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ABSTRACT
Muscle development, or myogenesis, is a highly regulated, complex process. A subset of microRNAs
(miRNAs) have been identified as critical regulators of myogenesis. Recently, miR-378a was found to be
involved in myogenesis, but the mechanism of how miR-378a regulates the proliferation and
differentiation of myoblasts has not been determined. We found that miR-378a-3p expression in muscle
was significantly higher than in other tissues, suggesting an important effect on muscle development.
Overexpression of miR-378a-3p increased the expression of MyoD and MHC in C2C12 myoblasts both at
the level of mRNA and protein, confirming that miR-378a-3p promoted muscle cell differentiation. The
forced expression of miR-378a-3p promoted apoptosis of C2C12 cells as evidenced by CCK-8 assay and
Annexin V-FITC/PI staining results. Through TargetScan, histone acetylation enzyme 4 (HDAC4) was
identified as a potential target of miR-378a-3p. We confirmed targeting of HDAC4 by miR-378a-3p using a
dual luciferase assay and western blotting. Our RNAi analysis results also showed that HDAC4 significantly
promoted differentiation of C2C12 cells and inhibited cell survival through Bcl-2. Therefore, we conclude
that miR-378a-3p regulates skeletal muscle growth and promotes the differentiation of myoblasts through
the post-transcriptional down-regulation of HDAC4.
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Introduction

Skeletal muscle growth andmaintenance are essential for animal
and human health, providing structural support that allows the
control of motor movements and also allows energy storage.20

Therefore, muscle development plays a crucial role in overall
body metabolism. Although many factors have been found to
importantly contribute to the complex process of muscle devel-
opment, the different mechanisms are not fully elucidated.
MicroRNAs (miRNAs), 18–25 nucleotides, small single-
stranded non-coding RNAs, negatively regulate gene expression
and play crucial roles in many biological processes, especially
muscle development.16 In animals, miRNAs are transcribed in
the nucleus, are subsequently processed by 2 RNase III proteins
(Drosha and Dicer), and are finally incorporated into RNA-
induced silencing complexes that mediate translational inhibi-
tion or degradation of target mRNAs23 by base pairing with the
30 untranslated region (UTR) of target mRNAs. By silencing the
transcription of different target mRNAs, miRNAs are involved
in nearly all developmental and pathological processes in ani-
mals including cell proliferation,6 cell differentiation,44 apopto-
sis,9,40,46 fat metabolism,12,28 and others.

These miRNAs also play roles in muscle development in
mammals. Previous studies reported that several miRNAs, such
as miR-1,47 miR-133,31,45,49 and miR-206,3,19,42 are muscle-

specific miRNAs because they are key regulators in muscle devel-
opment in human, pigs, and rats. Others miRNAs may also con-
tribute to muscle development. For example, miR-1/206 may
regulate prenatal skeletal muscle development by inhibiting
SFRP1.48 Another miRNA, miR-27b, may affect bovine skeletal
muscle growth and hypertrophy by targeting the muscle-specific
gene MSTN.29 The overexpression of miR-29 in C2C12 myoblast
represses proliferation but promotes myotube formation.39

Another miRNA, miR-378, affects cell survival, tumor
growth, angiogenesis, and cell differentiation.7 Specifically,
miR-378 can enhance tumor cell survival by repressing SuFu
and Fus-1,24 increase the transcriptional activity of MyoD in
part by repressing MyoR,13 promote BMP2-induced osteogenic
differentiation,17 and also regulate osteoblast differentiation by
targeting GalNT-7 in MC3T3-E1 cells.21 Previous studies also
demonstrated that miR-378 suppressed cell migration and pro-
moted cell apoptosis in prostate cancer8 and increased the size
of lipid droplets and the incorporation of acetate into triacylgly-
cerol.14 In mice, miR-378 participates in the regulation of mito-
chondrial metabolism and energy homeostasis.4 miR-378
suppress expression of Gli3 to inhibit activation of hepatic stel-
late cells and liver fibrosis.18 However, a role of miR-378 in the
regulation of skeletal muscle development has not been
described.

CONTACT Hong Chen chenhong1212@263.net; hongchen2016511@163.com No.22 Xinong Road, College of Animal Science and Technology, Northwest A&F
University, Yangling, Shaanxi 712100, China.

Supplemental data for this article can be accessed on the publisher’s website.
© 2016 Taylor & Francis Group, LLC

RNA BIOLOGY
2016, VOL. 13, NO. 12, 1300–1309
http://dx.doi.org/10.1080/15476286.2016.1239008

http://dx.doi.org/10.1080/15476286.2016.1239008
http://dx.doi.org/10.1080/15476286.2016.1239008


HDAC4, a member of the HDACs family, is as a crucial con-
troller of cell growth,1 differentiation,43 and migration37 in vari-
ous cell types. HDAC4 facilitates proliferation and migration of
vascular smooth muscle cell during neointimal hyperplasia.37

HDAC4 in human glioblastoma leads to cell proliferation arrest
and tumor growth impairment via inducing p21 expression.30,41

These reports demonstrate that HDAC4 plays a significant role
in regulation of cell differentiation and proliferation. Neverthe-
less, the mechanism by which HDAC4 controls the differentia-
tion and proliferation of myoblasts is unclear.

In this study, we investigated the role of miR-378a-3p in reg-
ulating muscle cell differentiation and proliferation. We found
that miR-378a-3p showed a high expression level in skeletal
muscle, promoted differentiation, and repressed proliferation
of C2C12 cells. Additionally, we determined that miR-378a-3p
overexpression can regulate the differentiation and prolifera-
tion of skeletal muscle myoblasts by targeting HDAC4.

Results

miRNAs expression profile in different tissues

To study the function of miRNAs in muscle development, 8
miRNAs including miR-378a-3p were selected as potential regu-
latory candidates based on our previous Solexa SBS technology
sequencing results.36 The expression profile assay showed that
miR-378a-3p expression was significantly higher than other
miRNAs in the longissimus muscle (Fig. 1a), suggesting a poten-
tial role in muscle. We found that miR-378a-3p was expressed

predominantly in muscle and weakly expressed in other tissues
(Fig. 1b). Based on this, we speculated that miR-378a-3p could
be a regulator in skeletal muscle development. Mature bta-miR-
378 derives from the first intron of PPARG1B in chromosome 7
(Fig. 1c). A similarity analysis showed that miR-378a-3p was
conserved among cattle, mouse, and humans (Fig. 1d). Thus, we
chose mouse C2C12 cells as the experiment model.

miR-378a-3p inhibited C2C12 cell proliferation

In order to explore an effect of miR-378a-3p on myoblast prolif-
eration, C2C12 myoblasts were transfected with pcDNA3.1-
miR-378a-3p, pcDNA3.1 (C) (control plasmid with no insert),
and miR-378a-3p inhibitor. The transfection efficiency was
detected by RT-qPCR and the results showed significantly dif-
ferent expression of miR-378a-3p (Fig. S1). Flow cytometry was
used to analyze the cell cycle phase distribution, and the results
showed that the number of cells at G0/G1 and G2 phases
increased and there were reduced number of cells in S phase
after transfection with pcDNA3.1-miR-378a-3p (Fig. 2a-c),
which strongly suggests that miR-378a-3p arrests cells in the
G0/G1 stage. This effect was reversed when the miR-378a-3p
inhibitor was used (Fig. S2). To determine cell proliferation, we
used the Cell Counting Kit-8 (CCK-8) assay and found that
miR-378a-3p significantly inhibited cell proliferation (Fig. 2d).
Cell proliferation was also detected using a 5-Ethynyl-20-deoxy-
uridine (EdU) incorporation assay. Similarly, C2C12 cells
showed significantly less mitotic activity when miR-378a-3p

Figure 1. Expression of miRNAs in Qinchuan cattle detected by QRT-PCR. (a) The expression of different miRNAs in skeletal muscle. (b) The expression of miR-378a-3p in
different tissues of Qinchuan cattle. (c) pre-miR-378a-3p is located in the first intron of PPARGC1B gene in chromosome 7. (d) miR-378a-3p has high conservative in differ-
ent species of mammal. The expression of miRNAs was normalized to U6. Values are mean § SEM for 3 biological replicates, � P< 0.05, �� P < 0.01.
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was overexpressed (Fig. 2e, f). Taken together, miR-378a-3p
was shown to inhibit the proliferation of C2C12 cells.

miR-378a-3p promoted C2C12 cell apoptosis

To confirm the effect of miR-378a-3p on cell apoptosis,
pcDNA3.1-miR-378a-3p was transfected into the C2C12 cells.
The Annexin V- FITC/PtdIns staining assay showed the apopto-
sis index in the group with miR-378a-3p overexpression was sig-
nificantly increased (Fig. 3a-c). We also detected the expression
of cell survival related genes Bcl-2, Caspase 3, and BAX, and
found that miR-378a-3p upregulated mRNA expression of these
genes (Fig. 3d-g, S3), but showed the opposite effect when miR-
378a-3p was inhibited (Fig. S2). These results demonstrate that
miR-378a-3p promotes C2C12 cells apoptosis.

miR-378a-3p promoted C2C12 cell differentiation

To determine whether miR-378a-3p affects cell differentiation, the
expression of miR-378a-3p was detected at different stages of dif-
ferentiation. We found that the expression of miR-378a-3p gener-
ally increased in a time-dependent manner (Fig. 4a). The C2C12

cells transfected with pcDNA3.1-miR-378a-3p were induced to
differentiate for 6 days and myoblast differentiation marker genes
were detected by RT-qPCR and protein gel blot. We found that
expression of MyoD and MHC was significantly upregulated in
C2C12 cells that overexpressed miR-378a-3p, both at the mRNA
and protein levels (Fig. 4b-d, S5). Taken together, these results
revealed that miR-378a-3p promoted C2C12 cell differentiation.

miR-378a-3p directly targeted the 30UTR of the HDAC4
gene

To determine the mechanism by which miR-378a-3p promotes
cell differentiation, we predicted potential target genes of miR-
378a-3p using TargetScan6.2, miRanda, and the starBase data-
base. HDAC4, one of the candidate genes, is related to muscle
development and has a highly conserved binding site in the
mRNA 30UTR that is complementary to the miR-378a-3p seed.
We found that this predicted binding site is highly conserved
among vertebrates.

To establish the relationship between miR-378a-3p and
HDAC4, a 500 bp fragment of HDAC4 30 UTR containing the
miR-378a-3p binding site was cloned into the psiCHECK-2

Figure 2. miR-378a-3p represses the proliferation of C2C12 cell. (a, b, c) Cell were transfected by pcDNA3.1 (C) and pcDNA3.1-miR-378a-3p vector, and the cell cycle
phase and proliferation index were analyzed by flow cytomctry. (d, e) Cell counting kit-8 (CCK-8) detected cell proliferation index. (e) 5-Ethynyl-20-deoxyuridine (EdU)
detected cell proliferation index, the scale bar stand 200mm. (f) Analysis results of EdU positive cells. Values are mean § SEM for 3 biological replicates, � P< 0.05, �� P <
0.01.
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vector to yield psiCHECK-2-30UTR-W. A separate fragment
containing a 2-base mutation in the seed binding site of the
HDAC4 30 UTR was also moved into the psiCHECK-2 plasmid

vector as psiCHECK-2-30UTR-Mut (Fig.5a, b). The pcDNA3.1-
miR-378a-3p was co-transfected with psiCHECK-2-30UTR-W
or psiCHECK-2-30UTR-Mut into 293T cells. The Renilla

Figure 3. miR378a-3p promotes C2C12 cell apoptosis. (a, b) C2C12 cells were transfected by pcDNA3.1 (C) and pcDNA3.1-miR-378a-3p, collected and stained by Annexin
V-FITC/PtdIns. Cell apoptosis phase distribution were analyzed by flow cytomctry. (c) Cell apoptosis index were analyzed between the 2 groups. (d-g) Expression of cell
apoptosis relative genes were detected by QRT-PCR and western blot. Values are mean § SEM for 3 biological replicates, � P< 0.05, �� P < 0.01.

Figure 4. miR-378a-3p promotes C2C12 cell differentiation. (a) miR-378a-3p expression in different stages of differentiation. (b, c) Overexpression of miR-378a-3p in
C2C12 cell and continues induced to undergo differentiation for 6 days, and subsequent detection the mRNA expression of MHC and MyoD by RT-PCR compared with
control group. (d) The protein expression of MHC and MyoD were detected by protein gel blot. Days (d) indicate the time of cells in differentiation medium. Values are
mean § SEM for 3 biological replicates, � P < 0.05, �� P < 0.01.
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luciferase activity was not reduced in cells containing the psi-
CHECK-2-30UTR-Mut compared to the cells containing the psi-
CHECK-2-30UTR-W (Fig. 5c). These results demonstrated the
specific targeting relationship of miR-378a-3p andHDAC4 gene.

To confirm the effect of miR-378a-3p on HDAC4 in myo-
blasts, we examined the HDAC4 protein level following miR-
378a-3p transfection. Western blot analysis indicated that miR-
378a-3p overexpression suppressed HDAC4 expression
(Fig. 5e); no effects were detected when miR-378a-3p interfer-
ence was used to decrease activity (Fig. S6). Interestingly, we
found the mRNA level of HDAC4 was not significantly changed
between C2C12 cells that overexpressed miR-378a-3p or the
control cells (Fig. 5d, S7). Therefore, we concluded that miR-
378a-3p was directly targeting the 30UTR of HDAC4 to inhibit
its protein expression.

HDAC4 inhibited myogenic differentiation and promoted
C2C12 cell proliferation

To determine the role of HDAC4 in myoblasts differentiation,
C2C12 cells were transfected with siRNA against HDAC4. The
results showed that HDAC4 mRNA expression was notably
reduced in C2C12 cells transfected with siHDAC4 (Fig. 6a).
The mRNA expression of MyoD, MHC, and MEF2C signifi-
cantly increased in the C2C12 cells transfected with siHDAC4
(Fig. 6b), confirming the role of miR-378a-3p in muscle differ-
entiation. To confirm the effects of HDCA4 on cell survival, cell
proliferation and apoptosis were detected in C2C12 cells. Cell
proliferation was detected by CCK-8 and EdU staining analysis.
We found that siHDAC4 inhibited proliferation of C2C12 cells

(Fig. 6d-f). Also, we analyzed the effect of siHDAC4 on cell apo-
ptosis by flow cytometry, and found no significant difference in
the distribution of cell apoptosis (Fig. 6g, h). In conclusion,
these results demonstrated that HDAC4 promoted myogenic
differentiation and suppressed myoblast proliferation.

Discussion

Our previous high-throughput sequencing results onmiRNAs in
Qinchuan bovine skeletal muscle showed that miR-378a-3p was
one of the highest expression miRNAs.36 We verified that the
expression levels of miR-378a-3p was markedly higher in skele-
tal muscle than the levels in other tissues. The results suggested
that miR-378a-3p might be a muscle-related miRNA, similar to
other muscle-specific miRNAs that were reported previously.

Previous studies showed that miR-378 inhibits prostatic car-
cinoma cell proliferation8 and enhanced apoptosis of cardio-
myocytes by reduced signaling in the Akt cascade.38

Additionally, miR-378-5p could suppress cell proliferation and
promote cell apoptosis in CRC cells.22 In this research, we
found that miR-378a-3p inhibited C2C12 cell proliferation and
arrested cells in G0/G1 phase. The overexpression of miR-
378a-3p promoted cell apoptosis. Cell proliferation and apo-
ptosis are complicated processes, and our research showed that
miR-378a-3p inhibits cell proliferation and promotes apoptosis.
However, more studies are warranted to determine how miR-
378a-3p regulates cell proliferation and apoptosis.

Our data demonstrated that miR-378a-3p reduced the
expression of Bcl-2 and increased the expression of Bax and
caspase-3. Bcl-2 family proteins regulate caspase activation and

Figure 5. miR-378a-3p directly targets HDAC4 gene. (a) Sequence of miR-378a-3p and its predicted binding site in HDAC4 30UTR and mutation 30UTR. (b) The sketch map
of psiCHECK2 vector in which HDAC4 30UTR and mutation 30UTR were inserted into the 30 end of Renilla luciferase gene (hRluc). (c) miR-378a-3p/NC co-transfected with
psiCHECK2-30UTR-W and psiCHECK2-30UTR-Mut into C2C12 cells individually, and Renilla luciferase activity was normalized to the firefly luciferase (hLucC) activity. (d)
HDAC4 mRNA expression in C2C12 myoblasts was detected by RT-PCR at 48 h post-transfection with miR-378a-3p and control. (e) HDAC4 protein expression was detected
by western blot and gray value analysis. Values are mean § SEM for 3 biological replicates, � P < 0.05, �� P < 0.01.
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apoptosis by regulating mitochondrial outer membrane perme-
abilization, which releases mitochondrial proteins and promote
apoptosis.15, 26 Caspase-3 is a crucial inducer of apoptosis, act-
ing to induce apoptosis of human colon cancer cells.33,51 Down-
regulation of Bcl-2 expression and Caspase-3 activation could
suppress proliferation and induce apoptosis in cancer cell
lines.34 Usually, cell proliferation and apoptosis are regulated
through complex interactions between caspase-3 and the Bcl-2/
Bax pathway.26,34 Therefore, we concluded that miR-378 pro-
motes apoptosis through regulating the expression of Bcl-2 and
Bax.

Previous studies showed that miR-378 overexpression can
increase MyoD expression which induces myoblast differentia-
tion.13 Similarly, we demonstrated that miR-378a-3p overex-
pression significantly increased the expression of the mRNA
and protein levels of MyoD and MHC in C2C12 cells, indicat-
ing that miR-378a-3p is an important regulator in myocyte dif-
ferentiation. We also determined the effects of miR-378 to

stimulate differentiation and apoptosis occurred by regulating
the expression of HDAC4 at the post-transcriptional level.
HDAC4 promotes proliferation in colon cancer cells41 and
osteosarcoma cells.35 We showed that knocking down HDAC4
markedly inhibits C2C12 cell proliferation. HDAC4 is specifi-
cally involved in muscle development. HDAC4 reduced the
ability of the myocyte enhancer factor 2 (MEF2) to access the
regulatory regions of genes, resulting in repressed MEF2-
dependent transcription.5,10,11,27 Moreover, members of the
MEF2 family cooperate with the MyoD family to control the
expression of muscle–specific genes.2,32 In the present study,
we found that both HDAC4 knockdown and miR-378 overex-
pression promoted differentiation, inhibited the proliferation
of C2C12 cells, and significantly increased the expression of
MHC and MyoD. These findings may explain how miR-378a-
3p promotes differentiation of C2C12 cells.

We also found that the knockdown of HDAC4 increased the
mRNA level of MEF2C. MEF2C is a crucial transcriptional

Figure 6. Knock down HDAC4 promotes differentiation and inhibits proliferation of C2C12 cells. (a) Transfection of siHDAC4 into C2C12 myoblasts to knock down the
expression of HDAC4 mRNA and overexpression of miR-378a-3p to inhibited HDAC4 mRNA, detected by RT-PCR. (b) The mRNA expression of MHC, MyoD and MEF2C
were detected by RT-PCR in siHDAC4 transfected and control group. (c) MHC and MyoD protein detected by protein gel blot. (d) Cell proliferation were detected with
EdU stained in siHDAC4 and NC transfected of C2C12 cell. Nuclei were stained blue with DAPI, EdU were detected in red luciferase. Scale bar stand 200 mm. (e) EdU posi-
tive cells analysis. (f) CCK-8 were used to detected cell proliferation, and analyzed the absorbance value at 450 nm with Automatic microplate reader. (g, h) Cells were col-
lected and stained by Annexin V-FITC/PI in siHDAC4 and NC groups, cell apoptosis distribution were analyzed by flow cytomctry. Values are mean § SEM for 3 biological
replicates, � P < 0.05, �� P < 0.01.
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factors in regulating gene expression. A previous study reported
that MEF2C expression is limited to the skeletal muscle25 and
that theMEF2C protein was required in the p38 MAPK pathway
that regulates the transcription of genes in skeletal muscle differ-
entiation.50 Thus, miR-378a-3p regulated muscle differentiation
by inhibiting HDAC4 expression, which could strengthen
MEF2C expression of the activating p38 MAPK signal pathway.

In conclusion, our findings showed that miR-378a-3p may
promote muscle differentiation by inhibiting HDAC4 at the
post-transcriptional level. Moreover, miR-378a-3p suppressed
cell proliferation and induced apoptosis in C2C12 cells (Fig. 7).
However, this effect of miR-378a-3p on cell differentiation
requires further studies.

Materials and methods

Tissues collected and RNA isolation

All animal samples used in this study were approved by the
Animal Care and Use Committee of the College of Animal Sci-
ence and Technology, Northwest A&F University. Bovine tissue
samples included muscle, liver, heart, lung, spleen, kidney,
brain, and fat. All samples were collected at a local slaughter-
house in xi’an. The bovines were slaughtered by exsanguination
(n D 3), and all tissues were obtained under sterile conditions,
washed with diethypyrocarbonate (DEPC) treated water, and
immediately frozen in liquid nitrogen. The samples were stored
at ¡80�C until RNA isolation. Total RNA was extracted from
tissues or cells with Trizol reagent (TaKaRa, Japan).

Real-time quantitative PCR (RT-qPCR)

Total RNA was extracted from tissues or cells, and then 500 ng
total RNA was converted to cDNA using the PrimeScript RT
regent Kit (TaKaRa, Japan). Random primers, oligo (dT) or
miRNA-specific stem-loop primers were designed by us and
used for reverse-transcribed cDNA (Table S1). RT-qPCR was
performed with the SYBR Green PCR Master Mix Reagent Kit
(TaKaRa, Japan) and GAPDH and U6 were used for normali-
zation of the data. The RT-qPCR procedure was as follows:
cycle 1, 94�C for 3 min; cycle 2, 94�C for 5 s, 60�C for 25 s for

39 cycles, melt curve was generated using the cycle: 95�C for
10s, 65�C for 5s and 95�C for 5s. The fold-change of expression
of the transcript mRNA or miRNA were analyzed using the
2¡DDCT method. The RT-qPCR primers listed in Table S2 were
designed by Beacon Designer 8.

Vector construction

The overexpression vector pcDNA3.1-miR-378a-3p was
obtained by PCR amplification of a fragment about 380 bp
including the pre-miR-378a-3p complete sequence from bovine
genomic DNA using primers containing restriction enzyme
sites Hind III/Kpn I (TaKaRa, Japan); the forward primer was
50-CCCAAGCTTTAGAAGGCTCCGAGAACCAG-30 and
reverse primer was 50- GGGGTACCGAAGTTACAGGAAG-
GACCAGACA-30. T4 DNA ligase was used to ligate the
pre-miR-378a-3p fragment into the pcDNA3.1 (C) vector.
miR-378a-3p inhibitor was compound by GenePharma, the
sequence was GCCUUCUGACUCCAAGUCCAGU.

The HDAC4-30UTR sequence including the miRNA binding
site was amplified using a forward primer 50-CCGCTCGAGCT-
GAACTTTGAAGCCTGTGG-30 and reverse primer 50-ATA
AGAATGCGGCCGCAAGACCTTCCTGTCCTGCTC-30. Sep-
arately, a 2-base mutagen in the miR-378a-3p-binding site of
HDAC4 30UTR (HDAC4-30UTR-Mut) was generated with a
pair of mutagenic primers: 50-GACCAAAAGATGCCA-
GATTCTTGGACCG-30 and 50-CGGTCCAAGAATCTGG-
CATCTTTTGGTC-30. The two fragments were ligated into the
30-end of the Renilla gene in the psi-CHECK-2 dual-luciferase
reporter vector (Promega, USA) using restriction enzymes Xho
I and Not I (TaKaRa, Japan) and then ligated by T4 DNA ligase
(TaKaRa, Japan).

Cell culture

HEK293T cells (ATCC, USA) and mouse C2C12 myoblasts
were cultured in high-glucose Dulbecco’s modified Eagle’s
medium (DMEM; Hyclone, USA) supplemented with 10% fetal
bovine serum (FBS; Hyclone, USA) and 1% double antibiotics
(penicillin and streptomycin) (GM) at 37�C with 5% CO2. To
induce myogenic differentiation, culture medium was switched
to differential medium (DMEM with 2% horse serum, DM)
after cell growth had reached nearly 80% confluence.

Transfection

To detect the transfection efficiency of the recombinant vector,
pcDNA3.1-miR-378a-3p was transfected into HEK293T cells.
The cells at 90% confluence were plated at 5 £ 105 cells/well in
6-well plates. When growth reached approximately 80% conflu-
ence, 2 mg of pcDNA3.1-miR-378a-3p was transfected into the
HEK293T cells using Lipofectamine 2000 (Invitrogen, USA).

To confirm the effect of miR-378a-3p on muscle differen-
tiation, pcDNA3.1-miR-378a-3p was transfected into C2C12
cells cultured in a 6-well plates. The cells were cultured in
DM medium for 6 days, the cells were collected daily, and a
group of cells transfected with pcDNA3.1 (C) vector were
grown as a control. The siRNA of HDAC4 (siHDAC4) was
transfected into C2C12 cells to explore the HDAC4 effect on

Figure 7. Model of miR-378a-3p functioning in C2C12 cells. miR-378a-3p pro-
moted differentiation and repressed proliferation through targets HDAC4 in C2C12
cells, and promoted cell apoptosis.
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cell differentiation; 50 nM siRNA was used for each well of
the 6-well plates. The sequence of the siRNAs used in the
transfection are 50-GAGCAGCAGAGGAUCCACCAGUU
AA-30 and 50-CACCGGAACCUGAACCACUGCAUUU-30,
and a negative control (NC) siRNA that did not target
HDAC4was transfected into C2C12 cells as the control
group; the sequence was 50-UUCUCCGAACGUGUCAC-
GUTT-30.

Cell proliferation assay

Cell counting kit-8 assay
C2C12 cells were transferred to 96-well plates at a density of
1£104 cells/well and then 100mL GM were added to each
well. When the cells reached approximately 80% confluence,
they were transfected with either the pcDNA3.1-miR-378a-3p
or the pcDNA3.1 (C) vectors, respectively. After 24h of cul-
ture at 37�C, 10mL of CCK-8 reagent (Multisciences; China)
was added to each well and incubation was continued for 4 h.
The absorbance value of all samples were detected using an
automatic microplate reader (Molecular Devices, USA) at
450 nm.

EdU proliferation assay
The cell proliferation was also assessed using the Cell-Light
EdU DNA cell proliferation kit (RiboBio, China). C2C12 cells
was seeded into 96-well culture plates containing 100mL GM.
After 24 h, the cells were incubated into EdU medium. After
2 h, the test was performed according to the manufacturer’s
protocol.

Flow cytometry for the cell cycle assay

C2C12 cells were grown in 6-well plates (1£106 cells/well) with
2mL GM. The cells were treated with pcDNA3.1-miR-378a-3p
and pcDNA3.1 (C). After 24 h, the Cell Cycle Assay Kit (Multi-
sciences, China) was used to treat the cells. The cells were
washed in PBS buffer and the supernatant was removed after
centrifuging. Next, 1mL of DNA strain solution and 10 mL of
permeabilization solution were added to the resuspended cells,
and then blended by vortex shaking for 15 s. After incubating
for 30 min in the dark at room temperature, the cell cycle was
analyzed by Flow Cytometry (FACS CantoTM II, BD BioScien-
ces, USA).

Cell apoptosis assay

Cell apoptosis was measured by Annexin V-FITC/PI staining
assays. C2C12 cells were cultured in 6-well plates with 2 mL
GM. When the cells reached a confluence of 80%-90%, the cells
were transfected with pcDNA3.1-miR-378a-3p or pcDNA3.1
(C). After 24 h of incubation, the C2C12 cells were washed
3 times with PBS buffer. Cells were then harvested cells into
1.5 mL centrifuge tube and washed again, resuspending in
500 mL 1£ binding buffer. Cells were then treated with Cell
Apoptosis Assay Kit (Multisciences, China), incubated in the
dark for 10 min at room temperature, then cell apoptosis was
immediately analyzed using a Flow Cytometer.

Luciferase activity assay

Cells were cultured in 48-well plates when the cell growth
reached about 80% confluence. The pcDNA3.1-miR-378a-3p
and psiCHECK-2-HDAC4-30UTR (HDAC4-UTR-W) or psi-
CHECK-2-HDAC4-mut-30UTR (HDAC4-UTR-Mut) were co-
transfected into cells by Lipofectamine2000. The transfection
reagent was replaced with fresh growth medium (DMEM with
10% FBS) after transfection for 4»6 h. Next, the cells were
washed with PBS and harvested using 200mL Passive Lysis
Buffer (PLB) and rocked for 30 min at room temperature.
Dual-luciferase activity was measured by MPPC luminescence
analyzer (HAMAMATSU; Beijing, China) and the Renilla
Luciferase activity was normalized against Firefly Luciferase
activity.

Western blot

The total proteins were extracted from cells using protein Lysis
buffer RIPA containing 1mM PMSF (Solarbio; Beijing, China).
The extracts were boiled with 4£SDS loading buffer (150 mM
Tris-HCL (pH D 6.8), 12% SDS, 30% glycerol, 0.02% bromophe-
nol blue, and 6% 2-mercaptoethanol) at 98�C for 10 min and then
20 mg total proteins were loaded and separated on 10% SDS-
PAGE gels. After electrophoresis, the proteins were transferred to
a 0.2 mm PVDF membrane that was soaked in formaldehyde, and
then blocked with 5% skim milk in Tris Saline with Tween
(TBST) buffer for about 2 h at room temperature. The membrane
was then incubated overnight with primary antibodies specific for
anti-HDAC4 (Dilution 1:1000; ab32534; Abcam, England), anti-
MyoD (Dilution 1:1000; ab16148; Abcam, England), anti-MHC
(Dilution 1:1000; ab24648; Abcam, England), anti-Bcl-2 (Dilution
1:1000; ab32124; Abcam, England), anti-Bax (Dilution 1:1000;
ab32503; Abcam, England), anti-MEF2C (Dilution 1:1000; sc-
365862; SANTA, USA) and anti-b-tubulin (Dilution 1:1000;
KDM9003; Sungene Biotech, China) at 4�C. The PVDF mem-
brane was washed 3 times with TBST buffer and then incubated
with secondary antibody for the anti-immune rabbit IgG-HRP
(Dilution 1:1000; LK2001; Sungene Biotech, China) 2 h at room
temperature. b-tubulin was used as the internal control with a sec-
ondary antibody that was HRP-labeled anti-mouse IgG (Dilution
1:1000; LK2003; Sungene Biotech, China). Finally, antibody react-
ing bands were detected using ECL luminous fluid (Solarbio,
China).

Statistical analysis

The quantitative results are presented as mean § standard
error of the mean (SEM) based on at least 3 independent
experiments. All data in this study were analyzed by one-way
analysis of variance (ANOVA) for P-value calculations using
SPSS v17.0 software. P < 0.05 was considered statistically sig-
nificant differences among means. The software Image J was
utilized for gels image gray value analysis.
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