analyzed, phos-
pho-S6 staining was positive in 20 cases of metastatic tumors
(40%) and in six cases of the matched primary tumors (12%)
(Fig. 5, A and B). Also, phospho-S6 staining in 15 cases of met-
astatic tumors (30%) was significantly higher than the staining
in the matched primary tumors; one case was lower (2%), and
34 cases were unchanged (68%). These data suggest that activa-
tion of the S6K1 pathway positively correlates with human
breast cancer metastasis (p � 0.001).

To measure the kinase activity of PIPKI�90, ZZ-PIPKI�90
was transfected into CHO-K1 cells and immunoprecipitated
with IgG-conjugated-agarose beads or protein A-agarose using
ZZ-PIPKI�90K188,200R, a kinase-deficient mutant, as a negative
control. The activities of PIPKI�90 and mutants were measured
by PIP2 production using PIP and [�-32P]ATP as substrates.
PI(4,5)P2 was separated by thin layer chromatography, imaged
by autoradiography, and quantified by liquid scintillation
counting. The kinase activity was detected in IgG-agarose
beads that were incubated with ZZ-PIPKI�90-transfected
lysates but not in protein A-agarose beads incubated with the
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same lysate; very low activity was observed in IgG-agarose
beads that were incubated with ZZ-PIPKI�90K188,200R (supple-
mental Fig. S3A). To know whether mutation at Thr-553 and
Ser-555 affects the activity of PIPKI�90, ZZ-PIPKI�90WT,
-PIPKI�90T553A,S555A, and -PIPKI�90T553E,S555E were trans-
fected into CHO-K1 cells and immunoprecipitated with IgG-
agarose beads. The activities of PIPKI�90 and mutants were
measured using the same method. Substitution of Thr-553 and
Ser-555 with alanine and glutamate did not affect PIPKI�90
activity in vitro (supplemental Fig. S3B).

To determine whether PIPKI�90 phosphorylation regu-
lates its degradation, CHO-K1 cells were transfected with
FLAG-PIPKI�90WT, FLAG-PIPKI�90T553A,S555A, and FLAG-
PIPKI�90T553E,S555E and treated with DMSO and carfilzomib,
a specific proteasome inhibitor. As shown in Fig. 6A,
PIPKI�90T553A,S555A was not efficiently degraded and was more
resistant to degradation than PIPKI�90WT and PIPKI�90T553E, S555E.
To further confirm the stability of the T553A,S555A mutant,
we determined the time course of PIPKI�90 degradation. Avi-
tagged PIPKI�90WT and mutants were transfected into
CHO-K1 cells with stable expression of BirA, and then labeled
with biotin. Then, biotin was washed away and cells were split
into dishes with media containing avidin. PIPKI�90 and
mutants were detected using Dylight 680 Streptavidin by har-
vesting the cells at different time points. PIPKI�90T553A,S555A

was more resistant to degradation in comparison to WT and
PIPKI�90T553E,S555E mutant (Fig. 6B) and had a significantly
longer half-life than the WT and PIPKI�90T553E,S555E (Fig. 6C).

To further demonstrate the role of S6K1-mediated PIPKI�90
phosphorylation in PIPKI�90 degradation, CHO-K1 cells were
transfected with Dendra2-PIPKI�90, -PIPKI�90T553A,S555A,
and -PIPKI�90T553E,S555E and plated on fibronectin-coated
glass-bottom dishes. The cells were irradiated by a 408-nm laser
to convert the Dendra2 fusion protein into its red fluorescence
form. The red fluorescence protein degradation was recorded
by time-lapse imaging at 10-min intervals. Dendra2-
PIPKI�T553A,S555A was more stable/resistant to degradation,
with a half-life of �4 h, in comparison with the WT and
T553E,S555E mutant of PIPKI�90, which both showed a rela-
tively higher rate of degradation, with half-lives of 2.5 and 3 h,
respectively (Fig. 6, D and E). To examine the role of S6K1 in
regulating PIPKI�90 degradation, CHO-K1 cells that expressed
Dendra2-PIPKI�90 were treated with the S6K1 inhibitors DG2
(10 �M) or PF4708671 (10 �M), and the degradation of Den-
dra2-PIPKI�90 was analyzed. As shown in Fig. 6F, S6K1 inhibi-
tion caused a significant increase in the stability of Dendra2-
PIPKI�WT compared with the control. However, DG2 had no
effect on the degradation of Dendra-PIPKI�90T553E,S555E (Fig.
6G). These results further support the concept that S6K1-me-
diated phosphorylation of PIPKI�90 facilitates its degradation.

This prompted us to examine the ubiquitination of PIPKI�90
and these mutants. To this end, Avi-ubiquitin was co-
transfected with ZZ-PIPKI�90, -PIPKI�90T553A,S555A, or
-PIPKI�90T553E,S555E into CHO-K1 cells expressing BirA,
labeled with biotin, and immunoprecipitated with IgG-agarose.
Ubiquitination was detected with Dylight 680 streptavidin.
Substitution of Thr-553 and Ser-555 with Ala caused an
increase in PIPKI�90 ubiquitination, whereas substitution with

Glu had no significant change compared with the WT protein
(Fig. 7A), indicating that PIPKI�90 ubiquitination is not suffi-
cient for its degradation.

To compare the roles of S6K1 and Akt1 in PIPKI�90 degra-
dation, we examined the steady-state levels of PIPKI�90 in
S6K1-depleted MDA-MB-231 cells. The level of PIPKI�90 in
S6K1-depleted cells was significantly higher than that in cells
expressing a control shRNA (Fig. 7B). Treatment with carfil-
zomib resulted in a significant increase in PIPKI�90 level in
cells expressing control shRNA but not in S6K1-depleted cells.
However, depletion of Akt1 by expressing its shRNA had no
significant effect on the steady-state levels of PIPKI�90 (Fig.
7C). These results suggest that S6K1-mediated phosphoryla-
tion facilitates PIPKI�90 degradation.

Our previous published results indicate that PIPKI�90 ubiq-
uitination at lysine 97 and subsequent degradation are neces-
sary for breast cancer cell invasion (16). To examine the role of
PIPKI�90 degradation in matrix degradation, we compared the
matrix degradation activities of PIPKI�90-depleted MDA-
MB-231 cells that express codon-modified ZZ-PIPKI�90 or
ZZ-PIPKI�90K97R using normal and PIPKI�90-depleted MDA-
MB-231 cells as controls (Fig. 7D). PIPKI�90K97R is an ubiquiti-
nation- and degradation-resistant mutant. Depletion of
PIPKI�90 inhibited matrix degradation, and re-expression of
PIPKI�90 restored matrix degradation in PIPKI�90-depleted
cells whereas that of PIPKI�90K97R did not (Fig. 7, E and F),
further supporting the hypothesis that dynamic PIPKI�90 deg-
radation is essential for extracellular matrix degradation.

Discussion

The ubiquitin proteasome pathway regulates FA assembly
and disassembly and, consequently, cell migration and invasion
by ubiquitinating FA proteins (16, 21–26), and we recently
demonstrated that PIPKI�90 ubiquitination and subsequent
degradation control FA dynamics to regulate cell migration and
invasion (16). In this study, we demonstrated that S6K1-medi-
ated PIPKI�90 phosphorylation regulates PIPKI�90 degrada-
tion to control the development of FAs and invadopodia and,
consequently, cell migration and invasion.

We demonstrated that PIPKI�90 is a substrate for S6K1. We
showed that S6K1 phosphorylated PIPKI�90 when they were
co-transfected into CHO-K1 cells (Fig. 1B) and that substitu-
tion of the Thr-553 and Ser-555 sites with alanine abolished
PIPKI�90 phosphorylation by S6K1 in vitro and in cells (Fig. 1,
C and D). We also revealed that PIPKI�90 phosphorylation was
stimulated by HGF and EGF and that HGF-stimulated phos-
phorylation was inhibited by the S6K1 inhibitors DG2 and
PF4708671, Akt inhibitor VIII, as well as S6K1 knockdown (Fig.
1, E–G). The S6K1 inhibitors DG2 and PF4708671 caused 68%
and 45% reduction in PIPKI�90 phosphorylation in HGF-stim-
ulated MDA-MB-231 cells, respectively. Akt inhibitor VIII sup-
pressed 85% of PIPKI�90 phosphorylation. The related higher
efficiency of Akt1 inhibitor is probably due to its inhibition of
both Akt and S6K1 activation. Thus, we estimated that S6K1
mediated approximately 50 –70% of Thr-553 and Ser-555 phos-
phorylation in HGF-stimulated MDA-MB-231 cells. Endoge-
nous PIPKI�90 phosphorylation has not been examined
because of reagent limitation. Nevertheless, these results indi-
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cate that PIPKI�90 is a substrate for S6K1 in the system we
used.

When we started writing this manuscript, Le et al. (39)
reported that Akt1 phosphorylated PIPKI�90 at Ser-555.
Indeed, PIPKI�90 was phosphorylated when it was co-trans-
fected with Akt1 (Fig. 1B), and HGF-stimulated PIPKI�90 phos-
phorylation was inhibited by Akt inhibitor VIII (Fig. 1F), sug-
gesting that Akt1 is also a potential protein kinase that
phosphorylates PIPKI�90. However, depletion of Akt1 did not
significantly inhibit the invasion of MDA-MB-231 cells (Fig.
3G). This result is consistent with previous reports showing
that Akt activation potentially blocks carcinoma motility,
including migration and invasion in breast cancer cells (40 –

43). Therefore, although both S6K1 and Akt1 phosphorylate
PIPKI�90, S6K1 is functionally more relevant than Akt1 in reg-
ulating PIPKI�90 phosphorylation and cell invasion in breast
cancer cells.

It is generally believed that protein polyubiquitination is
sufficient for protein degradation (44, 45), but our findings
indicate that PIPKI�90 ubiquitination alone is insufficient
for its degradation. The phosphorylation-deficient mutant
PIPKI�90T553A,S555A cannot be degraded efficiently compared
with the WT and T553E,S555E mutant (Fig. 6, B–E). Moreover,
the S6K inhibitors DG2 and PF4708671 inhibited the degrada-
tion of PIPKI�90 but not that of PIPKI�90T553E,S555E. However,
substitution of Thr-553 and Ser-555 with alanine did not sup-
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press but, instead, enhanced PIPKI�90 ubiquitination (Fig. 7A).
Our data show that PIPKI�90 binds to 14-3-3 proteins, a family
of adaptor proteins that regulate protein degradation (46 – 48),
in a phosphorylation-dependent manner.3 However, although
a role for this interaction with 14-3-3 proteins may be involved,
it remains unknown how S6K1-mediated phosphorylation reg-
ulates PIPKI�90 degradation.

The suppressive role of the phosphorylation-deficient
mutant PIPKI�90T553A,S555A in cell migration provides a new
evidence for the role of PIPKI�90 degradation in cell migration.
Previous studies have demonstrated the essential role of
PIPKI�90 in the regulation of cell migration (14 –16). Our
recent study indicates that PIPKI�90 ubiquitination by
HECTD1 and subsequent degradation control FA dynamics
and cell migration. Here we show that the phosphorylation-
deficient mutant PIPKI�90T553A,S555A was resistant to degrada-
tion and inhibited migration behavior by suppressing direc-
tionality and net distance from origin in comparison with
PIPKI�90WT and PIPKI�90T553E, S555E (Fig. 2). Because of the
central role of FAs in cell migration, the FA defect in cells
expressing PIPKI�90T553A,S555A may contribute to its inhibi-
tion of cell migration (Fig. 2, D and E). The effect of
PIPKI�90T553A,S555A on FA formation is probably caused by its
enhanced stability, which interferes with talin binding to �
integrins and integrin activation. This is consistent with our
previous finding that PIPKI�90K97R, a degradation-resistant
mutant, had a diminished FA assembly rates (16).

As a downstream target of mTOR, the role of S6K1 in regu-
lating cell growth, survival, and metabolism has been well doc-
umented, whereas its role in cancer cell invasion and the down-
stream targets that mediate this process remain to be defined.
Previous studies have established a crucial role of PIPKI�90 in
cancer cell invasion (11, 14, 16). In this study, we demonstrated
that S6K1-mediated PIPKI�90 phosphorylation at Thr-553
and Ser-555 is indispensable for breast cancer cell invasion.
PIPKI�90T553A,S555A-expressing cells had a remarkably
decreased capability to invade through Matrigel. On the other
hand, cells expressing the WT and PIPKI�90T553E,S555E mutant
had similar invasive abilities (Fig. 3, A and B). This discrepancy
may, in part, be due to the negative charge of the carboxyl group
on the glutamate side chain, which could mimic the negative
charge on a phosphorylated threonine/serine of PIPKI�90.
However, alanine with a neutral methyl side chain could not
restore normal function of PIPKI�90 in cell invasion. Inhibition
of S6K1 by the S6K1 inhibitor DG2 or depletion of S6K1 using
shRNAs considerably diminished the invasion of MDA-MB-
231 cells (Fig. 3, C and E). Furthermore, inhibition of mTOR
using rapamycin also inhibited cell invasion (49). However,
depletion of Akt1 had a minimal effect on this function (Fig.
3G). Based on these findings and previous reports of the nega-
tive role of Akt1 in cell migration and invasion, we conclude
that, although both S6K and Akt1 can phosphorylate PIPKI�90,
only S6K has a major positive role in regulating breast cancer
cell invasion.

Matrix metalloproteinases-mediated matrix degradation is
critical for cell invasion (36 –38). However, the molecular
mechanisms that regulate this process are not entirely under-
stood. Our data show that PIPKI�90T553A,S555A, a degradation-
resistant mutant, had a significantly limited cellular ability to
mediate gelatin degradation. In contrast, cells expressing the
WT or PIPKI�90T553E,S555E mutant had similar abilities to
digest gelatin (Fig. 4, A and B). Moreover, PIPKI�90K97R, which
is an ubiquitination site mutant and is resistant to proteasome
degradation, was unable to restore the matrix degradation in
PIPKI�90-depleted cells (Fig. 7, E and F). Furthermore, deple-
tion of S6K1 by shRNA enhanced the stability of PIPKI�90 (Fig.
7B) but significantly reduced the cellular capability to degrade
the gelatin matrix (Fig. 4C). These data suggest that the S6K1-
PIPKI�90 pathway controls PIPKI�90 degradation to regulate
matrix degradation and cell invasion, probably through modu-
lating the secretion of matrix metalloproteinases (13).

Spatial and temporary production of PIP2 is crucial for cell
migration and invasion. This highly regulated PIP2 production
is controlled by PIPKI�90 ubiquitination and subsequent deg-
radation. However, PIPKI�90 ubiquitination alone is insuffi-
cient for its degradation; instead, the new data presented here
show that S6K1-mediated PIPKI�90 phosphorylation is also
necessary for the degradation of ubiquitinated PIPKI�90. S6K1
phosphorylates PIPKI�90 at Thr-553 and Ser-555 to mediate
the dynamic degradation of PIPKI�90, thus controlling FA
dynamics and matrix degradation and, consequently, cell
migration and invasion. Our findings uncover a new paradigm
for control of protein degradation, implying that a similar
mechanism may also occur in other systems and processes.

Experimental Procedures

Reagents—IgG-agarose was described previously (50). The
S6K1 inhibitor DG2 and anti-paxillin antibody (clone 5H11)
were from Millipore. The S6K1 inhibitor PF4708671 was from
ApexBio (Houston, TX). Akt inhibitor VIII was from Cayman
Chemical Co. The anti-RXRXXpS/T motif antibody (23C8D2),
anti-p70 S6 kinase antibody (49D7), anti-phospho-p70 S6
kinase (Thr(P)-389) antibody (9205), anti-S6 ribosomal protein
antibody (5G10), anti-phospho-S6 ribosomal protein (Ser(P)-
235/236) antibody (D57.2.2E), anti-Rsk2 antibody, and anti-
phospho-Rsk2 and (Ser(P)-227) antibody were purchased from
Cell Signaling Technology. The anti-PIPKI�90 polyclonal anti-
body (MAO-R1), anti-Akt1 antibody (Tyr-89), and anti-phos-
pho-Akt (Ser(P)-473) antibody (EP2109Y) were from Abcam.
Anti-FLAG M2-agarose beads, anti-tubulin antibody, and
pLKO1 lentivirus shRNAs that target PIPKI�90, S6K1, and
Akt1, respectively, were from Sigma. The PIPKI�90 shRNA
clone was TRCN0000037668 (A1). The S6K1 shRNA clones
were TRCN0000003158 and TRCN0000003159. The Akt1
shRNA clones were TRCN0000010174 and TRCN0000039793.
pBabe-Puro-Myr-FLAG-AKT1 was a gift from William Hahn
(Addgene plasmid 15294). pRK7-HA-S6K1-F5A-E389 was a
gift from John Blenis (Addgene plasmid 8988). DyLight 549
conjugated goat anti-mouse IgG (heavy�light chain) was from
Thermo Scientific. Alexa 488-labeled gelatin and Alexa 647-
phalloidin were from Life Technologies. Fibronectin was from
Akron Biotech. HGF, EGF, PDGF, and SCF were from Prospec,

3 N. Jafari, Q. Zheng, L. Li, W. Li, L. Qi, J. Xiao, T. Gao, and C. Huang, unpublished
data.
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Inc. Growth factor-reduced Matrigel was from BD Biosci-
ences. Pfu Ultra was from Agilent Technologies. The Safec-
tine RU50 transfection kit was purchased from Syd Labs
(Malden, MA). DNA primers were synthesized by Integrated
DNA Technologies.

Plasmid Construction—pZZ-PIPKI�90 and the codon-mod-
ified plasmids pZZ-PIPKI�90 and pBabe-ZZ PIPKI�90 were
described previously (16, 50). The codon-modified plasmids
pZZ-PIPKI�90T553A,S555A and -PIPKI�90T553E,S555E were gen-
erated by Pfu Ultra-based PCR using the codon-modified pZZ-
PIPKI�90 as a template and 5�-cgg tac agg cgg cgc gca cag gcg gct
gga cag gat ggc agg-3�/5�-cct gcc atc ctg tcc agc cgc ctg tgc gcg ccg
cct gta ccg-3� and 5�-cgg tac agg cgg cgc gaa cag gag tct gga cag gat
ggc agg-3�/5�-cct gcc atc ctg tcc aga ctc ctg ttc gcg ccg cct gta ccg-3�
as primers, respectively. The codon-modified pBabe-ZZ-
PIPKI�90T553A,S555A and pBabe-ZZ-PIPKI�90T553E,S555E were
made by sequentially digesting the codon-modified pZZ-
PIPKI�90T553A,S555A and -PIPKI�90T553E,S555E with Age1,
blunting with Klenow, and digesting with Sal1. The smaller
fragments were subcloned into the pBabe-neo vector that had
been treated with BamH1, Klenow, and Sal1. pFLAG-PIPKI�90
was generated by PCR amplifying PIPKI�90 using pEGFP-
PIPKI�90 as a template and 5�-aat tat aga tct atg gag ctg gag gta
ccg gac gag-3�/5�-ata tat gaa ttc tta tgt gtc gct ctc gcc gtc gga-3�
as primers. The PCR products were digested with BglII and
EcoR1 and inserted into the pFLAG-C1 vector cut with the
same enzymes. pFLAG-PIPKI�90T553A, -PIPKI�90S555A, and
PIPKI�90T553A,S555A were generated by Pfu Ultra-based PCR
using pFLAG-PIPKI�90 as a template and 5�-cgg tac agg cgg
cgc gca cag tcg tct gga cag gat ggc agg-3�/5�-cct gcc atc ctg tcc
aga cga ctg tgc gcg ccg cct gta ccg-3�, 5�-cgg tac agg cgg cgc aca
cag gcg tct gga cag gat ggc agg-3�/5�-cct gcc atc ctg tcc aga cgc
ctg tgt gcg ccg cct gta ccg-3�, and 5�-cgg tac agg cgg cgc gca cag
tcg tct gga cag gat ggc agg-3�/5�-cct gcc atc ctg tcc aga cga ctg
tgc gcg ccg cct gta ccg-3� as primers, respectively. pDendra2-
PIPKI�90WT, -PIPKI�90T553A,S555A, and -PIPKI�90T553E,S555E

were generated by digesting the fragments from pFLAG-
PIPKI�90 and the Thr-553 and Ser-555 mutants using BglII and
EcoRI and subcloning into pDendra2 vectors. pGEX-4T-3-
PIPKI�90501–668, -PIPKI�90501–668

T553A, - PIPKI�90501–668
S555A,

and PIPKI�90501– 668
T553A,S555A were constructed by PCR-am-

plifying the fragments encoding residues 501– 668 using prim-
ers 5�-aat ttg gat ccg agg acg aag gcc ggc c-3�/5�-ata tat gaa ttc tta
tgt gtc gct ctc gcc gtc gga-3� and templates pFLAG-PIPKI�90,
-PIPKI�90T553A, - PIPKI�90S555A, and PIPKI�90T553A,S555A,
respectively. The PCR products were digested with BamH1 and
EcoR1 and inserted into the pGEX-4T-3 vector digested with
the same enzymes. All plasmids were sequenced by Eurofins
MWG Operon (Huntsville, AL).

Cell Culture and Transfection—CHO-K1 cells, MDA-MB-
231 and MDA-MB-468 human breast cancer cells, and 293T
human embryonic kidney cells were from the American Type
Culture Collection and were maintained in DMEM (Sigma)
containing 10% FBS, penicillin (100 units/ml), and streptomy-
cin (100 �g/ml). CHO-K1 and 293T cells were transfected with
Safectine RU50 according to the protocol of the manufacturer.

Preparation of Viruses and Cell Infection—293T cells were
transfected with the pBabe retroviral or pLKO1 lentiviral sys-

tem using Safectine RU50 transfection reagent according to the
protocol of the manufacturer. The virus particles were applied
to overnight cultures of breast cancer cells for infection. Cells
that stably express pLKO1 lentiviral shRNAs were obtained by
selecting the infected cells with 1 �g/ml puromycin, and cells
that were infected with pBabe retroviruses were stabilized by
growing infected cells in the presence of 0.7 mg/ml neomycin
for 10 days.

PIPKI�90 Phosphorylation—FLAG-PIPKI�90 (or mutants)
was co-transfected with an empty vector or a plasmid express-
ing active kinase into CHO-K1 cells. The cells were lysed with
radioimmune precipitation assay buffer (50 mM Tris-HCl (pH
7.5), 150 mM NaCl, 1% IPEGAL, 0.5% deoxycholate, and 5 mM

EDTA) containing protease inhibitor mixture and phosphatase
inhibitor mixture. FLAG-PIPKI�90 was immunoprecipitated
with anti-FLAG-agarose beads. The immune complexes were
analyzed by SDS-polyacrylamide gel electrophoresis and trans-
ferred to a nitrocellulose membrane. PIPKI�90 phosphoryla-
tion was detected with an anti-RXRXXpS/T motif antibody. To
detect PIPKI�90 phosphorylation in breast cancer cells, cells
stably expressing FLAG-PIPKI�90 were treated with Akt or
S6K1 inhibitor and then stimulated with growth factors. FLAG-
PIPKI�90 was immunoprecipitated, and PIPKI�90 phosphory-
lation was detected as described above.

PIPKI�90 Degradation—CHO-K1 cells stably expressing
BirA were transfected with Avi-PIPKI�90, Avi-PIPKI�90T553A,S555A,
and Avi-PIPKI�90T553E,S555E. The cells were incubated with
500 �M biotin for 2 h, washed with PBS, and cultured in
normal culture medium containing 200 �g/ml Avidin. The
cells were lysed at different time points, and the levels of
biotin-labeled PIPKI�90 (or mutants) were detected with
Dylight 680-streptavidin.

Live Cell Imaging and Dendra2-PIPKI�90 Degradation—
CHO-K1 cells were transiently transfected with Dendra2-
PIPKI�WT, -PIPKI�T553A,S555A, and -PIPKI�T553E,S555E and
cultured in fibronectin-coated glass-bottom dishes. Time-lapse
live cell imaging was conducted on a Nikon A1 R microscope.
Before excitation, there should not be any red Dendra2-emis-
sion signal visible. Photoconversion was performed at 	100
magnification with near-UV irradiation (408 nm) for 120 s.
Green-to-red photoconversion was monitored in real time
using a 561-nm channel. Images were captured at 20-min inter-
vals and analyzed using NIS-Elements software.

Ubiquitination Assays—Avi-ubiquitin was co-transfected
with ZZ-PIPKI�90, -PIPKI�90T553A,S555A, and -PIPKI�90T553E,S555E

and co-transfected with an ubiquitin ligase or an empty vector
into CHO-K1 cells stably expressing EGFP-BirA (50). 24 h post-
transfection, cells were incubated with 500 �M biotin, 1 �M

bortezomib, and 1 �M carfilzomib for 6 h and then scraped in
PBS. The cells were spun down, lysed with 150 �l of 1	 SDS
sample buffer (without 2-mercaptoethanol) containing prote-
ase inhibitor mixture and bortezomib/carfilzomib and boiled
immediately. The lysates were cleared, diluted to 1 ml, and
incubated with rabbit IgG-Sepharose beads at 4 °C for 2 h to
precipitate ZZ-tagged PIPKI�90 (or the mutants). The beads
were washed and analyzed by SDS-PAGE and Western blotting
as above. The ubiquitination of the ZZ domain fusion protein
was detected with Dylight 680-Streptavidin, whereas the
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expression of the ZZ domain fusion protein was probed with
Dylight 680-rabbit IgG.

In Vitro PIPKI�90 Activity Assays—PIPKI�90 activity was
measured as described previously (11). Briefly, pZZ-PIPKI�90,
pZZ-PIPKI�90K188,200R, pZZ-PIPKI�90T553A,S555A, and pZZ-
PIPKI�90T553E,S555E were transiently expressed in CHO-K1
cells and immunoprecipitated with IgG-agarose beads (50).
The beads were washed and incubated with 100 �l of a kinase
buffer containing 100 �M PI(4)P for 30 min at 37 °C. PIP2
formed in these assays was extracted as described previously
(51) and separated by silicon TLC. PIP2 was visualized by auto-
radiography and quantitated by a Beckman liquid scintillation
counter.

Cell Migration Assays—Cells were treated with trypsin and
resuspended in DMEM containing 1% FBS and 10 ng/ml EGF,
plated at low densities on glass-bottom dishes (Cellvis) coated
with 5 �g/ml fibronectin, and cultured for 3 h in a CO2 incuba-
tor. Cell motility was measured with a Nikon Biostation IMQ.
Cell migration was tracked for 6 h. Images were recorded every
10 min. The movement of individual cells was analyzed with
NIS-Elements AR (Nikon) as described previously (16).

Focal Adhesion Staining—MDA-MB-231 cells were infected
with lentiviruses that express PIPKI� shRNA (A1) to deplete
endogenous PIPKI�, infected with retroviruses that express
pBabe-FLAG-PIPKI�90WT or FLAG-PIPKI�90T553A,S555A, and
selected with neomycin (0.7 mg/ml). The cells were trypsinized
and plated on glass-bottom dishes that had been precoated with
fibronectin (5 �g/ml). The cells were cultured for 4 h. The cells
were fixed with 4% paraformaldehyde for 15 min, permeabi-
lized for 15 min with 0.5% Triton X-100, and then blocked with
5% BSA in PBS for 1 h. The cells were then incubated with a
rabbit polyclonal anti-PIPKI� antibody and a mouse monoclo-
nal anti-paxillin antibody, washed with PBS, and then incu-
bated with a Dylight480-labeled goat anti-rabbit and a
Dylight550-labeled goat anti-mouse secondary antibody. After
washing with PBS, the images of PIPKI� and paxillin were
acquired with a Nikon Eclipse Ti TIRF microscope equipped
with a 	60, 1.45 numerical aperture objective, CoolSNAP HQ2
charge-coupled device camera (Roper Scientific). Focal adhe-
sion area distribution was analyzed with Nis-Elements.

Invasion Assays—One hundred microliters of Matrigel (1:30
dilution in serum-free DMEM) was added to each Transwell
polycarbonate filter (6-mm diameter, 8-�m pore size, Costar)
and incubated with the filters at 37 °C for 6 h. Breast cancer cells
were trypsinized and washed three times with DMEM contain-
ing 1% FBS. The cells were resuspended in DMEM containing
1% FBS at a density of 5 	 105 cells/ml. The cell suspensions
(100 �l) were seeded into the upper chambers, and 600 �l of
DMEM containing 50 ng/ml HGF were added to the lower
chambers. The cells were allowed to invade for 12 h (or as indi-
cated) in a CO2 incubator, fixed, stained, and quantitated as
described previously (11).

Gelatin Degradation Assays—Gelatin degradation assays
were performed as described previously (52). Briefly, glass-bot-
tom dishes were coated with warm Alexa 488-conjugated gela-
tin (0.2 mg/ml) in PBS containing 2% sucrose. The coated
dishes were dried, fixed with prechilled glutaraldehyde solution
(0.5%), washed with PBS, and then reduced with 5 mg/ml of

sodium borohydride in PBS. The dishes were washed exten-
sively with PBS and then incubated with DMEM containing
10% FBS and antibiotics for 1 h. Cells were plated at low density
to the dishes and cultured for 12 h, fixed with 4% paraformal-
dehyde, permeabilized with 0.5% Triton X-100 and stained with
cortactin or Alexa 647 phalloidin. Images were acquired using a
TIRF microscope and analyzed with NIS Elements software.

Gel Data Quantification—Gel data were quantified by ana-
lyzing inverted images using ImageJ as described previously
(21). Data from different experiments were normalized to con-
trols. If values from different experiments had a high variation,
then datasets were further normalized by dividing the numbers
in a dataset with a factor (e.g. 2) so that the biggest values from
different experiments were similar.
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