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Abstract

“Can this number be interpreted as a causal effect?” is a key question for scientists and decision 

makers. The potential outcomes approach, a quantitative counterfactual theory, describes 

conditions under which the question can be answered affirmatively. This article reviews one of 

those conditions, known as consistency, and its implications for real world decisions.

Introduction

Long gone are the times when causality was the exclusive realm of philosophers and 

theologians. Today’s scientists embrace causal inference explicitly as a legitimate endeavor. 

To make causal inferences, scientists do what they do best: they generate numbers. To 

understand the conditions under which those numbers can be interpreted as causal effects, 

scientists use a quantitative counterfactual theory which is often referred to as the potential 

outcomes approach. (This paper will treat “quantitative counterfactual theory” and “potential 

outcomes approach” as equivalent terms; finer distinctions between them may be proposed 

but are of little relevance for our discussion.) This theory was formalized by Neyman1 for 

randomized experiments, extended to nonexperimental—or observational—studies with 

time-fixed treatments by Rubin,2,3 and generalized to randomized and observational settings 

with time-varying treatments by Robins.4,5

The potential outcomes approach provides conceptual definitions and supports analytic 

methods for researchers interested in producing and interpreting numerical estimates of 

causal effects. However, the potential outcomes approach is not universally accepted. In this 

issue of the journal, Schwartz and collaborators6 criticize some restrictions imposed on 

causal inference by quantitative counterfactual theory. A recent article warns that the 

potential outcomes approach is damaging and “hardline”, is based on “a restrictive set of 

convictions”, makes “imperious claims”, and “cannot explain how [other approaches 

work]”.7 Others have said that the potential outcomes approach is “socially conservative”, 

because “it neglects, discourages, and dismisses […] radical change.”8 The critics of 

quantitative counterfactual theory make it look narrow-minded, arrogant, and even 

reactionary.

This commentary is based on a talk delivered at the John Snow Lecture Theatre, London School of Hygiene and Tropical Medicine, 
during the UK Causal Inference Meeting, April 14th, 2016
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This paper is an attempt to address those criticisms, and to clarify three common 

misunderstandings. Several colleagues have recently written lucid commentaries that, with 

different emphases, address these issues too.9–12

As we will see, a first misunderstanding occurs because the potential outcomes approach 

explicitly highlights the inherent vagueness of all causal questions. In a perfect example of a 

shoot-the-messenger attitude, some critics have used this transparency of the approach as 

ammunition against it.

A second misunderstanding arises when critics ask too much from quantitative 

counterfactual theory. The potential outcomes approach is concerned with questions of the 

sort “what is the average causal effect of A on Y?” in a particular setting. The answer to 

these questions is a number (or several numbers) plus a statistical measure of uncertainty. In 

contrast, philosophical discussions about causality often revolve about questions of the sort 

“is A a cause of Y?” The answer to these questions is ‘yes’ or ‘no’, not a number. The 

potential outcomes approach does not privilege a particular definition of “cause” and 

therefore may not necessarily provide definite yes/no answers to questions about causes.11

A third misunderstanding is the idea that the potential outcomes framework restricts causal 

inference to the effects of humanly feasible, or practicable, interventions.13 This is not 

necessarily the case. Much of the trepidation about the potential outcomes approach 

dissolves after clarifying that the framework is not restricted to feasible interventions.

To help clarify these misunderstandings, we first review the definition of causal contrast and 

its reliance on a fundamental condition for causal inference from observational data: 

consistency. Then we dissect the components of the consistency condition and their 

implications for estimating causal effects. After briefly discussing the role of two other 

commonly used conditions (exchangeability and positivity) for causal inference from 

observational data, we propose a taxonomy of causal questions and their political 

implications. The goal is to clarify the role of a quantitative counterfactual theory for causal 

inference in both scientific and policy settings.

Causal contrasts

Questions about the causal effect of a treatment A on an outcome Y in a particular 

population can be expressed in terms of counterfactual contrasts. For example, we say that 

the average causal effect of the binary treatment A on the outcome Y is E[Ya=1] − E[Ya=0], 

where Ya=1 is the (counterfactual or potential) outcome that would have been observed if an 

individual had received treatment level a=1, Ya=0 is the outcome that would have been 

observed if an individual had received treatment level a=0, and E[Ya] is the mean of Ya in 

the population of interest. For simplicity, we will assume that the population and the 

outcome Y of interest are well defined, and that no measurement error and no 

interference14,15 exist.

The potential outcomes approach is used to estimate the numerical value of average causal 

effects like E[Ya=1] − E[Ya=0]. A non-zero average causal effect E[Ya=1] − E[Ya=0] ≠ 0 can 

be viewed as a sufficient, but not necessary, condition for A to be "a cause".11 Therefore, a 
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counterfactual contrast like E[Ya=1] − E[Ya=0] can be used to define causal effects, but it 

cannot generally be used to identify causes because it cannot encompass all definitions of 

the term “cause.”

Suppose that we have identified a population (e.g., London residents in 1854) and that we 

are interested in estimating the average causal effect of exposure to water A on their risk of 

death Y over the next week. Specifically, say we are interested in whether exposure to water 

has a non-null average causal effect on their risk of death. That is, we ask the question “does 

water kill”? This question is, of course, problematic. What do we mean by exposure to 

water? A tsunami, a jump in the Thames, a hot bath, a water injection, drinking water from a 

particular source?

The inadequacy of the “does water kill?” question is even more obvious when we try to 

interpret the meaning of the counterfactual outcome Ya=1: an individual’s 1-week survival 

under exposure to water. Again, which form of exposure to water? The counterfactual 

outcome is ill-defined because it can mean too many different things, and therefore the 

average causal effect E[Ya=1] − E[Ya=0] is ill-defined too. For the same reasons, the causal 

diagram A → Y is uninterpretable. The interpretation of counterfactual contrasts requires a 

relatively unambiguous definition of the meaning of a=1 and a=0, a requirement referred by 

some of us as “well-defined interventions”.

Yet a couple of recent commentaries6,7 express serious reservations about the emphasis on 

“well-defined interventions” a in observational research. For them, this emphasis is 

sometimes misguided, if not outright reprehensible. In order to analyze the sources of this 

disagreement, let us start with what we agree on: the question “does water A kill?” is very 

vague because the potential outcomes (Ya=1, Ya=0) are very ill-defined. Alternatively, we 

can say that consistency, a key condition for the identifiability of causal effects from 

observational data, does not even approximately hold.

The consistency condition has been widely discussed in the statistical and epidemiologic 

literature.16–19 In its simplest form, it is stated as Ya=Y for every individual with A=a. That 

is, among individuals who received treatment level A=a, their potential outcome Ya under 

treatment level a is equal to their observed outcome Y. The apparent simplicity of the 

consistency condition is deceptive. In the next two sections, we unpack consistency by 

explicitly describing its two main components:3 (1) the definition of the interventions a, and 

(2) their linkage to the data.

Component #1 of consistency: Sufficiently well-defined interventions

Let us start by discussing the causal effect of water on death. We will then extend our 

discussion to more pressing questions about the causal effect of factors like obesity and high 

blood pressure.

The treatment “water”

Consider the question “does exposure to water have a non-null average causal effect on the 

1-week risk of death among London residents in 1854”? or, for brevity, “does water kill?” in 
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this population. Since we agree this question is too vague, let us make it more precise. Say 

that we are not considering drowning by immersion or trauma by a flash flood, but rather 

ingesting water through one’s mouth. Thus the question can be rephrased as

• Version #2. Does drinking water kill?

We mean fresh water, not salty water.

• Version #3. Does drinking fresh water kill?

How much water? 1000 liters per day will kill you.

• Version #4. Does drinking a swig of fresh water kill?

What is the source of the water? Tap, fountain, directly from the river…

• Version #5. Does drinking a swig of water from the Broad Street pump 

kill?

Over which period?

• Version #6. Does drinking a swig of water from the Broad Street pump 

between August 31 and September 10 kill?

Ok, compared with what? With drinking 3 liters of beer?

• Version #7. Does drinking a swig of water from the Broad Street pump 

between August 31 and September 10 kill compared with drinking all your 

water from other pumps?

What about other factors that may affect the causal effect of interest?

• Version #8. Does drinking a swig of water from the Broad Street pump 

between August 31 and September 10 and not initiating a rehydration 

treatment if diarrhea starts kill, compared with drinking all your water 

from other pumps?

And so on. The process of precisely specifying a never ends. Version #1,000,000 would be 

very long but still imprecise. It is impossible to provide an absolutely precise definition of a 

version of treatment.19,20

On the one hand, this is problematic because, when there are multiple versions of a and 

different versions lead to different outcomes, causal effects are not well-defined. On the 

other hand, the problem is not as serious as it seems because absolute precision in the 

definition of the versions of treatment is not needed. Further specification of versions of 

treatment is required only until no meaningful vagueness remains.17,20 For example, 

scientists agree that the speed of the water from the pump, or the color of the clothes worn 

while drinking the water, need not be specified. Those aspects are deemed to be irrelevant 

because varying them would not lead to different mortality outcomes. That is, we only need 

sufficiently well-defined versions of treatment a for a meaningful interpretation of both the 

potential outcomes Ya and of the counterfactual contrasts that involve them.

Which begs the question of “How do we know that a version of treatment is sufficiently 

well-defined” or, equivalently, that no meaningful vagueness remains? The answer is “We 
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don’t”. Declaring a version of treatment sufficiently well-defined is a matter of agreement 

among experts based on the available substantive knowledge. Today we agree that the speed 

of the water coming out of the pump is irrelevant for the risk of death from drinking it, but 

future research might prove us wrong if it is demonstrated that high-speed water alters the 

virulence of the cholera bacterium.

This is an intrinsic feature of causal inference: the articulation of causal questions is 

contingent on domain expertise and informal judgment. What we view as a scientifically 

meaningful, relatively well-defined causal question at present may turn out to be viewed as 

too vague in the future after learning that finer components of the versions of a affect the 

outcome and therefore the magnitude of the causal effect. The best we can do is to specify 

the versions of treatment with as much detail as we believe necessary, which is precisely 

what the protocols of randomized experiments do.

In fact, when analyzing observational data, we can imagine the hypothetical randomized 

experiment that we would have liked to conduct—the target experiment or target trial—to 

estimate the causal effect of interest. Specifying the protocol of the target trial21–23 is a 

device to assist us to ask sharper causal questions. The versions of treatment that we are 

interested in become the interventions that would be implemented in the target trial (hence 

the use of the expression “well-defined interventions” interchangeably with “well-defined 

versions of treatment”). In principle, the interventions do not need to be humanly feasible or 

practicable, only sufficiently well-defined (more about this later). The anchoring of causal 

inferences to target trials has been more or less explicitly suggested by many authors, 

including Cochran,24 Rubin,3 Feinstein,25 Dawid,26 and Robins.4,5

Despite the above disclaimers being explicitly made in previous papers on this topic,19,20,27 

some critics have chosen to argue that the condition of well-defined interventions must be 

incorrect because no intervention can be perfectly well-defined.7 This is the first 

misunderstanding mentioned in the Introduction. Obviously, if perfectly well-defined 

interventions were necessary, science would be paralyzed. Causal inference from either 

randomized experiments or observational data would be impossible. Imagine specifying, 

with absolute precision, how you would inject certain chemical into a mouse to quantify the 

effect of the chemical on mouse cancer. Such absolute precision would require that one 

specify the angle of the needle, the brand of the needle, the temperature of the needle, the 

force exerted by your thumb, whether you use the right or left thumb... Again, only 

“sufficiently well-defined interventions” are required, where the determination of an 

intervention being sufficiently well-defined is a matter of expert agreement.

Let us summarize what we have concluded about the question “does water kill?”:

1. The original question was hopelessly vague because there are many 

possible versions of the treatment “water”.

2. Certain degree of vagueness remains despite our efforts to refine the 

versions of treatment. However, experts are more comfortable with version 

#8 than with versions #1 and #2.
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3. Experts believe that many versions of treatment are irrelevant (for 

example, the speed at which water flowed) and therefore they do not 

bother to specify them.

The “effect of exposure to water A=a” is a silly expression that leads to an uninterpretable 

potential outcome Ya. The example was chosen precisely because its silliness is 

uncontroversial (and as an homage to John Snow in the London lecture hall named after 

him). The next step is to argue that what we have concluded about “the effect of exposure to 

water” applies to many other treatments or exposures with multiple versions.

Compound treatments with multiple versions

Consider the question “does obesity have a non-null average causal effect on the 10-year risk 

of death among United States residents in 2016?” or, for brevity, “does obesity shorten 

life?”28 in this population. Say that we define obesity as having a body mass index greater 

than or equal to 30 kg/m2 (you can replace BMI by your favorite measure of adiposity) and 

consider the following refinements to the question:

• Version #2. Does having a BMI≥30 shorten life?

• Version #3. Does having a BMI≥30 between ages 40 and 50 shorten life?

• Version #4. Does attaining a BMI=30 at age 40 and keeping a BMI≥30 

between ages 40 and 50 shorten life?

• Version #5. Does having a BMI=24 at age 18, progressively gaining 

weight until attaining a BMI=30 at age 40 and keeping a BMI≥30 between 

ages 40 and 50 shorten life?

• Version #6. Does having a BMI=24 at age 18, progressively gaining 

weight until attaining a BMI=30 at age 40 and keeping a BMI≥30 between 

ages 40 and 50 shorten life compared with the same lifetime course until 

age 40 followed by progressive weight loss until attaining BMI=24 at age 

50?

And so on. Each new version imposes additional restrictions on the specification of the 

target trial, but an absolutely precise specification is impossible. In fact, the above list of 

versions only scratches the surface. We did not specify, for example, how body weight is 

modified. This is a fundamental component of the definition of the treatment a in a 

randomized experiment because the value of the outcomes Ya may vary depending on 

whether weight changes are achieved via interventions on diet, exercise, genes, microbiota, 

cigarette smoking, amputation, bariatric surgery, etc.28 Again, anchoring causal inferences to 

a target trial helps sharpen the specification of the interventions of interest in observational 

analyses.

A sufficiently well-defined intervention needs to specify the start and end of the 

intervention, and the implementation of its different components over time. Each version in 

the list above is the result of making a particular decision about those aspects of the 

intervention (which are key to the specification of the target trial). Different scientists may 

disagree about these decisions. If our colleagues are interested in the effect of weight 
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changes throughout the entire lifetime as opposed to between ages 40 and 50 only, they will 

propose different versions and, when conducting or emulating their target trial, they may 

obtain numerical estimates of causal effect that differ from ours. When the target trial is not 

specified, these numerical differences may muddle scientific discussions about replication of 

results and triangulation of evidence.

Let us continue this line of reasoning. If we provide version #2 to 100 scientists and ask 

them to design a target trial, we may end up with 100 very different trials and 100 very 

different effect estimates.29 In contrast, if we provide version #6 (or, better, version #45) to 

100 scientists, we would expect more similar target trials and effect estimates. The more 

precisely we define the versions, the fewer opportunities for miscommunication among 

scientists exist when numerical estimates do not agree.

At this point some readers may rightly note that the process of specifying the interventions 

has altered the original question. Version #6 is not about the causal effect of obesity any 

more, but about the causal effect of somehow losing weight between ages 40 and 50. Had we 

specified that the weight loss is achieved through severe caloric restriction, then we would 

be talking about the causal effect of caloric restriction between ages 40 and 50 rather than 

the causal effect of obesity. In this example, the more we focus on giving a relatively well-

defined causal interpretation to our numerical estimates, the farther from the original 

question we seem to get.

But that is a good thing. Forcing us to refine the causal question, until it is agreed that no 

meaningful vagueness remains, is an essential contribution of quantitative counterfactual 

theory to science. In our previous example, we moved from the hopelessly vague “causal 

effect of water on death” to the better defined “causal effect of drinking a swig water from 

the Broad Street pump on death,” which is different from the “causal effect of drinking a 

swig of seawater on death.” We similarly move from the “causal effect of obesity on death” 

to the “causal effect of weight changes via caloric restriction between ages 40 and 50 years 

on death,” which is different from the “causal effect of weight changes via heavy cigarette 

smoking between ages 20 and 60.”

This discussion again highlights the reliance of the term “sufficiently well-defined 

interventions” on expert consensus, which by definition changes over time. During many 

centuries, the existence of a causal effect of yellow bile on health appeared self-evident for 

most physicians; today we do not even believe that yellow bile exists. A few decades after 

his time, John Snow would have asked his causal question about pump water in terms of the 

Vibrio cholerae bacterium. A few decades from now, scientists will probably refine our 

obesity question in terms of cellular modifications which we barely understand at this time.

Our discussion applies to any compound treatment A with multiple relevant versions, like 

obesity and high blood pressure. Rather than presupposing that “the average causal effect of 

A on death” is a well-defined quantity, the potential outcomes approach encourages us to 

formulate questions in such a way that the numerical effect estimates can be causally 

interpreted.
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Yet the rejection of hopelessly ill-defined causal questions by the quantitative counterfactual 

theory is troubling for some people, as some recently published criticisms show. To these 

authors, it is self-evident that obesity may causally affect mortality, possibly because they 

believe in the existence of some hypothetical intervention on obesity that does not depend on 

its timing or mechanism, even if they cannot specify the actual nature of the intervention. 

Hence these authors view the potential outcomes approach as a straightjacket that prevents 

them from declaring that obesity is a cause. This is the second misunderstanding mentioned 

in the Introduction.

The potential outcomes approach was not designed to determine whether A is or is not a 

cause, but to quantify the magnitude of the causal effect of A on Y. This quantification is 

only possible when the interventions are sufficiently well-defined as argued above. In the 

absence of sufficiently well-defined interventions, the potential outcome approach is 

agnostic about causality. That is, the potential outcomes approach does not prohibit us from 

labeling obesity as a cause of death; it just reminds us that any numerical estimate we obtain 

for the average causal effect of obesity on death will be hard to interpret.

These interpretability problems are exacerbated in scientific disciplines, including 

epidemiology, that use observational analyses to handle complex causal questions for which 

precisely defined contrasts are not available yet.

But the specification of sufficiently well-defined interventions only ensures the first 

component of consistency. A relatively unambiguous interpretation of numerical estimates 

also requires the second component of consistency.

Component #2 of consistency: Linkage between interventions and the data

Suppose the interventions of interest are sufficiently well-defined. We can now proceed to 

conduct the target trial that implements those interventions or, if that is not feasible, to 

emulate the target trial using observational data. To do so, we need to have data with 

versions of treatment that correspond to the interventions of interest. As an extreme 

example, if we had prospective data from a human population exposed to water in varying 

degrees during a tsunami, we could not reasonably use those data to estimate the effect of 

exposure to water taken from the Broad Street pump.

Analogously, suppose we have observational data from a population of 50-year old humans 

in which some individuals became obese because of interactions between their genes, gut 

bacteria, and environmental exposures throughout their lifetimes. We do not expect that the 

10-year risk of death in individuals who became obese through these mechanisms equals the 

10-year risk of death of individuals who became obese through a decade of smoking 

cessation and physical inactivity. Therefore, we would not use those data to quantify the 

effect of hypothetical public health interventions on smoking and physical activity.

This is all about the equal sign in the consistency condition Ya=Y. Sufficiently well-defined 

interventions a allow us to interpret the potential outcome Ya, but not necessarily to obtain 

an effect estimate from a dataset in which the existing versions of treatment cannot be linked 

to the interventions a. In that case, an individual’s potential outcome Ya is not guaranteed to 
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equal her observed outcome Y. Ill-defined interventions like “exposure to water”, “obesity”, 

“high blood pressure”, etc. do not allow us to interpret causal effect estimates, and neither do 

well-defined interventions in the absence of appropriate data. But unless we sufficiently 

define the interventions, we will be unable to detect a mismatch between the interventions of 

interest and the data at hand. Previous articles offer a more rigorous discussion of causal 

inferences concerning compound treatments with multiple versions.19,30

One way out of this problem is to assume that the effects of all versions of treatment are 

identical or at least all in the same direction. In some cases, this may be a reasonable 

assumption. For example, if interested in the average causal effect of high vs. normal blood 

pressure on stroke, empirical evidence suggests that lowering blood pressure through 

different pharmacological mechanisms results in similar outcomes. We might then argue that 

a precise definition of the versions of the treatment “blood pressure”, as well as a detailed 

characterization of the versions present in the data, is unnecessary in order to link the 

potential and observed outcomes. In other cases, however, the assumption seems to go 

against the available evidence. For example, if interested in the average causal effect of 

weight maintenance on death, empirical evidence suggests that some interventions would 

increase the risk (e.g., continuation of smoking) while others would decrease it (e.g., 

moderate exercise).

Any scientific discussion about whether all or some versions of treatment lead to the same 

causal conclusion rests, again, on expert consensus and judgement. Because experts are 

fallible, the best we can do is to make these discussions—and our assumptions—as 

transparent as possible, so that others can directly challenge our arguments.

Exchangeability and positivity

There is an additional reason why it is important to define and identify the versions of 

treatment when estimating average causal effects by emulating a target trial from an 

observational dataset: the versions of treatment are not randomly assigned and each of them 

may be partly determined by different factors. For example, caloric intake is affected by 

physical activity level, which has a direct effect on mortality and is therefore a confounder 

for the effect of caloric intake on mortality. Therefore, to identify the average causal effect 

on death of interventions to reduce obesity via different levels of caloric restriction, we 

would need to adjust for physical activity. And to identify the average causal effect on death 

of interventions to reduce obesity via different levels of physical activity, one would need to 

adjust for confounders for the effect of physical activity, which will generally differ from the 

confounders for caloric intake. The set of confounders required to achieve conditional 

exchangeability depends on the intervention and outcome of interest,28 and the same goes 

for the set of confounders over which positivity is required. The formal expression of the 

conditions of exchangeability and positivity (sometimes jointly referred to as ignorability) 

under multiple versions of treatment are similar to that of the conditions for the 

identification of direct effects.30

We need to know the interventions of interest for a successful emulation of a target trial that 

intervenes on them, that is, to adjust for confounding. Suppose we consider the ill-defined 
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treatment “obesity” and we compare the 10-year death risk of obese vs. nonobese 

individuals conditional on their history of physical activity, diet, and cigarette smoking. 

Then the estimated association corresponds to the effect of other versions of treatment, such 

as genes, microbiota, and environmental exposures (or to measurement error in the 

adjustment variables). Because these other versions of treatment may not be directly 

manipulable, estimating their effect is not of primary interest for those who need to make 

decisions about clinical or policy interventions that are available at this time. This 

observation leads naturally to an exploration of the third misunderstanding mentioned in the 

Introduction.

A taxonomy of well-defined interventions and their political implications

Suppose our goal is to estimate the average causal effect of a treatment A on an outcome Y 
using observational data. Because the interpretation of numerical estimates of the average 

causal effect requires sufficiently well-defined interventions, we carefully specify the 

interventions a that define the potential outcome Ya. We can now classify these interventions 

as either (a) absent in the data or (b) present in the data.

If the interventions of interest are absent in the data, then our effect estimates cannot be 

directly linked to the causal questions of interest. Achieving that linkage requires that one 

bridge the empirical void between the potential and observed outcomes with theoretical 

knowledge.31 An extreme option is to assume no direct effects or treatment-variation 

irrelevance17: the effect of the versions of treatment we are interested in is the same as the 

effect of the versions that actually occur in the data. A less extreme option is to combine the 

existing observational data with parametric assumptions to build a dynamic, mechanistic 

model for causal inference.

Of course, even when the interventions can be linked to the data, causal inference generally 

involves the combination of observational data with the untestable assumptions of 

exchangeability and positivity. But the lack of a linkage between the interventions of interest 

and the treatment versions requires qualitatively different assumptions about the mechanisms 

that bring about the outcome in the real-world. These additional assumptions can be 

encoded, for example, into the parameters of agent-based models or microsimulation 

models. These models are designed to compare the distribution of potential outcomes under 

various interventions and therefore fall squarely within the quantitative counterfactual theory 

framework.32,33

The interventions a can also be classified as (1) infeasible or (2) feasible. An example of 

sufficiently well-defined, but infeasible, interventions arises when considering the causal 

effect of a genotype. The implicit intervention is inserting or replacing a sequence of DNA at 

conception without altering any other components of the embryo. Because this intervention 

approximately corresponds to what happens at conception (perhaps conditional on the 

composition of neighboring pieces of DNA), it can be argued that the intervention is 

approximately present in the data. Therefore, we say that these genetic interventions are 

sufficiently well-defined and we feel comfortable providing a causal interpretation for the 

numerical estimates of effect. That is, because these genetic variations are present in the 
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data, we can empirically obtain those interpretable numerical estimates under 

exchangeability and positivity.

Though sufficiently well-defined interventions do not need to be feasible or practicable for 

causal effects to be numerically interpretable, the determination of feasibility needs to be 

constantly updated. For example, genetic engineering of the sort implied by the above 

genetic interventions has been traditionally impossible to implement, but new genome 

editing tools (e.g., CRISPR-Cas9) may soon render obsolete the characterization of genetic 

interventions as technically infeasible. (Ethical constraints for genome editing will remain, 

but that is another story.)

Infeasible interventions, by definition, come with two problems. First, causal predictions 

about infeasible interventions cannot yet be verified by conducting a randomized 

experiment. Second, infeasible interventions do not necessarily translate into actionable 

causal inferences because the interventions cannot yet be implemented in practice.34

Therefore, if our goal were to bring about urgent change in the world, estimating the causal 

effect of infeasible interventions would not be the optimal approach. When we adopt the 

perspective of a decision-maker (e.g., physician, patient, public health officer, policy-maker, 

political activist) who needs to make a decision now based on the available observational 

data, rather than that of a philosopher interested in causality or a scientist interested in 

eventually explaining the world, we would prefer to focus on estimating the effect of feasible 

interventions that can be actually implemented to solve real world problems.

The tension between infeasible interventions and the urgency of action is illustrated by 

recent discussions about the role of race in the United States, where the empirical evidence 

on racial disparities with respect to health outcomes (e.g., life expectancy) is overwhelming. 

These white-black numerical discrepancies have been used to support the statement “race is 

a cause” of health outcomes.35 The potential outcomes framework has little to say about that 

statement because the interventions of interest are extremely ill-defined. In fact, there is not 

even agreement with respect to the definition of “race”, which is often simplistically reduced 

to genetic differences.

On the other hand, the potential outcomes framework is the ideal tool to frame causal 

discussions about how to eliminate racial disparities.36,37 By forcing investigators to 

carefully define real-world interventions, the potential outcomes approach takes the attention 

away from philosophical debates about the definition of cause towards the consideration of 

potentially implementable policies that can alleviate poverty, reduce discrimination, and 

increase economic opportunities for disadvantaged populations. If these interventions are 

relatively well-defined (e.g., raise taxes on wealthy individuals and large corporations, and 

redistribute the funds to health, education, pensions, and job creation during the next 3 

generations) but cannot be linked to the versions of treatment in the data, then the causal 

effects will need to be estimated by combining existing data with detailed parametric models 

that summarize expert knowledge.

A key point is that a quantitative counterfactual theory is agnostic towards structural, even 

radical, change. Investigators who elect to study hypothetical interventions that can be 
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directly linked to the data will typically end up asking narrower questions (e.g., the effects of 

continuing cigarette smoking and of affirmative action) than those who elect to study 

hypothetical interventions that cannot be easily linked to the data (e.g., the effects of 

increased taxation of tobacco products and regulation of manufacturers; and of high-quality 

education and health care for all families).38 But all of these investigators are asking causal 

questions that can be represented as counterfactual contrasts and encapsulated into the 

protocol of a hypothetical experiment.

Conclusions

The goal of the potential outcomes framework is not to identify causes—or to “prove 

causality”, as it sometimes said. That causality cannot be proven was already forcibly argued 

by Hume in the 18th century.39 Rather, quantitative counterfactual inference helps us predict 

what would happen under different interventions, which requires our commitment to define 

the interventions of interest. As Rubin said in 1978: “Without treatment definitions that 

specify actions to be performed on experimental units, we cannot unambiguously define 

causal effects of treatments.” The goal of the potential outcomes framework is to make 

quantitative causal inferences less casual.

Accusing the potential outcomes approach of not declaring a variable “a cause” is like 

accusing nuclear chemistry of not proving the existence of God. Those interested in the 

discovery of causes, as opposed to the interpretation of numerical estimates of causal effects, 

need to look for an alternative theoretical framework to the potential outcomes approach. 

Unfortunately, no such framework seems to be available. Recent calls for a “pluralistic” 

approach to causal inference resorted to philosophical arguments but did not propose any 

formal framework for the interpretation of causal effects.7 Other approaches to quantitatively 

interpret effect estimates, like Dawid’s decision-analytic perspective,26,40,41 are consistent 

with the potential outcomes approach described here.20

The potential outcomes approach provides a vehicle for rigorous quantitative causal 

inference. This vehicle helps researchers stay on the paths opened by their predecessors who 

fought hard for evidence-based approaches —in which empirical findings may trump 

unconstrained expert opinion— while giving them the flexibility to steer this vehicle in the 

direction that their creativity suggests—for example, by articulating counterfactual contrasts 

based on novel negative controls that provide information about the direction or magnitude 

of a causal effect.42

The inherent vagueness of all causal questions is brought to the forefront by the potential 

outcomes approach. Defining the interventions of interest as well as possible helps reduce 

that vagueness. Yet some authors view the insistence on defining interventions as a dogmatic 

attitude that stifles research. It is possible that these authors presuppose the existence of “the 

pure effect” of certain states of nature (e.g., being obese, being black) that does not depend 

on how that state was reached, which would explain the depiction of these states as 

treatments or exposures in directed acyclic graphs that represent nonparametric structural 

equations models.43 However, for many of us, it is unclear whether such “pure effects” 

generally exist (after all, different interventions often result in different effect estimates), and 
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therefore it is also unclear whether nonparametric structural questions models are always 

scientifically meaningful.

A potentially useful function of comparing outcomes under ill-defined interventions is the 

identification of targets for action.6 For example, one could argue that comparisons of health 

outcomes between blacks and whites in the United States measure the causal effect of 

centuries of oppression, political disenfranchisement, economic warfare, and other aspects 

of racism. Though an intervention to revert those historical factors is ill-defined (and anyway 

unfeasible), it might be argued that a white-black comparison identifies racism as a target for 

intervention. This argument begs the question of “how do we reduce racism?”, which can 

only be answered by sufficiently specifying the feasible interventions that we propose to 

implement.

Thus a will to compare ill-defined interventions may be a reflection of scientific intellectual 

curiosity or of a hopeful search for intervention targets. However, when the goal is urgent 

political change rather than an eventual understanding the world, a comparison of ill-defined 

interventions is simply inadequate to provide input for decision makers, especially in light of 

the severe political and economic constraints they often face.

In summary, the potential outcomes framework does not limit the scope of the causal 

questions; it just makes it transparent the interpretability and reliance on data of our effect 

estimates. We owe this transparency to those who will ground their decisions on the results 

of our research.
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