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ABSTRACT
The survival of all organisms is dependent on complex, coordinated responses to environmental cues.
Non-coding RNAs have been identified as major players in regulation of gene expression, with recent
evidence supporting roles for long non-coding (lnc)RNAs in both transcriptional and post-transcriptional
control. Evidence from our laboratory shows that lncRNAs have the ability to form hybridized structures
called R-loops with specific DNA target sequences in S. cerevisiae, thereby modulating gene expression. In
this Point of View, we provide an overview of the nature of lncRNA-mediated control of gene expression in
the context of our studies using the GAL gene cluster as a model for controlling the timing of transcription.

Abbreviations: DRIP, DNA/RNA immunoprecipitation; lncRNA, long non-coding RNA; mRNA, mRNA; ncRNA, non-
coding RNA; lncRNA, long non-coding RNA; RNP, ribonucleoprotein complex
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Non-coding RNAs (ncRNAs) are a family of RNAs that dis-
play a wide range of biochemically distinct roles.1 Over the past
50 years, many different classes of ncRNAs have been
described, including microRNAs (miRNAs),2,3 small nucleolar
RNAs (snoRNAs),4,5 small nuclear RNAs (snRNAs),6 small
Cajal body-specific RNAs (scaRNAs),7 enhancer RNAs
(eRNAs),8 and long non-coding RNAs (lncRNAs).9 LncRNAs
are a diverse class of ncRNAs found in all eukaryotes from
mammals10 to unicellular organisms, such as Trichomonas vag-
inalis,11 Plasmodium falciparum,12 and the budding yeast Sac-
charomyces cerevisiae.13 The generally accepted definition of a
lncRNA is a transcript that lacks a long or conserved open
reading frame and is greater than 200 nucleotides in length.1,14

Initially theorized to be the result of spontaneous, aberrant
transcription initiation, lncRNAs were first dismissed as spuri-
ous “sloppy” transcription.15 However, the characterization of
gene regulatory functions by mammalian lncRNAs, such as
XIST16 and HOTAIR,17 made it clear that many of these
transcripts are much more than extraneous transcriptional
products.

Upwards of 30,000 lncRNAs have been identified in mam-
malian cells to date.18 Thus far, many lncRNAs have been
shown to control the expression of protein-coding genes by
recruiting chromatin remodeling factors to specific gene loci.19

Histone modifying enzymes and nucleosome remodeling pro-
teins that interact with lncRNAs include G9a,20 LSD1,21

PRC2,21,22 SWI/SNF,23 and MLL,24 indicating a diversity of
interactions. LncRNAs have also been described as miRNA
sponges,25 facilitators of cytoplasmic mRNA decay,26 and
remodelers of the 3D chromatin architecture,27 indicating a
broad array of activities. In addition to biochemical diversity, a

common theme for lncRNA function is temporal control of
gene expression, regulating cellular programs that require
highly specific and well timed responses to extracellular stim-
uli.28–30 Unsurprisingly, misregulation of lncRNAs has been
linked to the development of a multitude of human diseases
including cancer31 and heart failure.32

The budding yeast Saccharomyces cerevisiae has been a
robust system for genetic and molecular investigation of gene
expression steps since its introduction as a model organism
almost 30 y ago.33 Thus far, »2,000 lncRNAs have been identi-
fied in budding yeast, which vary both in presence and abun-
dance depending on growth conditions.34–36 To survive in the
wild, yeasts must rapidly adapt to changing environmental con-
ditions, such as heat and osmotic stress and nutrient availabil-
ity. The natural habitat for S. cerevisiae is fresh and decaying
fruit where carbon sources are abundant and diverse.37,38 These
yeast preferentially use glucose as a carbon source, however,
they have the ability to switch their metabolic profile to use
alternative sugars, a response which is essential to environmen-
tal adaptation.39 This switch involves reprogramming of
upwards of 40% of the yeast transcriptome as a result of dere-
pression and transcriptional activation of genes necessary for
metabolism of sugars other than glucose.40,41

A key component of the glucose to galactose metabolic
switch is the GAL gene cluster consisting of GAL1, GAL10, and
GAL7. These genes exist in 3 distinct transcriptional states
depending on the carbon source in the media. In the presence
of glucose, the GAL cluster is repressed via association of glu-
cose-dependent transcription factors, Mig1 and Nrg1, and the
associated Tup1/Cyc8 (Tup1/Ssn6) co-repressor complex.42,43

In the presence of galactose, the Gal4 transcriptional activator
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associates with GAL genes and facilitates transcriptional activa-
tion by promoting recruitment of co-activators and RNA poly-
merase II (RNA P II).44 The third transcriptional state, called
the “derepressed” or “non-induced” state, occurs when yeast
are grown in the presence of raffinose. In this condition, the
GAL genes are neither actively repressed nor are they
induced.45 This ability to control the transcriptional states by
manipulation of carbon sources has made the GAL cluster an
exceptional model gene locus for studying transcription initia-
tion, termination, and chromatin remodeling events for
decades.44,46

In addition to regulatory proteins, the GAL cluster also con-
tains 2 lncRNAs, the GAL10 and GAL10s lncRNAs, which
originate from a bidirectional promoter within the 30 end of the
GAL10 open reading frame.47 The GAL10 lncRNA is tran-
scribed in an antisense orientation with respect to the GAL10
protein-coding gene and overlaps both GAL10 and GAL1,
whereas the GAL10s lncRNA is expressed in the opposite ori-
entation and runs through the downstream GAL7 promoter
region.34,47 Initial studies of the GAL10 antisense lncRNA
showed that expression of this non-coding molecule correlates
with repression of GAL10 and GAL1 transcription when low
levels of glucose are available in a complex sugar mixture, simi-
lar to conditions in the wild.47 This repressive role was later
supported by single transcript microscopy studies which dem-
onstrated suppression of leaky transcription of the GAL cluster
genes in the absence of GAL10 antisense lncRNA expression.48

Repression occurs in cis47 consistent with a transcriptional
interference mode of action, whereby the process of transcrip-
tion, rather than the lncRNA, regulates expression of an over-
lapped, protein-coding gene. This type of lncRNA-dependent
regulation has been demonstrated for other genes in budding
yeast as well as mammalian cells.28,49

The first discovery of transcriptional interference by a
ncRNA was regulation of the SER3 gene, which encodes
3-phosphoglycerate dehydrogenase, an enzyme integral to gly-
colysis and serine biosynthesis. In 2004, it was reported that
serine-dependent transcription of the SRG1 lncRNA disrupts
binding of general transcription factors to the downstream
SER3 gene promoter, thereby regulating transcription of this
protein-coding gene.28 Interestingly, SRG1 transcription is acti-
vated by the presence of serine in the media, suggesting direct
regulation of an lncRNA by nutrient availability. Repression of
SER3 is mediated by changes in nucleosome occupancy within
the SER3 promoter that occur during transcription of SRG1.50

When cells become serine-deprived, SRG1 is no longer tran-
scribed and SER3 repression is released.51 These studies dem-
onstrated that lncRNAs can regulate gene expression via
multiple modalities in response to extracellular nutrient status.

Interestingly, the same lncRNA can also have more than one
biochemical function in vivo. In addition to transcriptional
repression, our group discovered that the GAL10 and GAL10s
lncRNAs also function in transcriptional activation from tran-
scriptionally repressive (Cglucose) to activating (¡galactose)
conditions.52 During this switch, the GAL lncRNAs enhance
induction of the GAL protein coding genes from a repressed
state by interfering with binding of the Tup1/Cyc8-corepressor
complex. This occurs, presumably, by physical occlusion of the
complex and results in derepression of the glucose-repressed

GAL genes and allows for faster transcriptional activation in
the presence of galactose (Fig. 1). Consistently, the GAL
lncRNAs have no effect on induction from the derepressed
(Craffinose) state, but rather confer a specific fitness advantage
to yeast cells over those lacking the GAL lncRNAs during a glu-
cose to galactose switch.48,53 GAL lncRNA-dependent induc-
tion occurs when the GAL lncRNAs are encoded in trans,
indicating that lncRNA-dependent transcriptional induction
and repression are mechanistically distinct. This result is remi-
niscent of Air (Airn), which also functions in mechanistically
distinct cis and trans roles to regulate gene expression.54,55

Dbp2 is a co-transcriptional RNA chaperone and bona fide
RNA helicase whose activity is necessary for assembly of RNA-
binding proteins, Yra1, Mex67, and Nab2 onto poly(A)C

RNAs.56,57 During transcription, both messenger and long
non-coding RNAs are co-transcriptionally bound with a set of
RNA-binding proteins to form a ribonucleoprotein complex
(RNP), which then undergoes a variety of processing steps,
including capping, splicing, termination, and polyadenylation.
Loss of DBP2 also results in over-accumulation and 30 exten-
sion of the GAL10s lncRNA,58 suggesting a connection between
Dbp2 and proper biogenesis of the GAL lncRNAs. Interest-
ingly, we found that cells lacking DBP2 display a much more
rapid lncRNA-dependent transcriptional induction of the GAL
genes, as well as reduced association of the Cyc8 corepressor.52

This suggested that Dbp2 and/or its role in RNP assembly,
antagonizes the transcriptionally activating role of the GAL
lncRNAs and that dbp2D cells could be used as a tool to deci-
pher the mechanism of transcriptional induction by these non-
coding molecules.

Seminal studies from the Aguilera lab demonstrated that
mutations in genes needed for mRNA export, transcription
elongation, and termination result in formation of R-loops.59,60

R-loops are structures that form when an RNA base pairs with
one strand of a DNA double helix, resulting in formation of an
RNA:DNA hybrid and a displaced stretch of single-stranded
DNA. R-loops can be both biologically beneficial as well as etio-
logical agents of DNA damage. Aberrant formation and/or sta-
bilization of R-loops results in genomic instability as a result of
prolonged exposure of a single-stranded DNA to the environ-
ment and/or by interfering with DNA replication machin-
ery.61,62 In contrast, R-loops play beneficial roles by mediating
CRISPR interference,63,64 promoting IgG class switching,65,66

and by regulating transcription.67,68 These structures can form
in cis60 or trans69 in vivo, either by “threading back” of nascent
RNAs during transcription by RNA Pol II, through the action
of the homologous recombination machinery, or associated
RNA-binding proteins as in the case of CRISPR.60,70,71

Given that RNP assembly defects cause R-loops,60,70 we
speculated that loss of DBP2 might promote formation of these
structures between the GAL lncRNAs and GAL gene pro-
moters. To test this, we asked if ectopic expression of human
RNAse H1 in dbp2D cells would prevent rapid induction of the
GAL genes by the GAL lncRNAs. Strikingly, this was the case,
suggesting that RNA-DNA hybrids were involved in lncRNA-
dependent induction of the GAL genes in dbp2D cells.72 To
determine if GAL lncRNA R-loops formed at the GAL cluster,
we conducted DNA:RNA immunoprecipitation (DRIP) using
the S9.6 RNA:DNA hybrid antibody. DRIP revealed that loss of
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DBP2 results in accumulation of lncRNA-dependent R-loops
across all 3 GAL cluster genes, consistent with the length of the
GAL10 antisense lncRNA and 30 extended GAL10s lncRNA.58

Interestingly, the nuclear RNA decay enzyme RRP6 also con-
trols R-loop formation in mammalian cells between eRNAs
and enhancers,73 indicating that RNP assembly and/or process-
ing may dictate the function of numerous lncRNAs. Since
simultaneous loss of DBP2 and RRP6 is lethal in yeast, indicat-
ing functional overlap,58 it will be interesting to determine if
orthologs of Dbp2 (DDX5 in mammals) also controls R-loop
formation in multicellular eukaryotes.

While investigating the role of the GAL lncRNAs, we seren-
dipitously discovered that Dbp2 is transported to the cytoplasm
in response to glucose deprivation or a glucose to galactose
shift, suggesting that wild type yeast actively export Dbp2 from
the nucleus to alter gene expression.74 Strikingly, nuclear deple-
tion of Dbp2 using the “anchor away” strategy75 resulted in
time-dependent accumulation of R-loops beginning at the 50
end of GAL1 and spreading across GAL1, GAL10 and through
the 30 end of GAL7.53 Removal of the lncRNAs through

genomic deletion reduced R-loops at the 50 end of GAL1 and
abolished detection of these structures across the rest of the
GAL cluster locus. This suggested that Dbp2 regulates
formation of lncRNA R-loops at the GAL genes (Fig. 1A-B),
thereby controlling lncRNA-dependent transcriptional regula-
tion in response to nutrient availability. Moreover, this suggests
that GAL lncRNA R-loops promote induction of the GAL genes
from transcriptionally repressive conditions. In support of a role
for R-loops in depression of the GAL cluster, we found that
ectopic expression of RNase H1 reduced induction of the GAL
genes to wild type levels in dbp2D cells.53 The fact that INO1,
an inducible gene without an overlapping, annotated lncRNA,
induced at the same rate regardless of the presence of RNAse
H1 argues against a general reduction in transcription.53

Because we observed R-loop accumulation across the entire
GAL cluster, this leads one to wonder how these structures
could specifically prevent Cyc8 association without impacting
subsequent steps of transcriptional activation by Gal4, coactiva-
tors, and RNAPII (Fig. 1C). One possibility is that these
R-loops are transient, allowing recruitment of transcriptional

Figure 1. A model for regulation of the GAL cluster by GAL lncRNA R-loops and Dbp2. (A) Glucose Repression When glucose is available, Dbp2 is localized in the nucleus74

and prevents the accumulation of R-loops at the GAL gene cluster53 via the assembly of Dbp2-dependent lncRNA-protein complexes.56 This allows the successful docking
of the Cyc8/Tup1 co-repressor complex and subsequent repression. (B) Carbon Source Switch During a switch from glucose to galactose, Dbp2 is actively relocalized to
the cytoplasm via export through the nuclear pore complex (NPC).74 This may alter lncRNP assembly and cause R-loop formation and spreading across the GAL cluster.
R-loop formation likely interferes with binding of transcriptional repressors and the Cyc8/Tup1 corepressor complex, causing derepression of the GAL genes. (C) Galactose
Induction In the presence of galactose, the Gal4 transcriptional activator is released from the Gal80 inhibitor (not pictured),96 enabling recruitment of co-activators and
RNA P II.97 This results in altered chromatin structure, as evidenced by looping of the GAL10 promoter and terminator,53 which may enhance transcriptional induction. It
is currently unknown how the GAL lncRNAs are cleared from chromatin or how Dbp2 is re-imported following long-term growth in galactose.
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activators. Resolution of R-loops in vivo would be accom-
plished by the activity of endogenous RNase H enzymes as well
as RNA-DNA helicases such as Sen1/Senataxin.70,76,77 It is also
likely that these R-loops are cleared by transcription of another
lncRNA molecule. The latter is supported by the fact that high
levels of transcription correlate with the presence of R-loops in
wild type cells,78 which would be predicted to interfere with
transcription if these structures were static. If this is the case,
one would predict that most chromatin-bound factors would
be displaced by these R-loops, irrespective of their role in tran-
scriptional regulation. Cyc8 would be impacted specifically, not
necessarily because of the R-loops, but because of the combined
action of these structures with regulated export of glucose-
dependent transcription factors to the cytoplasm.79,80 However,
very little is known about the dynamics of R-loops in vivo.

Another possibility is that the GAL lncRNA R-loops are dis-
continuous, forming along regions that impact Cyc8 but not
Gal4 and RNA P II. It should be noted that DRIP assays depend
on chromatin shearing to an average DNA size and is, thus, not
at nucleotide resolution. Two new reports have attempted to
address this concern by either the addition of S1 nuclease to
prevent RNA:DNA hybrid loss or by sequencing the isolated
RNA following immunoprecipitation.81,82 However, a weakness
of these studies and of our own investigations of the GAL clus-
ter is the reliance on the S9.6 antibody as the sole reagent avail-
able for detection of RNA-DNA hybrids. Because this antibody
shows both length and sequence bias,83 new methods will need
to be developed to precisely determine the sites of R-loop for-
mation in vivo.

The GAL lncRNAs offer a striking example of how non-
coding RNA molecules can promote adaptation. While we do
not know if the GAL lncRNAs serve as a paradigm for other
lncRNAs, because very few have been functionally character-
ized, the majority of those that have been studied thus far are
linked to environmental sensing and stress response (Table 1).
This role would be consistent with the emerging theme for
mammalian lncRNAs cellular differentiation programs and
human disease states. Additionally, 43% of single-nucleotide

polymorphisms associated with human disorders are found
outside of protein-coding regions [7], suggesting that mutations
in the non-coding genome have been underappreciated. S. cere-
visiae likely offer the perfect model system for mechanistic
investigation of lncRNA activities, given recent evolutionary
studies showing an increased reliance on antisense RNAs for
fine tuning gene expression following loss of the microRNA
pathway in this species.84

Moving forward, there are many aspects of lncRNA-depen-
dent gene regulation that remain to be addressed. First, it is
currently unknown how many lncRNAs utilize R-loops as a
mechanism for gene regulation. It has been speculated for
some time that direct hybridization of lncRNAs with genomic
DNA could be a mechanism for locus-specific targeting, how-
ever, with the exception of RNA:DNA:DNA triplexes,85–87 this
has yet to be broadly demonstrated. Another question is how
an RNA invades a DNA duplex, an activity that is thermody-
namically unfavorable. Interestingly, evidence from the Kosh-
land laboratory points to direct roles for Rad51 and Rad52,
components of the homologous recombination machinery, for
promoting R-loop formation in trans.69 However, it is
unknown what features of the RNA and/or DNA locus are rec-
ognized to mediate RNA:DNA hybridization and how the
RNA helicase Dbp2 antagonizes this process. One possibility is
that the lncRNA-protein composition and structure dictates
the ability of this molecule to form R-loops.

Another question is how many other lncRNAs, in fungi or
other species, promote the timing of gene expression. It is likely
that many lncRNAs detected to date are spurious, non-func-
tional products of transcription. However, future studies may
be informed by analyses of transcription induction or repres-
sion kinetics, rather than reliance on lncRNA-dependent
changes in steady state transcript levels. Finally, as more efforts
are put forth to decipher the role of the non-coding genome, it
must be emphasized that some of these long non-coding RNAs
have been detected with translating ribosomes.88 Although no
examples of lncRNAs that produce functional peptides have
been documented to date, we should continue to view the term

Table 1. Individually characterized lncRNAs of Saccharomyces cerevisiae. 65% of functionally characterized lncRNAs in S. cerevisiae have gene targets that function in
pathways associated with metabolism or nutrient sensing/transport. AS D antisense. Us D upstream.

Functionally characterized lncRNAs in S. cerevisiae.

Name Function Target Gene Target gene function
Metabolism/

Nutrition related

MMF1 AS RNA29 Promotes induction MMF1 Mitochondrial protein YES
ASP3 lncRNA98 Upregulation ASP3 Asparagine catabolism YES
PHO84 AS RNA99-101 Repression PHO84 Phosphate metabolism YES
SRG128,50,51 Repression SER3 Serine / glycine biogenesis YES
PHO5 AS RNA102 Promotes induction PHO5 Phosphate metabolism YES
usURA2.103 Repression URA2 Pyrimidine biogenesis YES
usDCI1.104 Repression DCI1 Fatty acid metabolism YES
GAL10 lncRNA47,48,105 Repression GAL genes Galactose metabolism YES
GAL10/GAL10s lncRNAs.52,53 Promotes induction GAL genes Galactose metabolism YES
KCS1 lncRNAs106 Translational interference KCS1 Inositol hexa/hepta bisphosphate kinase YES
SUT71930,35 Repression SUR7 Plasma membrane protein YES
CDC28 AS RNA29 Promotes induction CDC28 Cell cycle regulator NO
RTL.107 Repression Ty1 Retrotransposon NO
ICR1.108 Repression FLO11 Cell surface glycoprotein NO
PWR1.108 Upregulation FLO11 Cell surface glycoprotein NO
IME4 AS RNA109,110 Repression IME4 Meiosis regulator NO
IRT1.109 Repression IME1 Meiosis regulator NO
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“non-coding” with caution until a much larger subset of these
molecules have been functionally validated.

Aberrant expression of lncRNAs is associated with various
diseases such as prostate cancer,89 breast cancer,90 HIV,91

Type-2 diabetes,92,93 and obesity,93,94 underscoring a need for
understanding the precise roles of lncRNAs. It should be
emphasized that, although pioneering discoveries regarding
lncRNA scaffolding of chromatin remodeling factors21 and
remodeling of the 3D genome95 have relied on mammalian
systems, transcriptional interference28 and lncRNA R-loops
were initially discovered in budding yeast.53 As we continue to
define biological roles for individual lncRNAs, it is essential to
complement our studies of multicellular eukaryotes with simple
model organisms, which have provided and continue to pro-
vide mechanistic paradigms for gene regulation.
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